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TOM TAT

Trong bai bdo nay ching t6i trinh bay vé thuét todn gSpanMR, mdt thuit toan khai phd do thi con thudng
xuyén theo mo hinh 14p trinh MapReduce. Thuit todn gSpanMR (gSpan MapReduce) dudc phét trién dua trén két
qua mi héa @b thi bing DFS code cla thuit todn gSpan va thuat todn khai ph4 dd thi con thudng xuyén trén mo
hinh MapReduce FSM-H. Thuat todn dudc cai dit va thyc nghiém trén cum mdy tinh st dung nén tang Hadoop
cho thay tdc d6 c6 cii tién so vé6i thuit toan FSM-H.
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ABSTRACT

In this paper, we present the gSpanMR algorithm, a frequent subgraph mining on the MapReduce

programming model. The gSpanMR algorithm (gSpan MapReduce) was developed based on the results

of encoding graphs using the DFS code in gSpan algorithm and FSM-H algorithm on the MapReduce

model. gSpanMR algorithm has been installed and tested on computer clusters using Hadoop platform,

which shows better execution time than FSM-H algorithm.

Keywords: Frequent subgraph mining, MapReduce, DFS Code.

1. INTRODUCTION

Frequent subgraph mining has been an emerging
data mining problem with many scientific and
commercial applications. There exist many
algorithms for solving the in-memory version
of frequent subgraph mining task, most notable
among them are AGM,! FSG,? gSpan,® Gaston,*
and DMTL.’ These methods assume that the
dataset is small and the mining task finishes
in a reasonable amount of time using an in-
memory method. To consider the large data
scenario, a few traditional database based graph
mining algorithms, such as, DB-Subdue,® and
DB-FSG’ and OOFSG?® are also proposed.
The kernel of frequent subgraph mining is
subgraph isomorphism test. Lots of well-known
pair-wise isomorphism testing algorithms were
developed. However, the frequent subgraph
mining problem was not explored well. One
approach used by many researchers to solve
problems with large data and complexity is to

*Corresponding author.
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use parallel computational models on computer
clusters. We use the results of DFS code
proposed in gSpan algorithm® combined with
the idea of implementing FSM-H algorithm’
on Hadoop to build the gSPanMR algorithm to
frequent subgraphs mining on the MapReduce
programming model.

The paper is organized as follows:
Section 1 introduces research issues; Section
2 presents some concepts of frequent subgraph
mining and two algorithms gSpan, FSM-H;
Section 3 presents the details of the gSpanMR
algorithm; Section 4 presents the experimental
time comparison of FSM-H and gSpanMR
algorithms; The final section are conclusions and
some further developments of the paper.

2. FREQUENT SUBGRAPH MINING

Definition 1 (Labeled graph)® A labeled graph
can be represented by a 4-type, G = (V, E, L, ),
where:
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 Jis a set of vetices,
* £ C VxVis a set of edges,
e L is a set of labels,

*[: VU E—L is a function assigning
labels to the vetices and the edges.

Definition 2 (Isomorphism graph)® An
issomophism is a bijective function f: V(G) —
V(G’), such that:

*ve NG), L (v)=1.(fv),

* (u, v) € E(G), (f(u), f(v)) € E(G’) and
1w, v) = L (), V).

Definition 3 (Frequent subgraph)® Given
a graph dataset, D = {G, G,, ..., G} and
a minimum support minSup. A graph G is
a frequent subgraph in D with minSup if
sup(G, D) >=minSup, where sup(G, D)=[{G, € D:
G is isomophism to a subgraph of G }|.

In the following section, I will discuss the
concepts of DFS code and some properties that
help to build gSpan algorithm.

Given an undirected connected graph G.
The DFS tree of graph G is a tree built from the
vertices and the edges of the graph G by DFS
algorithm.'” The DFS tree creates a linear order
between vertices and edges of the graph in their
order of visit.
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Figure 1. DFS tree and Forward/Backward edge?

Definition 4. (DF'S code)®. Given a DFS
tree T for a graph G, an edge sequence (e,) such
e <e,,wherei=0,1,..., |[E(G)|-2, (e) is called
a DFS code, denoted as code(G, T).

Anedgee=(v,v)inaDFScodeisaS-tupe:

7,1, l(i,j), lj). Table 1 shows the corresponding
DFS codes for Figure 1 (b), (¢), (d).

