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TÓM TẮT. Trong bài báo này, chúng tôi chỉ ra rằng với A,B là các ma trận xác định dương và

M1,M2, . . . ,Mm là các ma trận không suy biến thì phương trình ma trận

Xp = A+

m∑
i=1

MT
i

(
B

1−t
2t XB

1−t
2t

)t
Mi

có duy nhất nghiệm xác định dương X∗. Ngoài ra, bằng cách sử dụng phương pháp lặp, bài báo

cũng chỉ ra dãy các ma trận hội tụ về nghiệm X∗ của phương trình trên.

Từ khóa: Ma trận xác định dương, phương trình ma trận, định lý điểm bất động, phương pháp lặp.
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ABSTRACT. In this paper, we consider one matrix equation that involves a matrix generalization

of the the weighted geometric mean. More precisely, for positive definite matrices A and B, for

nonsingular matrices M1,M2, . . . ,Mm, we show that the following equation

Xp = A+

m∑
i=1

MT
i

(
B

1−t
2t XB

1−t
2t

)t
Mi

has a unique positive definite solution. We also study the multi-step stationary iterative method

for this equation and prove the corresponding convergence.

Keywords: Positive definite matrice, matrix equation, fixed point theorem, multi-step stationary

iterative method.

1. Introduction

Let M n be the algebra of n × n matrices over C and let Pn denote the cone of positive

definite matrices in M n. For a real-valued function f and a Hermitian matrix A ∈M n, the

matrix f(A) is understood by means of the functional calculus.

Let A, B be positive definite matrices, it is well-known that the matrix geometric mean

A]B = A1/2
(
A−1/2BA−1/2

)1/2
A1/2 was firstly defined by Pusz and Woronowicz 1. They

showed that the geometric mean is the unique positive definite solution of the Riccati equa-

tion

XA−1X = B. (1)

In 2005, Lim 2 studied the inverse means problem for the geometric mean and the con-

traharmonic mean. Using the Riccati equation (1) as a lemma, he studied the following

equation

X = A+ 2BX−1B,

where A ≤ B are positive definite matrices. He showed that this equation has a unique

solution of the form X = 1
2
(A+ A] (A+ 4BA−1B)). Lim and co-authors 3 studied the non-

linear equation

X = B](A+X).
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They proved that this equation has a unique positive definite solution X = 1
2
(B + B](B +

4A)). Interestingly, both results were based on elementary approach by solving the corre-

sponding quadratic equations. Recently, Lee and co-authors 4 studied the following matrix

equation

Xp = A+MT (X]B)M.

Similar to the approach of Lim and Palfia 5, they used the Thompson metric and Banach fixed

point theorem to show that the equation has a unique positive definite solution. Recently,

Zhai and Jin 6 generalized the last equation for m non-singular matrices. More precisely,

they studied two non-linear matrix equations as follows

Xp = A+
m∑
i=1

MT
i (X]B)Mi

and

Xp = A+

j∑
i=1

MT
i (X]B)Mi +

m∑
i=j+1

MT
i

(
X−1]B

)
Mi,

where p,m, j are positive integers such that 1 ≤ j ≤ m, A,B are positive definite matrices

and M1,M2, . . . ,Mm are nonsingular real matrices.

Recently, Dinh and co-authors 7 studied a more general case of these two equations. They

considered similar matrix equations for the weighted matrix geometric mean

A]tB = A1/2
(
A−1/2BA−1/2

)t
A1/2.

Namely, they studied the following matrix equations

Xp = A+
m∑
i=1

MT
i (X]tB)Mi,

and

Xp = A+

j∑
i=1

MT
i (X]tB)Mi +

m∑
i=j+1

MT
i

(
X−1]tB

)
Mi,

where p,m are positive integers, A,B are n×n positive definite matrices and M1,M2, . . . ,Mm

are n× n nonsingular real matrices. At the end of the paper, they not only mentioned that

the weighted geometric mean A]tB is a matrix generalization of a1−tbt for two non-negative

numbers a and b but also noticed that there is another symmetric generalization such as(
A

1−t
2t BA

1−t
2t

)t
which appears in the definition of the sandwiched quasi-relative entropy

Tr
(
A

1−t
2t BA

1−t
2t

)t
(see 8).

The following theorem was discussed in 7 without a proof.

Theorem. (7 [Theorem 7]) Let A,B ∈ Pn, m be positive integers greater than 2, and p ≥ 1.
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Then, for nonsingular matrices M1,M2, . . . ,Mm in Mn, the following matrix equation

Xp = A+
m∑
i=1

MT
i

(
B

1−t
2t XB

1−t
2t

)t
Mi

has a unique positive definite solution X∗ in Pn.

In this note, we give a detail proof of this theorem. We also study the multi-step stationary

iterative method for this equation and prove the corresponding convergence.

2. Main results

Definition 1. (9 [Definition 2.1.1]) Let T : Pn → Pn be a operator, we say that T is

increasing if 0 < x ≤ y implies Tx ≤ Ty.

The following lemma is crucial for us to prove the main results in this paper.

Lemma 2. (9 [Theorem 2.1.6]) Let T : Pn → Pn be an increasing operator, suppose that

there exists r ∈ (0, 1) such that

T (sx) ≥ srT (x), x ∈ Pn, s ∈ (0, 1).

Then T has a unique fixed point x∗ ∈ Pn.

