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TOM TAT. Trong bai bao nay, ching toi chi ra rang véi A, B 1a cac ma tran xac dinh duong va
My, Ms, ..., M, la cic ma tran khong suy bién thi phuong trinh ma tran

Ui 1—t 1—t\?t

XP=A+Y M (BTXB7> M;

i=1
c6 duy nhat nghiém xic dinh duong X*. Ngoai ra, bing cach sit dung phuong phap lap, bai bao
ciing chi ra day cac ma tran hoi tu vé nghiem X* ctia phuong trinh trén.

T khéa: Ma tran zdc dinh duong, phuong trinh ma tran, dinh Iy diém bat dong, phuong phdp lip.
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ABSTRACT. In this paper, we consider one matrix equation that involves a matrix generalization
of the the weighted geometric mean. More precisely, for positive definite matrices A and B, for

nonsingular matrices My, Mo, ..., M,,, we show that the following equation
" 1t 1-t\ !
Xr=A+Y M (BTXBT) M;
i=1
has a unique positive definite solution. We also study the multi-step stationary iterative method

for this equation and prove the corresponding convergence.

Keywords: Positive definite matrice, matriz equation, fixed point theorem, multi-step stationary

iterative method.

1. Introduction

Let Ml,, be the algebra of n x n matrices over C and let P,, denote the cone of positive
definite matrices in M ,,. For a real-valued function f and a Hermitian matrix A € M,,, the
matrix f(A) is understood by means of the functional calculus.

Let A, B be positive definite matrices, it is well-known that the matrix geometric mean
AfB = A'/? (/1*1/2BA*1/2)1/2 A2 was firstly defined by Pusz and Woronowicz '. They
showed that the geometric mean is the unique positive definite solution of the Riccati equa-
tion

XA'X =B. (1)

In 2005, Lim ? studied the inverse means problem for the geometric mean and the con-
traharmonic mean. Using the Riccati equation (1) as a lemma, he studied the following
equation

X =A+2BX'B,
where A < B are positive definite matrices. He showed that this equation has a unique
solution of the form X = 1 (A + A (A +4BA™'B)). Lim and co-authors ® studied the non-

linear equation

X = BH(A + X).



They proved that this equation has a unique positive definite solution X = %(B + Bt#(B +
4A)). Interestingly, both results were based on elementary approach by solving the corre-
sponding quadratic equations. Recently, Lee and co-authors * studied the following matrix
equation

XP = A+ M (X4B)M.

Similar to the approach of Lim and Palfia ®, they used the Thompson metric and Banach fixed
point theorem to show that the equation has a unique positive definite solution. Recently,
Zhai and Jin ¢ generalized the last equation for m non-singular matrices. More precisely,

they studied two non-linear matrix equations as follows

XP=A+Y M(X4B)M,

i=1
and ; -
XP=A+> MI(X4B)M;+ > M (X7'4B) M,
i=1 i=j+1
where p, m, j are positive integers such that 1 < j < m, A, B are positive definite matrices
and My, M, ..., M,, are nonsingular real matrices.

Recently, Dinh and co-authors 7 studied a more general case of these two equations. They

considered similar matrix equations for the weighted matrix geometric mean
At B = A2 (A72BAY2) 412,
Namely, they studied the following matrix equations

XP=A+ ZMzT (Xt:B) M;,

=1

and '
J m
XP= A+ M (XtB)M;+ Y M (X'4.B) M,
i=1 i=j+1
where p, m are positive integers, A, B are nxn positive definite matrices and My, Ms, ..., M,,

are n X n nonsingular real matrices. At the end of the paper, they not only mentioned that
the weighted geometric mean Af; B is a matrix generalization of a'~*b’ for two non-negative
numbers a and b but also noticed that there is another symmetric generalization such as
(AlntBAlztt)t which appears in the definition of the sandwiched quasi-relative entropy
Tr <A12ttBA12tt>t (see ).

The following theorem was discussed in 7 without a proof.

Theorem. (7 [Theorem 7)) Let A, B € P,,, m be positive integers greater than 2, and p > 1.
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Then, for nonsingular matrices My, Mo, ..., M,, in M.,,, the following matriz equation
m t
Xv = A+ MI(B%XBS) M,
i=1

has a unique positive definite solution X* in P,.
In this note, we give a detail proof of this theorem. We also study the multi-step stationary

iterative method for this equation and prove the corresponding convergence.

2. Main results

Definition 1. (? [Definition 2.1.1]) Let T : P, — P, be a operator, we say that T is

increasing if 0 < z <y implies Tz < T'y.
The following lemma is crucial for us to prove the main results in this paper.

