
35Tạp chí Khoa học - Trường Đại học Quy Nhơn, 2020, 14(5), 35-42 35

*Tác giả liên hệ chính.
Email: tranthienthanh@qnu.edu.vn

TRƯỜNG ĐẠI HỌC QUY NHƠN
KHOA HỌCTẠP CHÍ

Thuật toán khai phá đồ thị con thường xuyên
theo mô hình MapReduce

Trần Thiên Thành*, Trần Thị Liên, Nguyễn Thị Kim Phượng

Khoa Công nghệ thông tin, Trường Đại học Quy Nhơn, Việt Nam

Ngày nhận bài: 05/05/2020; Ngày nhận đăng: 03/07/2020

TÓM TẮT

Trong bài báo này chúng tôi trình bày về thuật toán gSpanMR, một thuật toán khai phá đồ thị con thường
xuyên theo mô hình lập trình MapReduce. Thuật toán gSpanMR (gSpan MapReduce) được phát triển dựa trên kết
quả mã hóa đồ thị bằng DFS code của thuật toán gSpan và thuật toán khai phá đồ thị con thường xuyên trên mô
hình MapReduce FSM-H. Thuật toán được cài đặt và thực nghiệm trên cụm máy tính sử dụng nền tảng Hadoop
cho thấy tốc độ có cải tiến so với thuật toán FSM-H.

Từ khóa: Khai phá đồ thị con thường xuyên, MapReduce, DFS Code.

36 Journal of Science - Quy Nhon University, 2020, 14(5), 35-42

A frequent subgraph mining algorithm
on the MapReduce model

Tran Thien Thanh*, Tran Thi Lien, Nguyen Thi Kim Phuong

Faculty of Information Technology, Quy Nhon University, Vietnam

Received: 05/05/2020; Accepted: 03/07/2020

ABSTRACT

In this paper, we present the gSpanMR algorithm, a frequent subgraph mining on the MapReduce
programming model. The gSpanMR algorithm (gSpan MapReduce) was developed based on the results
of encoding graphs using the DFS code in gSpan algorithm and FSM-H algorithm on the MapReduce
model. gSpanMR algorithm has been installed and tested on computer clusters using Hadoop platform,
which shows better execution time than FSM-H algorithm.

Keywords: Frequent subgraph mining, MapReduce, DFS Code.

*Corresponding author.
Email: tranthienthanh@qnu.edu.vn

1. INTRODUCTION

Frequent subgraph mining has been an emerging
data mining problem with many scientific and
commercial applications. There exist many
algorithms for solving the in-memory version
of frequent subgraph mining task, most notable
among them are AGM,1 FSG,2 gSpan,3 Gaston,4
and DMTL.5 These methods assume that the
dataset is small and the mining task finishes
in a reasonable amount of time using an in-
memory method. To consider the large data
scenario, a few traditional database based graph
mining algorithms, such as, DB-Subdue,6 and
DB-FSG7 and OOFSG8 are also proposed.
The kernel of frequent subgraph mining is
subgraph isomorphism test. Lots of well-known
pair-wise isomorphism testing algorithms were
developed. However, the frequent subgraph
mining problem was not explored well. One
approach used by many researchers to solve
problems with large data and complexity is to

use parallel computational models on computer
clusters. We use the results of DFS code
proposed in gSpan algorithm3 combined with
the idea of implementing FSM-H algorithm9
on Hadoop to build the gSPanMR algorithm to
frequent subgraphs mining on the MapReduce
programming model.

The paper is organized as follows:
Section 1 introduces research issues; Section
2 presents some concepts of frequent subgraph
mining and two algorithms gSpan, FSM-H;
Section 3 presents the details of the gSpanMR
algorithm; Section 4 presents the experimental
time comparison of FSM-H and gSpanMR
algorithms; The final section are conclusions and
some further developments of the paper.

2. FREQUENT SUBGRAPH MINING

Definition 1 (Labeled graph)3 A labeled graph
can be represented by a 4-type, G = (V, E, L, l),
where:

QUY NHON UNIVERSITY
SCIENCEJOURNAL OF

37

QUY NHON UNIVERSITY
SCIENCEJOURNAL OF

Journal of Science - Quy Nhon University, 2020, 14(5), 35-42

•	V is a set of vetices,
•	E ⊆ V×V is a set of edges,
•	L is a set of labels,
•	 l: V ∪ E→L is a function assigning

labels to the vetices and the edges.

Definition 2 (Isomorphism graph)3 An
issomophism is a bijective function f: V(G) →
V(G’), such that:

•	v ∈ V(G), lG(v) = lG’(f(v)),
•	 (u, v) ∈ E(G), (f(u), f(v)) ∈ E(G’) and

lG(u, v) = lG’(f(u), f(v)).