Table 1. DFS codes for Figure 1 (b), (¢), (d)

Eife (Fig. Ib)a | (Fig. lc)B | (Fig. 1d)y
0 | ©01Lxay |01Yax) |01.XaY
1|26 | (12XaX | (1.2.XaY)
2| 2.0XaX) | (2.0XbY) | (2,0,%,bX)
3| @3X02) | 23.Xce2) | (23.Y.0.2)
4 | 31zbY) | (302bY) | (3.0.ZcX)
5 | (14142 | 04.Yd2) |(24Y.4d2)

Definition 5 (DFS code Lexicographic
Ordery’ If a = code(G, T)) = (a,, a,,..., a, ) and
p= code(GB, Ty = (by bys..., b)) then a < B if
either of the following is true:

i) 3, 0 < ¢t < min(m, n), a, = b, for k <1,

a<b,

ii)a,=b, forO0<k<m,and n=>m.

Definition 6 (Minimum DFS code)’
Given a graph G, Z(G) = {code(G, T) | T'is a DFS
tree for G}, based on DFS lexicographic order,
the minimum one, min(Z(G)), is called Minimum
DFS code of G, denoted as min(G).

The minimum DFS code of a G graph
is also called a labeling scheme for graph G.
Based on this labeling, we have the result of
isomorphism of the two graphs.

Theorem 1° Given two graphs G and
G’, G is isomophism to G’ if and only if
min(G)y=min(G’).

Definition 7 (DFS code’s Parent and
Child)* Given a DFS code a = (a, a,, ..., a,),
any DFS code valid B = (a, a,, ..., a, D) is
called o’s child, and « is called 5 parent. We
denote children(c) = { B | is B’s parent}.

The growth from the DFS code a to valid
DFS code S is necessary for frequent subgraph
mining. In fact, to construct a valid DFS code,
b must be an edge which only grows from the
vertices on the rightmost path. In figure 2 the
graph shown in 2(a) has several potential children
with one edge growth, which are shown in 2(b)-
2(f) (assume the drakened vertices constitute the
rigthmost path).
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(a) (b) (c) (d) (e) (f)
Figure 2. DFS code growing®

The DFS code together with the parent-
child relationship forms a tree, called the DFS
code tree. In the DFS code tree each node is a
DFS code of a graph. The nodes at the i level
are DFS codes of graphs with i-1 edges. Figure 3
illustrates the DFS code tree.

2-edge

n-edge

Figure 3. DFS code tree®

We can truncate the branches of the DFS
code tree that do not contain the minimum DFS
code with the following result:

Theorem 2 (DFS code Growth)®* Given
a DFS code B, if a = min(B), oo < . Let D=
MIn<vy}, VY o e children(B), min(c) € D;u
children(a) < D,.

From the above results, the gSpan
algorithm starts from the 1l-edge frequent
subgraph and grows for more-edge graphs until
the graph expands infrequently.

However, the gSpan algorithm complexity
is an exponential function in the worst case
scenario. Therefore, frequent subgraph mining
on large graph sets is still a challenge.

To contribute to addressing this challenge,
an approach is to build algorithms based on the
MapReduce model to perform in parallel on
the computer cluster to reduce execution time.
MapReduce model is a parallel programming

model on cluster of computers proposed by
Google". Then Apache Hadoop is an open source
platform that supports this programming model
and is widely used in research and applications.

The FSM-H algorithm is an approach to
frequent subgraphs mining on the MapReduce
model. The FSM-H algorithm works on a graph
set of data sets consisting of k parts, one on a
data node. The multi-step iterative algorithm, at
the i step, is the candidate i-edge subgraph from
the i-1-edge frequent subgraph, then calculates
the support for each candidate at each node and
passes it to the reduce function summarizes and
determines which subgraphs are often saved
along with a list of graphs that contain it as input
for the next step. The process is repeated until no
more frequent subgraphs are discovered.

