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TÓM TẮT 

Trong bài báo này chúng tôi trình bày về thuật toán gSpanMR, một thuật toán khai phá đồ thị con thường 
xuyên theo mô hình lập trình MapReduce. Thuật toán gSpanMR (gSpan MapReduce) được phát triển dựa trên kết 
quả mã hóa đồ thị bằng DFS code của thuật toán gSpan và thuật toán khai phá đồ thị con thường xuyên trên mô 
hình MapReduce FSM-H. Thuật toán được cài đặt và thực nghiệm trên cụm máy tính sử dụng nền tảng Hadoop 
cho thấy tốc độ có cải tiến so với thuật toán FSM-H.

Từ khóa: Khai phá đồ thị con thường xuyên, MapReduce, DFS Code.
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ABSTRACT

In this paper, we present the gSpanMR algorithm, a frequent subgraph mining on the MapReduce 
programming model. The gSpanMR algorithm (gSpan MapReduce) was developed based on the results 
of encoding graphs using the DFS code in gSpan algorithm and FSM-H algorithm on the MapReduce 
model. gSpanMR algorithm has been installed and tested on computer clusters using Hadoop platform, 
which shows better execution time than FSM-H algorithm.
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1. INTRODUCTION

Frequent subgraph mining has been an emerging 
data mining problem with many scientific and 
commercial applications. There exist many 
algorithms for solving the in-memory version 
of frequent subgraph mining task, most notable 
among them are AGM,1 FSG,2 gSpan,3 Gaston,4 
and DMTL.5 These methods assume that the 
dataset is small and the mining task finishes 
in a reasonable amount of time using an in-
memory method. To consider the large data 
scenario, a few traditional database based graph 
mining algorithms, such as, DB-Subdue,6 and 
DB-FSG7 and OOFSG8 are also proposed. 
The kernel of frequent subgraph mining is 
subgraph isomorphism test. Lots of well-known 
pair-wise isomorphism testing algorithms were 
developed. However, the frequent subgraph 
mining problem was not explored well. One 
approach used by many researchers to solve 
problems with large data and complexity is to 

use parallel computational models on computer 
clusters. We use the results of DFS code 
proposed in gSpan algorithm3 combined with 
the idea of implementing FSM-H algorithm9 
on Hadoop to build the gSPanMR algorithm to 
frequent subgraphs mining on the MapReduce 
programming model.

The paper is organized as follows: 
Section 1 introduces research issues; Section 
2 presents some concepts of frequent subgraph 
mining and two algorithms gSpan, FSM-H; 
Section 3 presents the details of the gSpanMR 
algorithm; Section 4 presents the experimental 
time comparison of FSM-H and gSpanMR 
algorithms; The final section are conclusions and 
some further developments of the paper.     

2. FREQUENT SUBGRAPH MINING

Definition 1 (Labeled graph)3 A labeled graph 
can be represented by a 4-type, G = (V, E, L, l), 
where:
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•	V is a set of vetices,
•	E ⊆ V×V is a set of edges,
•	L is a set of labels, 
•	 l: V ∪ E→L is a function assigning 

labels to the vetices and the edges.

Definition 2 (Isomorphism graph)3 An 
issomophism is a bijective function f: V(G) → 
V(G’), such that:

•	v ∈ V(G), lG(v) = lG’(f(v)),
•	 (u, v) ∈ E(G), (f(u), f(v)) ∈ E(G’) and 

lG(u, v) = lG’(f(u), f(v)).

Definition 3 (Frequent subgraph)3 Given  
a graph dataset, D = {G1, G2, …, Gn} and 
a minimum support minSup. A graph G is 
a frequent subgraph in D with minSup if  
sup(G, D) ≥ minSup, where sup(G, D) = |{Gi ∈ D:  
G is isomophism to a subgraph of Gi}|. 

In the following section, I will discuss the 
concepts of DFS code and some properties that 
help to build gSpan algorithm. 

Given an undirected connected graph G. 
The DFS tree of graph G is a tree built from the 
vertices and the edges of the graph G by DFS 
algorithm.10 The DFS tree creates a linear order 
between vertices and edges of the graph in their 
order of visit.

Figure 1. DFS tree and Forward/Backward edge3

Definition 4. (DFS code)3. Given a DFS 
tree T for a graph G, an edge sequence (ei) such 
ei < ei+1, where i = 0, 1,…, |E(G)|-2, (ei) is called 
a DFS code, denoted as code(G, T).

An edge e = (vi, vj) in a DFS code is a 5-tupe: 
(i, j, li, l(i, j), lj). Table 1 shows the corresponding 
DFS codes for Figure 1 (b), (c), (d).

Table 1. DFS codes for Figure 1 (b), (c), (d)

Edge 
no. (Fig. 1b) α (Fig. 1c) β (Fig. 1d) γ

0 (0,1,X,a,Y) (0,1,Y,a,X) (0,1,X,a,X)

1 (1,2,Y,b,X) (1,2,X,a,X) (1,2,X,a,Y)

2 (2,0,X,a,X) (2,0,X,b,Y) (2,0,Y,b,X)

3 (2,3,X,c,Z) (2,3,X,c,Z) (2,3,Y,b,Z)

4 (3,1,Z,b,Y) (3,0,Z,b,Y) (3,0,Z,c,X)

5 (1,4,Y,d,Z) (0,4,Y,d,Z) (2,4,Y,d,Z)

Definition 5 (DFS code Lexicographic 
Order)3 If α = code(Gα, Tα) = (a0, a1,…, am) and 
β = code(Gβ, Tβ) = (b0, b1,…, bn) then α ≤ β  if 
either of the following is true:

i) ∃t, 0 ≤ t ≤ min(m, n), ak = bk  for k < t, 
at<bt

ii) ak = bk  for 0 ≤ k ≤ m, and n ≥ m.