Definition 3 (Frequent subgraph)3 Given
a graph dataset, D = {G1, G2, …, Gn} and
a minimum support minSup. A graph G is
a frequent subgraph in D with minSup if
sup(G, D) ≥ minSup, where sup(G, D) = |{Gi ∈ D:
G is isomophism to a subgraph of Gi}|.

In the following section, I will discuss the
concepts of DFS code and some properties that
help to build gSpan algorithm.

Given an undirected connected graph G.
The DFS tree of graph G is a tree built from the
vertices and the edges of the graph G by DFS
algorithm.10 The DFS tree creates a linear order
between vertices and edges of the graph in their
order of visit.

Figure 1. DFS tree and Forward/Backward edge3

Definition 4. (DFS code)3. Given a DFS
tree T for a graph G, an edge sequence (ei) such
ei < ei+1, where i = 0, 1,…, |E(G)|-2, (ei) is called
a DFS code, denoted as code(G, T).

An edge e = (vi, vj) in a DFS code is a 5-tupe:
(i, j, li, l(i, j), lj). Table 1 shows the corresponding
DFS codes for Figure 1 (b), (c), (d).

Table 1. DFS codes for Figure 1 (b), (c), (d)

Edge
no. (Fig. 1b) α (Fig. 1c) β (Fig. 1d) γ

0 (0,1,X,a,Y) (0,1,Y,a,X) (0,1,X,a,X)

1 (1,2,Y,b,X) (1,2,X,a,X) (1,2,X,a,Y)

2 (2,0,X,a,X) (2,0,X,b,Y) (2,0,Y,b,X)

3 (2,3,X,c,Z) (2,3,X,c,Z) (2,3,Y,b,Z)

4 (3,1,Z,b,Y) (3,0,Z,b,Y) (3,0,Z,c,X)

5 (1,4,Y,d,Z) (0,4,Y,d,Z) (2,4,Y,d,Z)

Definition 5 (DFS code Lexicographic
Order)3 If α = code(Gα, Tα) = (a0, a1,…, am) and
β = code(Gβ, Tβ) = (b0, b1,…, bn) then α ≤ β if
either of the following is true:

i) ∃t, 0 ≤ t ≤ min(m, n), ak = bk for k < t,
at<bt

ii) ak = bk for 0 ≤ k ≤ m, and n ≥ m.

Definition 6 (Minimum DFS code)3
Given a graph G, Z(G) = {code(G, T) | T is a DFS
tree for G}, based on DFS lexicographic order,
the minimum one, min(Z(G)), is called Minimum
DFS code of G, denoted as min(G).

The minimum DFS code of a G graph
is also called a labeling scheme for graph G.
Based on this labeling, we have the result of
isomorphism of the two graphs.

Theorem 13 Given two graphs G and
G’, G is isomophism to G’ if and only if
min(G)=min(G’).

Definition 7 (DFS code’s Parent and
Child)3 Given a DFS code α = (a0, a1, …, am),
any DFS code valid β = (a0, a1, …, am, b) is
called α’s child, and α is called β’s parent. We
denote children(α) = { β | is β’s parent}.

The growth from the DFS code α to valid
DFS code β is necessary for frequent subgraph
mining. In fact, to construct a valid DFS code,
b must be an edge which only grows from the
vertices on the rightmost path. In figure 2 the
graph shown in 2(a) has several potential children
with one edge growth, which are shown in 2(b)-
2(f) (assume the drakened vertices constitute the
rigthmost path).

3

Given an undirected connected graph G.
The DFS tree of graph G is a tree built from the
vertices and the edges of the graph G by DFS
algorithm.10 The DFS tree creates a linear order
between vertices and edges of the graph in their
order of visit.

Figure 1. DFS tree and Forward/Backward edge3

Definition 4. (DFS code)3. Given a DFS
tree T for a graph G, an edge sequence (ei) such ei
< ei+1, where i = 0 1 … |E(G)|-2, (ei) is called a
DFS code, denoted as code(G, T).

An edge e = (vi, vj) in a DFS code is a 5-
tupe: (i, j, li, l(i, j), lj). Table 1 shows the
corresponding DFS codes for Figure 1 (b), (c),
(d).

Table 1. DFS codes for Figure 1 (b), (c), (d)

Edge
no. (Fig. 1b)  (Fig. 1c)  (Fig. 1d) 

0 (0,1,X,a,Y) (0,1,Y,a,X) (0,1,X,a,X)
1 (1,2,Y,b,X) (1,2,X,a,X) (1,2,X,a,Y)
2 (2,0,X,a,X) (2,0,X,b,Y) (2,0,Y,b,X)
3 (2,3,X,c,Z) (2,3,X,c,Z) (2,3,Y,b,Z)
4 (3,1,Z,b,Y) (3,0,Z,b,Y) (3,0,Z,c,X)
5 (1,4,Y,d,Z) (0,4,Y,d,Z) (2,4,Y,d,Z)

Definition 5 (DFS code Lexicographic
Order)3 If  = code(G, T) = (a0, a1 … am) and
 = code(G, T) = (b0, b1 … bn) then  ≤  iif
either of the following is true:

i) t 0 ≤ t ≤ min(m, n), ak = bk for k < t,
at<bt
ii) ak = bk for 0 ≤ k ≤ m, and n ≥ m.