The FSM-H algorithm uses minimal
DFS code to identify isomorphic subgraphs.
However, the this algorithm has some
limitations during the frequent subgraph mining:
The generation of candidate i-edge subgraphs
from i-l1-edge frequent subgraphs is still
redundant because it contains many duplicate
(isomorphic) subgraphs. So data transfer and
calculation are also more. For each i-edge
subgraph in the candidate set, the algorithm
finds the minimum DFS code to homogeneous
subgraphs from each other, thereby sending the
results to the reduce function. The algorithm to
find the minimum DFS code is exponentially
complex. If instead of finding the minimum DFS
code by checking the DFS code is minimal, the
computational complexity of the algorithm will
be reduced if the DFS code is not minimal but the
correctness of the algorithm is still guaranteed.
To overcome these limitations, we improved
the FSM-H algorithm based on the properties of
DFS code as shown in the following section.

3. gSpanMR ALGORITHM

To overcome the limitations of the FSM-H
algorithm, we use the following property in
generating i-edge subgraph candidates from
regular i-1-edge frequent subgraphs.
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Property 1 Given a = (a, @, ..., a,) is
a minimum DFS code of a graph G. If B = (q,,

a, ..., a,b)is a minimum DFS code then the

1°
following is true:

i) b is greater than or equal to a,,.

ii) If b is a backward edge of the form (v,
v]_), j <ithen b is greater than or equal to the edge
of o that contains v,

iii) If b is a forward edge of the form (v,
v),j>ithen b is greater than or equal to the edge
of o that contains v..

Proof.
Let G’ be the graph of DFS code .

i) Assume b < a,. We build a DFS code
B' of graph G’ that b is the first edge of the DFS
code. It is easy to see B’< B, which contradicts
the hypothesis {3 is the minimum DFS code.

ii) If a, (0 < k < n) contains vertices v, and
a, > b then DFS code B' = (a,, @, ..., a_, b’,
a’,..a’,,a,),isaDFS code of G'and ' <f3
should conflict with the hypothesis B is the
minimum DFS code of G*. Letb=(i,/, [, l(,.,j), ZJ.)

we denote b’ = (j, i, lj, l(]_, » l).

iii) Ifb<a, (0 <k<n)then P’ =(a,a,
s @, by b, ..., b)is a DFS code of G’, and
B’ < B, should conflict with the hypothesis is the
minimum DFS code of G°.

We build an algorithm to generate DFS
codes k+1-edge from minimum DFS code k-edge
and graph G, based on property 1.

Algorithm 1. Generate DFS codes k+1-edge

Input: Minimum DFS code k-edge dfsMin,
graph G

Output: {B | B € children(dfsMin), B is a DFS
code of a subgraph in G}

Format:. Canditate_generation(dfsMin, G)
Action:

1.C=0

2. rmp = rightMostPath(dfsMin)

3. vMax = rmp[0]

4. minLabel = dfsMin|0].fromLabel
// Backward edges
5. for each v in rmp:
6. e=(vMax,v)
7. ifein G and e not in dfsMin then
8. for each ¢’ in dfsMin:
9. if e’ > e then continue
10. dfs = dfsMinu{e}
11. C=Cudfs
// Forward edge from vMax
12. for each v in G.adjList(vMax):
13. e = (vMax, v)
14. if e not in dfsMin and
label(e) >=minLabel then
15. dfs = dfsMinu{e}
16. C=Cudfs
//Forward edges of the form (u,v), where u in rmp
17. for each v in rmp, v # vMax:
18. for each v’ in G.adjList(v):
19. e=(,Vv)
20. if e not in dfsMin then

21. for each e’ in dfsMin:
22. if e’>e then continue
23. dfs = dfsMinU{e}

24. C=Cudfs

25. return C

The correctness of the algorithm is
confirmed by property 1. The time complexity of
algorithm 1 in the worst case is O (k.m), where k
is the number of edges in dfsMin, and m= |E(G)|.

In the gSpanMR algorithm we check if
a DFS code is the minimum DFS code? The
algorithm is as follows:

Algorithm 2. Check the minimum DFS code.

Input: DFS code for check dfsCode

Output: True if dfsCode is minimum, False
otherwise

Format: isMin(dfsCode).
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Action:
1. g = to_Graph(dfsCode)
2. minDFS =&

3. return trylsMin(dfsCode, minDF'S, 0)

Procedure trylsMin(dfsCode, minDFS, i)
checks whether the /™ edge of dfsCode is a
edge in the minimum DFS code; minDFS is the
minimum DFS code i-1 edge.