Lemma 2. (° [Theorem 2.1.6]) Let T : P, — P, be an increasing operator, suppose that

there exists r € (0,1) such that
T(sx) > s"T(x), x € Py, s € (0,1).
Then T has a unique fixed point x* € P,.

Theorem 3. Let A, B € P,,, m be positive integers greater than 2, and p > 1. Then, for

nonsingular matrices My, Ms, ..., M,, in M, the following matriz equation

n 1—t 1—t 3
Xr=A+Y M (BTXBT) M, 2)

=1

has a unique positive definite solution X* in P,.

Proof. Let consider the function
“ 1—t 1-t\ ! %
T(X) = (A+ Y ™! (B%XB%) M)
i=1

We will show that T'(X) satisfies the conditions of Lemma 2, so it has a unique fix point X*
in P,. That leads to the fact that the equation (2) has a unique positive definite solution
X*in P,.

Let 0 < X; < X, we have (BIQ?XIBB?)t < (BB?XQBBT)t. Consequently,

1—t 1—t t 1—t 1—t t —_
MT (BTXlBT) M, < MY (BTXQBT) Mi, i=T,m.



Therefore,
e —t —t\?! " —t —t\?!
A+ Y M! (BthXlBth> M <A+ > MT (BthXgBth> M.
i=1 =1

1
Since p > 1, the function x» is a monotone operator on (0, +00). We have

3=

T 1—t 1—t t
T(X) = (A+ 3 M (B X,B%) M,
1=1

< <A + iMiT (BBJX2BBJ>tMi>
=1

= T(XQ),

B =

so the function 7'(X) is increasing.

SRS

Let X € P,. For t € (0,1) and p > 1, there exists a constant r € (0,1) such that r >

It is obvious that

for any s € (0,1).
Since rp > t, we have s” < s' < 1 for all s € (0,1). Therefore,

i 1—t 1—t t 7 1-—t 1—-t t
Ats S Mf (BTXBT) M, > s (A +3 M (B?XBT> MZ»> .
i=1 i=1
By the monotonicity of the function 35%, we have

o —t —t\?t
T(sX) = <A+stZMiT (BthXBth) Mi>

i=1

" —t —t\?!
> <s7"1’ <A+ZMZT (BthXBth> M))

i=1

B =

3=

3=

o —t —t\ ¢
— (A+ZM? (B xB%) M,

i=1

=s"T(X).
Thus, T'(X) satisfies all conditions of Lemma 2. In other words, equation (2) has a unique

positive solution X* € P,,. O

Now, let X1, X5, ..., X,, be initial matrices in P,, and consider the multi-step stationary

iterative method for the equation (2) as following

m 1-t 1\t v
Ximj = <A+ > M <B7Xafl)m+j37> Mz‘) (3)

i=1



forl=1,2,3,...and 7 =1,2,...,m.
In the following theorem, we will show that the matrix sequence { X} generated by (3)

converges to X*.

Theorem 4. For any X1, Xs, ..., X,, € P,, the matriz sequence { Xy} generated by (3)

converges to the unique positive definite solution X* of the equation (2).

Proof. For matrices X7, Xs,..., X, and X*, there exists a € (0,1) such that
aX*<X;<a'X* j=1,2,...,m. (4)
We will show that for any b € N we have
X < Xp<a, k=bm+j(G=12...,m) (5)

for some r € (0,1) and r > % Then, according to the fact that bli)rglo a”’ = bliglo ™ =1 and
the Squeeze theorem in the normal cone P, it implies that { X} converges to X*.

Now, we prove (5) by using the method of mathematical induction. For b = 0, the
inequality (5) reduces to the case of (4). Assume that (5) is true for b = ¢ — 1 for some

positive interger ¢, it means
A" X< Xgaymyy <aX (6)

fork=(qg—1)m+jand j=1,2,... ,m.
Since Xgmij = T(X(g—1)m+;) and T'(X) is increasing, it implies from (6) that

(@™ X*) < T(X(g1ymiy) = Xgmy; <T@ X*).

Moreover, T'(sX) > s"T(X) in the case s € (0,1) and T'(sX) < s"T(X) in the case s > 1.
Therefore,
T ' X*) > (aﬂ*) T(X*) =" T(a") = a”" X"
and
T (m”*x*) <aTT(XY) = a X"
So, we have

0" X* < Xy <a X"

Thus, (5) is true, and { X} converges to X*. O
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