Definition 6 (Minimum DFS code)3
Given a graph G, Z(G) = {code(G, T) | T is a
DFS tree for G}, based on DFS lexicographic
order, the minimum one, min(Z(G)), is called
Minimum DFS code of G, denoted as min(G).

The minimum DFS code of a G graph is
also called a labeling scheme for graph G. Based
on this labeling, we have the result of
isomorphism of the two graphs.

Theorem 13 Given two graphs G and G’
G is isomophism to G’ f f
min(G)=min(G’

Definition 7 (DFS code’s Pa e a d
Child)3 Given a DFS code  = (a0, a1 … am),
any DFS code valid  = (a0, a1 … am, b) is
called ’ child, and  is called ’s pa e . We
denote children() = {  |  is ’ }

The growth from the DFS code  to valid
DFS code  is necessary for frequent subgraph
mining. In fact, to construct a valid DFS code, b
must be an edge which only grows from the
vertices on the rightmost path. In figure 2 the
graph shown in 2(a) has several potential children
with one edge growth, which are shown in 2(b)-
2(f) (assume the drakened vertices constitute the
rigthmost path).

Figure 2. DFS code growing3

The DFS code together with the parent-
child relationship forms a tree, called the DFS
code tree. In the DFS code tree each node is a
DFS code of a graph. The nodes at the ith level
are DFS codes of graphs with i-1 edges. Figure 3
illustrates the DFS code tree.

Figure 3. DFS code tree3

We can truncate the branches of the DFS
code tree that do not contain the minimum DFS
code with the following result:

Theorem 2 (DFS code Growth)3 Given a
DFS code , if  = min(),  < . Let D = {  
 < },    children(), min()  D 
children()  D.

From the above results, the gSpan
algorithm starts from the 1-edge frequent
subgraph and grows for more-edge graphs until
the graph expands infrequently.

However, the gSpan algorithm complexity
is an exponential function in the worst case

38

TRƯỜNG ĐẠI HỌC QUY NHƠN
KHOA HỌCTẠP CHÍ

Tạp chí Khoa học - Trường Đại học Quy Nhơn, 2020, 14(5), 35-42

Figure 2. DFS code growing3

The DFS code together with the parent-
child relationship forms a tree, called the DFS
code tree. In the DFS code tree each node is a
DFS code of a graph. The nodes at the ith level
are DFS codes of graphs with i-1 edges. Figure 3
illustrates the DFS code tree.

Figure 3. DFS code tree3

We can truncate the branches of the DFS
code tree that do not contain the minimum DFS
code with the following result:

Theorem 2 (DFS code Growth)3 Given
a DFS code β, if α = min(β), α < β. Let Dγ =
{η | η < γ}, ∀ σ ∈ children(β), min(σ) ∈ Dα ∪
children(α) ⊆ Dβ.

From the above results, the gSpan
algorithm starts from the 1-edge frequent
subgraph and grows for more-edge graphs until
the graph expands infrequently.

However, the gSpan algorithm complexity
is an exponential function in the worst case
scenario. Therefore, frequent subgraph mining
on large graph sets is still a challenge.

To contribute to addressing this challenge,
an approach is to build algorithms based on the
MapReduce model to perform in parallel on
the computer cluster to reduce execution time.
MapReduce model is a parallel programming

model on cluster of computers proposed by
Google11. Then Apache Hadoop is an open source
platform that supports this programming model
and is widely used in research and applications.

The FSM-H algorithm is an approach to
frequent subgraphs mining on the MapReduce
model. The FSM-H algorithm works on a graph
set of data sets consisting of k parts, one on a
data node. The multi-step iterative algorithm, at
the ith step, is the candidate i-edge subgraph from
the i-1-edge frequent subgraph, then calculates
the support for each candidate at each node and
passes it to the reduce function summarizes and
determines which subgraphs are often saved
along with a list of graphs that contain it as input
for the next step. The process is repeated until no
more frequent subgraphs are discovered.