Theorem 3. Let A,B ∈ Pn, m be positive integers greater than 2, and p ≥ 1. Then, for

nonsingular matrices M1,M2, . . . ,Mm in Mn, the following matrix equation

Xp = A+
m∑
i=1

MT
i

(
B

1−t
2t XB

1−t
2t

)t
Mi (2)

has a unique positive definite solution X∗ in Pn.

Proof. Let consider the function

T (X) =
(
A+

m∑
i=1

MT
i

(
B

1−t
2t XB

1−t
2t

)t
Mi

) 1
p
.

We will show that T (X) satisfies the conditions of Lemma 2, so it has a unique fix point X∗

in Pn. That leads to the fact that the equation (2) has a unique positive definite solution

X∗ in Pn.

Let 0 < X1 ≤ X2, we have
(
B

1−t
2t X1B

1−t
2t

)t
≤
(
B

1−t
2t X2B

1−t
2t

)t
. Consequently,

MT
i

(
B

1−t
2t X1B

1−t
2t

)t
Mi ≤MT

i

(
B

1−t
2t X2B

1−t
2t

)t
Mi, i = 1,m.
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Therefore,

A+
m∑
i=1

MT
i

(
B

1−t
2t X1B

1−t
2t

)t
Mi ≤ A+

m∑
i=1

MT
i

(
B

1−t
2t X2B

1−t
2t

)t
Mi.

Since p ≥ 1, the function x
1
p is a monotone operator on (0,+∞). We have

T (X1) =

(
A+

m∑
i=1

MT
i

(
B

1−t
2t X1B

1−t
2t

)t
Mi

) 1
p

≤

(
A+

m∑
i=1

MT
i

(
B

1−t
2t X2B

1−t
2t

)t
Mi

) 1
p

= T (X2),

so the function T (X) is increasing.

Let X ∈ Pn. For t ∈ (0, 1) and p ≥ 1, there exists a constant r ∈ (0, 1) such that r ≥ t

p
.

It is obvious that (
B

1−t
2t (sX)B

1−t
2t

)t
= st

(
B

1−t
2t XB

1−t
2t

)t
,

for any s ∈ (0, 1).

Since rp ≥ t, we have srp ≤ st < 1 for all s ∈ (0, 1). Therefore,

A+ st
m∑
i=1

MT
i

(
B

1−t
2t XB

1−t
2t

)t
Mi ≥ srp

(
A+

m∑
i=1

MT
i

(
B

1−t
2t XB

1−t
2t

)t
Mi

)
.

By the monotonicity of the function x
1
p , we have

T (sX) =

(
A+ st

m∑
i=1

MT
i

(
B

1−t
2t XB

1−t
2t

)t
Mi

) 1
p

≥

(
srp

(
A+

m∑
i=1

MT
i

(
B

1−t
2t XB

1−t
2t

)t
Mi

)) 1
p

= sr

(
A+

m∑
i=1

MT
i

(
B

1−t
2t XB

1−t
2t

)t
Mi

) 1
p

= srT (X).

Thus, T (X) satisfies all conditions of Lemma 2. In other words, equation (2) has a unique

positive solution X∗ ∈ Pn.

Now, let X1, X2, . . . , Xm be initial matrices in Pn and consider the multi-step stationary

iterative method for the equation (2) as following

Xlm+j =

(
A+

m∑
i=1

MT
i

(
B

1−t
2t X(l−1)m+jB

1−t
2t

)t
Mi

) 1
p

(3)

5



for l = 1, 2, 3, . . . and j = 1, 2, . . . ,m.

In the following theorem, we will show that the matrix sequence {Xk} generated by (3)

converges to X∗.

Theorem 4. For any X1, X2, . . . , Xm ∈ Pn, the matrix sequence {Xk} generated by (3)

converges to the unique positive definite solution X∗ of the equation (2).

Proof. For matrices X1, X2, . . . , Xm and X∗, there exists a ∈ (0, 1) such that

aX∗ ≤ Xj ≤ a−1X∗, j = 1, 2, . . . ,m. (4)

We will show that for any b ∈ N we have

ar
b

X∗ ≤ Xk ≤ a−r
b

, k = bm+ j (j = 1, 2, . . . ,m) (5)

for some r ∈ (0, 1) and r ≥ t

p
. Then, according to the fact that lim

b→∞
ar

b
= lim

b→∞
a−r

b
= 1 and

the Squeeze theorem in the normal cone Pn, it implies that {Xk} converges to X∗.

Now, we prove (5) by using the method of mathematical induction. For b = 0, the

inequality (5) reduces to the case of (4). Assume that (5) is true for b = q − 1 for some

positive interger q, it means

ar
q−1

X∗ ≤ X(q−1)m+j ≤ a−r
q−1

X∗ (6)

for k = (q − 1)m+ j and j = 1, 2, . . . ,m.

Since Xqm+j = T (X(q−1)m+j) and T (X) is increasing, it implies from (6) that

T (ar
q−1

X∗) ≤ T (X(q−1)m+j) = Xqm+j ≤ T (a−r
q−1

X∗).

Moreover, T (sX) ≥ srT (X) in the case s ∈ (0, 1) and T (sX) ≤ srT (X) in the case s > 1.

Therefore,

T (ar
q−1

X∗) ≥
(
ar

q−1
)r

T (X∗) = ar
q

T (x∗) = ar
q

X∗

and

T
(
a−r

q−1

X∗
)
≤ a−r

q

T (X∗) = a−r
q

X∗.

So, we have

ar
q

X∗ ≤ Xqm+j ≤ a−r
q

X∗.

Thus, (5) is true, and {Xk} converges to X∗.
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