Sub trylsMin(dfsCode, minDF'S, i)
1. if i > length(dfsCode) then return true

2. list = List of smallest edges in g can grow for
minDF'S

3. for each e in /ist:

4. if e <dfsCode[i] then return False

5 minDFS = minDFS U {e}

6. chk=trylsMin(dfsCode, minDFS, i+1)
7.  if chk = False then return False

8.  minDFS = minDFS — {e}

Algorithm 2 uses branch-and-bound
method, so in practice it is better than the
algorithm to find the minimum DFS code of a
graph, although the worst case complexity of
algorithm 2 is O(2"), where n is the number of
edges of dfsCode.

Based on the gSpan algorithm and the
approach of the FSM-H algorithm, we developed
the gSpanMR algorithm with 3 phases:

Phase 1 (Preparation): this phase reads
data from HDFS, explores frequent edges of a
set of graphs and writes the results to HDFS to
prepare for phase 2.

Phase 2 (Mining): this phase explores
frequent k+l-edge subgraphs from frequent
k-edge subgraphs. This phase consists of many
steps starting from & = 0 until no more frequent
subgraphs are explored.

Phase 3 (Collection): this phase collects
all sub-graphs often exploited in phase 2.

Algorithm 3. gSpanMR

Input: D is set of graphs, minimum support minSup

Output: Set of frequent subgraphs of D with
minimum support minSup

Action:
// Phase 1
key: id of a graph

value: a graph
Mapper_Preparation(Text key, Text value)
1. intermediate key = null

2. intermediate_value = serialize(value) //
Convert graph into byte sequence

3. omit(intermediate key, intermediate value)
key: a DFS Code
values: byte sequences of graphs

Reducer_Preparation(DFSCode key,
ByteWritable values)

1. forall value in values:

2. write_to_file(key, value)

// Phase 2

key: a DFS code k-edge

value: byte sequence of graphs that contain key

Mapper_Mining(DFSCode key, ByteWritable
value)

1. listGraph = convert_to_List Graph(value)
//convert byte sequence to list of graphs

2.C=0

3. forall g in /istGraph:

4. C=(Cu Canditate_generation(key, g)
5. forall c in C:

6. ifisMin(c):

7. v = serialize(c.OL)

8. emit(c, v)

key: a DFS Code

values: byte sequences of graphs

Reducer_Mining(DFScode key, ByteWritable
<values>)

1. forall value in values:
2. support+=getsupport(value)
3. if support > minSup:

4. forall value in values:
5. write_to_file(key, value)
// Phase 3

key: a DFS code k-edge

value: byte sequence of graphs that contain key
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Mapper_Collection(DFSCode key,
ByteWritable value)

1. gText =

convert DFSCode_to_Graph_Text(key)
//Convert DFS code to graph in format text
2. emit(g7ext, null)

key: a abugraph in format text

values: null
Reducer_Collection(Text key, Text values)
1. write_to_file(key)

4. IMPLEMENTATIONAND EXPERIMENT

We have implemented the gSpanMR algorithm
on the Hadoop platform in the Java programming
language. We conducted experiments on a
system of 5 PCs with CPU: Intel Core 2 Duo
E8400 3.00GHz, RAM: 4GB, installed Ubuntu
14.04, Hadoop 2.7.3, including 1 MasterNode
and 4 NameNode. Three datasets are created
from Graphgen tool with the number of graphs
are 5000, 7000 and 10000 graphs respectively,
the number of vertices in the graph is from 20
to 40 vertices, the minimum support is 20%.
Experimental results as shown in Table 2.

Table 2. Runtime of FSM-H and gSpanMR

Number of
graphs FSM-H gSpanMR
5000 1050s 820s
7000 2134s 1721s
10000 3930s 3122s
4500
4000
pal
o -
o 2500 //
SR G Ry
1000 /
500 r
o |
5000 7000 10000
Number of Graphs

Figure 4. Experimental results comparing the execution
time of FSM-H and gSpanMR

Through experimental results show that
the execution time of the algorithm gSpanMR
less FSM-H algorithm. The more the graphs
increase, the more the difference in time
increases due to the reduction of many subgraph
candidates and the minimum DFS code test.

5. CONCLUSIONS

With the improved subgraph candidates and
testing the minimum DFS code in the gSpanMR
algorithm, it has been shown to improve the
time it takes to perform the frequent subgraph
mining algorithm. In the future, we will continue
to improve gSpanMR algorithm and implement
gSpanMR algorithm on Spark environment to
limit the reading and writing data in external
memory.
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