The FSM-H algorithm uses minimal
DFS code to identify isomorphic subgraphs.
However, the this algorithm has some
limitations during the frequent subgraph mining:
The generation of candidate i-edge subgraphs
from i-1-edge frequent subgraphs is still
redundant because it contains many duplicate
(isomorphic) subgraphs. So data transfer and
calculation are also more. For each i-edge
subgraph in the candidate set, the algorithm
finds the minimum DFS code to homogeneous
subgraphs from each other, thereby sending the
results to the reduce function. The algorithm to
find the minimum DFS code is exponentially
complex. If instead of finding the minimum DFS
code by checking the DFS code is minimal, the
computational complexity of the algorithm will
be reduced if the DFS code is not minimal but the
correctness of the algorithm is still guaranteed.
To overcome these limitations, we improved
the FSM-H algorithm based on the properties of
DFS code as shown in the following section.

3. gSpanMR ALGORITHM

To overcome the limitations of the FSM-H
algorithm, we use the following property in
generating i-edge subgraph candidates from
regular i-1-edge frequent subgraphs.

3

Given an undirected connected graph G.
The DFS tree of graph G is a tree built from the
vertices and the edges of the graph G by DFS
algorithm.10 The DFS tree creates a linear order
between vertices and edges of the graph in their
order of visit.

Figure 1. DFS tree and Forward/Backward edge3

Definition 4. (DFS code)3. Given a DFS
tree T for a graph G, an edge sequence (ei) such ei
< ei+1, where i = 0 1 … |E(G)|-2, (ei) is called a
DFS code, denoted as code(G, T).

An edge e = (vi, vj) in a DFS code is a 5-
tupe: (i, j, li, l(i, j), lj). Table 1 shows the
corresponding DFS codes for Figure 1 (b), (c),
(d).

Table 1. DFS codes for Figure 1 (b), (c), (d)

Edge
no. (Fig. 1b)  (Fig. 1c)  (Fig. 1d) 

0 (0,1,X,a,Y) (0,1,Y,a,X) (0,1,X,a,X)
1 (1,2,Y,b,X) (1,2,X,a,X) (1,2,X,a,Y)
2 (2,0,X,a,X) (2,0,X,b,Y) (2,0,Y,b,X)
3 (2,3,X,c,Z) (2,3,X,c,Z) (2,3,Y,b,Z)
4 (3,1,Z,b,Y) (3,0,Z,b,Y) (3,0,Z,c,X)
5 (1,4,Y,d,Z) (0,4,Y,d,Z) (2,4,Y,d,Z)

Definition 5 (DFS code Lexicographic
Order)3 If  = code(G, T) = (a0, a1 … am) and
 = code(G, T) = (b0, b1 … bn) then  ≤  iif
either of the following is true:

i) t 0 ≤ t ≤ min(m, n), ak = bk for k < t,
at<bt
ii) ak = bk for 0 ≤ k ≤ m, and n ≥ m.

Definition 6 (Minimum DFS code)3
Given a graph G, Z(G) = {code(G, T) | T is a
DFS tree for G}, based on DFS lexicographic
order, the minimum one, min(Z(G)), is called
Minimum DFS code of G, denoted as min(G).

The minimum DFS code of a G graph is
also called a labeling scheme for graph G. Based
on this labeling, we have the result of
isomorphism of the two graphs.

Theorem 13 Given two graphs G and G’
G is isomophism to G’ f f
min(G)=min(G’

Definition 7 (DFS code’s Pa e a d
Child)3 Given a DFS code  = (a0, a1 … am),
any DFS code valid  = (a0, a1 … am, b) is
called ’ child, and  is called ’s pa e . We
denote children() = {  |  is ’ }

The growth from the DFS code  to valid
DFS code  is necessary for frequent subgraph
mining. In fact, to construct a valid DFS code, b
must be an edge which only grows from the
vertices on the rightmost path. In figure 2 the
graph shown in 2(a) has several potential children
with one edge growth, which are shown in 2(b)-
2(f) (assume the drakened vertices constitute the
rigthmost path).

Figure 2. DFS code growing3

The DFS code together with the parent-
child relationship forms a tree, called the DFS
code tree. In the DFS code tree each node is a
DFS code of a graph. The nodes at the ith level
are DFS codes of graphs with i-1 edges. Figure 3
illustrates the DFS code tree.

Figure 3. DFS code tree3

We can truncate the branches of the DFS
code tree that do not contain the minimum DFS
code with the following result:

Theorem 2 (DFS code Growth)3 Given a
DFS code , if  = min(),  < . Let D = {  
 < },    children(), min()  D 
children()  D.

From the above results, the gSpan
algorithm starts from the 1-edge frequent
subgraph and grows for more-edge graphs until
the graph expands infrequently.

However, the gSpan algorithm complexity
is an exponential function in the worst case

3

Given an undirected connected graph G.
The DFS tree of graph G is a tree built from the
vertices and the edges of the graph G by DFS
algorithm.10 The DFS tree creates a linear order
between vertices and edges of the graph in their
order of visit.

Figure 1. DFS tree and Forward/Backward edge3

Definition 4. (DFS code)3. Given a DFS
tree T for a graph G, an edge sequence (ei) such ei
< ei+1, where i = 0 1 … |E(G)|-2, (ei) is called a
DFS code, denoted as code(G, T).

An edge e = (vi, vj) in a DFS code is a 5-
tupe: (i, j, li, l(i, j), lj). Table 1 shows the
corresponding DFS codes for Figure 1 (b), (c),
(d).

Table 1. DFS codes for Figure 1 (b), (c), (d)

Edge
no. (Fig. 1b)  (Fig. 1c)  (Fig. 1d) 

0 (0,1,X,a,Y) (0,1,Y,a,X) (0,1,X,a,X)
1 (1,2,Y,b,X) (1,2,X,a,X) (1,2,X,a,Y)
2 (2,0,X,a,X) (2,0,X,b,Y) (2,0,Y,b,X)
3 (2,3,X,c,Z) (2,3,X,c,Z) (2,3,Y,b,Z)
4 (3,1,Z,b,Y) (3,0,Z,b,Y) (3,0,Z,c,X)
5 (1,4,Y,d,Z) (0,4,Y,d,Z) (2,4,Y,d,Z)

Definition 5 (DFS code Lexicographic
Order)3 If  = code(G, T) = (a0, a1 … am) and
 = code(G, T) = (b0, b1 … bn) then  ≤  iif
either of the following is true:

i) t 0 ≤ t ≤ min(m, n), ak = bk for k < t,
at<bt
ii) ak = bk for 0 ≤ k ≤ m, and n ≥ m.

Definition 6 (Minimum DFS code)3
Given a graph G, Z(G) = {code(G, T) | T is a
DFS tree for G}, based on DFS lexicographic
order, the minimum one, min(Z(G)), is called
Minimum DFS code of G, denoted as min(G).

The minimum DFS code of a G graph is
also called a labeling scheme for graph G. Based
on this labeling, we have the result of
isomorphism of the two graphs.

Theorem 13 Given two graphs G and G’
G is isomophism to G’ f f
min(G)=min(G’

Definition 7 (DFS code’s Pa e a d
Child)3 Given a DFS code  = (a0, a1 … am),
any DFS code valid  = (a0, a1 … am, b) is
called ’ child, and  is called ’s pa e . We
denote children() = {  |  is ’ }

The growth from the DFS code  to valid
DFS code  is necessary for frequent subgraph
mining. In fact, to construct a valid DFS code, b
must be an edge which only grows from the
vertices on the rightmost path. In figure 2 the
graph shown in 2(a) has several potential children
with one edge growth, which are shown in 2(b)-
2(f) (assume the drakened vertices constitute the
rigthmost path).

Figure 2. DFS code growing3

The DFS code together with the parent-
child relationship forms a tree, called the DFS
code tree. In the DFS code tree each node is a
DFS code of a graph. The nodes at the ith level
are DFS codes of graphs with i-1 edges. Figure 3
illustrates the DFS code tree.

Figure 3. DFS code tree3

We can truncate the branches of the DFS
code tree that do not contain the minimum DFS
code with the following result:

Theorem 2 (DFS code Growth)3 Given a
DFS code , if  = min(),  < . Let D = {  
 < },    children(), min()  D 
children()  D.

From the above results, the gSpan
algorithm starts from the 1-edge frequent
subgraph and grows for more-edge graphs until
the graph expands infrequently.

However, the gSpan algorithm complexity
is an exponential function in the worst case

39

QUY NHON UNIVERSITY
SCIENCEJOURNAL OF

Journal of Science - Quy Nhon University, 2020, 14(5), 35-42

Property 1 Given α = (a0, a1, …, an) is
a minimum DFS code of a graph G. If β = (a0,
a1, …, an, b) is a minimum DFS code then the
following is true:

i) b is greater than or equal to a0.

ii) If b is a backward edge of the form (vi,
vj), j < i then b is greater than or equal to the edge
of α that contains vj.

iii) If b is a forward edge of the form (vi,
vj), j > i then b is greater than or equal to the edge
of α that contains vi.

Proof.

Let G’ be the graph of DFS code β.

i) Assume b < a0. We build a DFS code
β' of graph G’ that b is the first edge of the DFS
code. It is easy to see β’< β, which contradicts
the hypothesis β is the minimum DFS code.

ii) If ak (0 ≤ k ≤ n) contains vertices vj and
ak > b then DFS code β' = (a0, a1, ..., ak-1, b’,
a’n, ..., a’k+1, ak), is a DFS code of G' and β' < β
should conflict with the hypothesis β is the
minimum DFS code of G’. Let b = (i , j, li, l(i, j), lj)
we denote b’ = (j, i, lj, l(j, i), li).

iii) If b < ak (0 ≤ k ≤ n) then β’ = (a0, a1,
…, ak-1, b, bk, …, bn) is a DFS code of G’, and
β’ < β, should conflict with the hypothesis is the
minimum DFS code of G’.

We build an algorithm to generate DFS
codes k+1-edge from minimum DFS code k-edge
and graph G, based on property 1.

Algorithm 1. Generate DFS codes k+1-edge

Input: Minimum DFS code k-edge dfsMin,
graph G
Output: {β | β ∈ children(dfsMin), β is a DFS
code of a subgraph in G}
Format: Canditate_generation(dfsMin, G)
Action:
1. C = ∅
2. rmp = rightMostPath(dfsMin)
3. vMax = rmp[0]

4. minLabel = dfsMin[0].fromLabel
// Backward edges
5. for each v in rmp:
6. e = (vMax, v)
7. if e in G and e not in dfsMin then
8. for each e’ in dfsMin:
 9. if e’ > e then continue
10. dfs = dfsMin∪{e}
11. C = C ∪ dfs
// Forward edge from vMax
12. for each v in G.adjList(vMax):
13. e = (vMax, v)
14. if e not in dfsMin and
 label(e) >=minLabel then
15. dfs = dfsMin∪{e}
16. C = C ∪ dfs
//Forward edges of the form (u,v), where u in rmp
17. for each v in rmp, v ≠ vMax:
18. for each v’ in G.adjList(v):
19. e = (v, v’)
20. if e not in dfsMin then
21. for each e’ in dfsMin:
22. if e’>e then continue
23. dfs = dfsMin∪{e}
24. C = C ∪ dfs
25. return C

The correctness of the algorithm is
confirmed by property 1. The time complexity of
algorithm 1 in the worst case is O (k.m), where k
is the number of edges in dfsMin, and m= |E(G)|.

In the gSpanMR algorithm we check if
a DFS code is the minimum DFS code? The
algorithm is as follows:

Algorithm 2. Check the minimum DFS code.

Input: DFS code for check dfsCode

Output: True if dfsCode is minimum, False
otherwise
Format: isMin(dfsCode).

40

TRƯỜNG ĐẠI HỌC QUY NHƠN
KHOA HỌCTẠP CHÍ

Tạp chí Khoa học - Trường Đại học Quy Nhơn, 2020, 14(5), 35-42

Action:
1. g = to_Graph(dfsCode)
2. minDFS = ∅
3. return tryIsMin(dfsCode, minDFS, 0)

Procedure tryIsMin(dfsCode, minDFS, i)
checks whether the ith edge of dfsCode is a
edge in the minimum DFS code; minDFS is the
minimum DFS code i-1 edge.

Sub tryIsMin(dfsCode, minDFS, i)
1. if i > length(dfsCode) then return true
2. list = List of smallest edges in g can grow for
minDFS
3. for each e in list:
4. if e < dfsCode[i] then return False
5. minDFS = minDFS ∪ {e}
6. chk = tryIsMin(dfsCode, minDFS, i+1)
7. if chk = False then return False
8. minDFS = minDFS – {e}

Algorithm 2 uses branch-and-bound
method, so in practice it is better than the
algorithm to find the minimum DFS code of a
graph, although the worst case complexity of
algorithm 2 is O(2n), where n is the number of
edges of dfsCode.

Based on the gSpan algorithm and the
approach of the FSM-H algorithm, we developed
the gSpanMR algorithm with 3 phases:

Phase 1 (Preparation): this phase reads
data from HDFS, explores frequent edges of a
set of graphs and writes the results to HDFS to
prepare for phase 2.

Phase 2 (Mining): this phase explores
frequent k+1-edge subgraphs from frequent
k-edge subgraphs. This phase consists of many
steps starting from k = 0 until no more frequent
subgraphs are explored.

Phase 3 (Collection): this phase collects
all sub-graphs often exploited in phase 2.

Algorithm 3. gSpanMR
Input: D is set of graphs, minimum support minSup
Output: Set of frequent subgraphs of D with
minimum support minSup

Action:
// Phase 1
key: id of a graph
value: a graph
Mapper_Preparation(Text key, Text value)
1. intermediate_key = null
2. intermediate_value = serialize(value) //
Convert graph into byte sequence
3. omit(intermediate_key, intermediate_value)
key: a DFS Code
values: byte sequences of graphs
Reducer_Preparation(DFSCode key,
ByteWritable values)
1. forall value in values:
2. write_to_file(key, value)
// Phase 2
key: a DFS code k-edge
value: byte sequence of graphs that contain key
Mapper_Mining(DFSCode key, ByteWritable
value)
1. listGraph = convert_to_List_Graph(value)
//convert byte sequence to list of graphs
2. C = ∅
3. forall g in listGraph:
4. C = C ∪ Canditate_generation(key, g)
5. forall c in C:
6. if isMin(c):
7. v = serialize(c.OL)
8. emit(c, v)
key: a DFS Code
values: byte sequences of graphs
Reducer_Mining(DFScode key, ByteWritable
<values>)
1. forall value in values:
2. support+=getsupport(value)
3. if support ≥ minSup:
4. forall value in values:
5. write_to_file(key, value)
// Phase 3
key: a DFS code k-edge
value: byte sequence of graphs that contain key

41

QUY NHON UNIVERSITY
SCIENCEJOURNAL OF

Journal of Science - Quy Nhon University, 2020, 14(5), 35-42

Mapper_Collection(DFSCode key,
ByteWritable value)

1. gText =

convert_DFSCode_to_Graph_Text(key)

//Convert DFS code to graph in format text

2. emit(gText, null)

key: a abugraph in format text

values: null
Reducer_Collection(Text key, Text values)
1. write_to_file(key)

4. IMPLEMENTATION AND EXPERIMENT

We have implemented the gSpanMR algorithm
on the Hadoop platform in the Java programming
language. We conducted experiments on a
system of 5 PCs with CPU: Intel Core 2 Duo
E8400 3.00GHz, RAM: 4GB, installed Ubuntu
14.04, Hadoop 2.7.3, including 1 MasterNode
and 4 NameNode. Three datasets are created
from Graphgen tool with the number of graphs
are 5000, 7000 and 10000 graphs respectively,
the number of vertices in the graph is from 20
to 40 vertices, the minimum support is 20%.
Experimental results as shown in Table 2.

Table 2. Runtime of FSM-H and gSpanMR

Number of
graphs FSM-H gSpanMR

5000 1050s 820s

7000 2134s 1721s

10000 3930s 3122s

Figure 4. Experimental results comparing the execution
time of FSM-H and gSpanMR

Through experimental results show that
the execution time of the algorithm gSpanMR
less FSM-H algorithm. The more the graphs
increase, the more the difference in time
increases due to the reduction of many subgraph
candidates and the minimum DFS code test.

5. CONCLUSIONS

With the improved subgraph candidates and
testing the minimum DFS code in the gSpanMR
algorithm, it has been shown to improve the
time it takes to perform the frequent subgraph
mining algorithm. In the future, we will continue
to improve gSpanMR algorithm and implement
gSpanMR algorithm on Spark environment to
limit the reading and writing data in external
memory.

ACKNOWLEDGEMENTS

This study is conducted within the framework of
science and technology projects at institutional
level of Quy Nhon University under the project code
T2019.625.20.

REFERENCES

1.	 Inokuchi, T. Washio, and H. Motoda. An
apriori-based algorithm for mining frequent
substructures from graph data, 4th Eur. Conf.
Principles Data Mining Knowl. Discov., PKDD,
Lyon, France, September 13-16, 2000.

2.	 M. Kuramochi and G. Karypis. Frequent
subgraph discovery, 1st IEEE International
Conference on Data Mining, IEEE, San Jose,
California, USA, 29 November - 2 December
2001.

3.	 Yan and J. Han. gSpan: Graph-based substructure
pattern mining, Int. Conf. Data Min. IEEE,
Maebashi City, Japan, 9-12 December 2002.

4.	 S. Nijssen, and J. Kok. A quickstart in frequent
structure mining can make a difference, 10th
ACM SIGKDD Int. Conf. Knowl. Discov.
Data Mining, ACM, Seattle, WA, USA, 22-25
August, 2004.

6

4. forall value in values:
5. write_to_file(key, value)

// Phase 3
key: a DFS code k-edge
value: byte sequence of graphs that contain key

Mapper_Collection(DFSCode key,
ByteWritable value)
1. gText =
convert_DFSCode_to_Graph_Text(key)
//Convert DFS code to graph in format text
2. emit(gText, null)
key: a abugraph in format text
values: null

Reducer_Collection(Text key, Text values)

1. write_to_file(key)

4. IMPLEMENT AND EXPERIMENT

We have implemented the gSpanMR algorithm
on the Hadoop platform in the Java programming
language. We conducted experiments on a system
of 5 PCs with CPU: Intel Core 2 Duo E8400
3.00GHz, RAM: 4GB, installed Ubuntu 14.04,
Hadoop 2.7.3, including 1 MasterNode and 4
NameNode. Three datasets are created from
Graphgen tool with the number of graphs are
5000, 7000 and 10000 graphs respectively, the
number of vertices in the graph is from 20 to 40
vertices, the minimum support is 20%.
Experimental results as shown in Table 2.

Table 2. Runtime of FSM-H and gSpanMR

Number of
graphs FSM-H gSpanMR

5000 1050s 820s
7000 2134 1721s

10000 3930s 3122s

Figure 4. Experimental results comparing the
execution time of FSM-H and gSpanMR

Through experimental results show that
the execution time of the algorithm gSpanMR
less FSM-H algorithm. The more the graphs

increase, the more the difference in time
increases due to the reduction of many subgraph
candidates and the minimum DFS code test.

5. CONCLUSIONS

With the improved subgraph candidates and
testing the minimum DFS code in the gSpanMR
algorithm, it has been shown to improve the time
it takes to perform the frequent subgraph mining
algorithm. In the future, we will continue to
improve gSpanMR algorithm and implement
gSpanMR algorithm on Spark environment to
limit the reading and writing data in external
memory.

Acknowledgments. This study is conducted
within the framework of science and technology
projects at institutional level of Quy Nhon
University under the project code T2019.625.20.

REFERENCES
1. Inokuchi, T. Washio, and H. Motoda. An apriori-

based algorithm for mining frequent
substructures from graph data, 4th Eur. Conf.
Principles Data Mining Knowl. Discov., PKDD,
Lyon, France, September 13-16, 2000.

2. M. Kuramochi and G. Karypis. Frequent
subgraph discovery, 1st IEEE International
Conference on Data Mining, IEEE, San Jose,
California, USA, 29 November - 2 December
2001.

3. Yan and J. Han. gSpan: Graph-based
substructure pattern mining, Int. Conf. Data Min.
IEEE, Maebashi City, Japan, 9-12 December
2002.

4. S. Nijssen, and J. Kok. A quickstart in frequent
structure mining can make a difference, 10th
ACM SIGKDD Int. Conf. Knowl. Discov. Data
Mining, ACM, Seattle, WA, USA, 22-25 August,
2004.

5. V. Chaoji, M. Hasan, S. Salem, and M. Zaki. An
integrated, generic approach to pattern mining:
Data mining template library, Data Mining
Knowledge Discovery, 2008, 17(3), 457–495.

6. S. Chakravarthy, R. Beera, and R. Balachandran.
Db-subdue: Database approach to graph mining,
8th Adv. Knowl. Discov. Data Mining, IEEE,
Sydney, Australia, 26-28 May, 2004.

7. S. Chakravarthy and S. Pradhan. Db-FSG: An
SQL-based approach for frequent subgraph
mining, 19th Int. Conf.
Database Expert Syst. Appl., IEEE, Turin, Italy,
1-5 September, 2008.

8. Srichandan and R. Sunderraman. Oo-FSG: An
object-oriented approach to mine frequent
subgraphs, 9th Australasian Data
Mining Conf., IEEE, Ballarat, Australia,
December, 2011.

9. Mansurul A. Bhuiyan and Mohammad Al Hasan.
An Iterative MapReduce Based Frequent
Subgraph Mining Algorithm, IEEE Transactions

42

TRƯỜNG ĐẠI HỌC QUY NHƠN
KHOA HỌCTẠP CHÍ

Tạp chí Khoa học - Trường Đại học Quy Nhơn, 2020, 14(5), 35-42

5.	 V. Chaoji, M. Hasan, S. Salem, and M. Zaki. An
integrated, generic approach to pattern mining:
Data mining template library, Data Mining
Knowledge Discovery, 2008, 17(3), 457–495.

6.	 S. Chakravarthy, R. Beera, and R. Balachandran.
Db-subdue: Database approach to graph
mining, 8th Adv. Knowl. Discov. Data Mining,
IEEE, Sydney, Australia, 26-28 May, 2004.

7.	 S. Chakravarthy and S. Pradhan. Db-FSG:
An SQL-based approach for frequent subgraph
mining, 19th Int. Conf. Database Expert Syst.
Appl., IEEE, Turin, Italy, 1-5 September, 2008.

8.	 Srichandan and R. Sunderraman. Oo-FSG:
An object-oriented approach to mine frequent
subgraphs, 9th Australasian Data Mining
Conf., IEEE, Ballarat, Australia, December, 2011.

9.	 Mansurul A. Bhuiyan and Mohammad Al
Hasan. An Iterative MapReduce Based Frequent
Subgraph Mining Algorithm, IEEE Transactions
on Knowledge and Data Engineering, 2015,
27(3), 608-620.

10.	 Cormen, H. Thomas, Leiserson, E. Charles,
Rivest, L. Ronald. Introduction to Algorithms,
1st ed., MIT Press and McGraw-Hill, NewYork
City, 1990.

11.	 J. Dean and S. Ghemawat. Mapreduce:
Simplified Data Processing on Large Clusters,
6th Symposium on Operating System Design
and Implementation, San Francisco, OSDI,
December 6-8, 2004.