Definition 6 (Minimum DFS code)3  
Given a graph G, Z(G) = {code(G, T) | T is a DFS 
tree for G}, based on DFS lexicographic order, 
the minimum one, min(Z(G)), is called Minimum 
DFS code of G, denoted as min(G). 

The minimum DFS code of a G graph 
is also called a labeling scheme for graph G. 
Based on this labeling, we have the result of 
isomorphism of the two graphs.

Theorem 13 Given two graphs G and 
G’, G is isomophism to G’ if and only if 
min(G)=min(G’).

Definition 7 (DFS code’s Parent and 
Child)3 Given a DFS code α = (a0, a1, …, am), 
any DFS code valid β = (a0, a1, …, am, b) is 
called α’s child, and α is called β’s parent. We 
denote children(α) = { β |  is β’s parent}.

The growth from the DFS code α to valid 
DFS code β is necessary for frequent subgraph 
mining. In fact, to construct a valid DFS code, 
b must be an edge which only grows from the 
vertices on the rightmost path. In figure 2 the 
graph shown in 2(a) has several potential children 
with one edge growth, which are shown in 2(b)-
2(f) (assume the drakened vertices constitute the 
rigthmost path).
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The DFS code together with the parent-
child relationship forms a tree, called the DFS 
code tree. In the DFS code tree each node is a 
DFS code of a graph. The nodes at the ith level 
are DFS codes of graphs with i-1 edges. Figure 3 
illustrates the DFS code tree. 

 
Figure 3. DFS code tree3 

We can truncate the branches of the DFS 
code tree that do not contain the minimum DFS 
code with the following result: 

Theorem 2 (DFS code Growth)3 Given a 
DFS code , if  = min(),  < . Let D = {   
 < },    children(), min()  D  
children()  D. 

From the above results, the gSpan 
algorithm starts from the 1-edge frequent 
subgraph and grows for more-edge graphs until 
the graph expands infrequently. 

However, the gSpan algorithm complexity 
is an exponential function in the worst case 
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The DFS code together with the parent-
child relationship forms a tree, called the DFS 
code tree. In the DFS code tree each node is a 
DFS code of a graph. The nodes at the ith level 
are DFS codes of graphs with i-1 edges. Figure 3 
illustrates the DFS code tree.
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We can truncate the branches of the DFS 
code tree that do not contain the minimum DFS 
code with the following result:

Theorem 2 (DFS code Growth)3 Given 
a DFS code β, if α = min(β), α < β. Let Dγ =  
{η | η < γ}, ∀ σ ∈ children(β), min(σ) ∈ Dα ∪ 
children(α) ⊆ Dβ.

From the above results, the gSpan 
algorithm starts from the 1-edge frequent 
subgraph and grows for more-edge graphs until 
the graph expands infrequently.

However, the gSpan algorithm complexity 
is an exponential function in the worst case 
scenario. Therefore, frequent subgraph mining 
on large graph sets is still a challenge.

To contribute to addressing this challenge, 
an approach is to build algorithms based on the 
MapReduce model to perform in parallel on 
the computer cluster to reduce execution time. 
MapReduce model is a parallel programming 

model on cluster of computers proposed by 
Google11. Then Apache Hadoop is an open source 
platform that supports this programming model 
and is widely used in research and applications.

The FSM-H algorithm is an approach to 
frequent subgraphs mining on the MapReduce 
model. The FSM-H algorithm works on a graph 
set of data sets consisting of k parts, one on a 
data node. The multi-step iterative algorithm, at 
the ith step, is the candidate i-edge subgraph from 
the i-1-edge frequent subgraph, then calculates 
the support for each candidate at each node and 
passes it to the reduce function summarizes and 
determines which subgraphs are often saved 
along with a list of graphs that contain it as input 
for the next step. The process is repeated until no 
more frequent subgraphs are discovered.

The FSM-H algorithm uses minimal 
DFS code to identify isomorphic subgraphs. 
However, the this algorithm has some 
limitations during the frequent subgraph mining: 
The generation of candidate i-edge subgraphs 
from i-1-edge frequent subgraphs is still 
redundant because it contains many duplicate 
(isomorphic) subgraphs. So data transfer and 
calculation are also more. For each i-edge 
subgraph in the candidate set, the algorithm 
finds the minimum DFS code to homogeneous 
subgraphs from each other, thereby sending the 
results to the reduce function. The algorithm to 
find the minimum DFS code is exponentially 
complex. If instead of finding the minimum DFS 
code by checking the DFS code is minimal, the 
computational complexity of the algorithm will 
be reduced if the DFS code is not minimal but the 
correctness of the algorithm is still guaranteed. 
To overcome these limitations, we improved 
the FSM-H algorithm based on the properties of 
DFS code as shown in the following section.

3. gSpanMR ALGORITHM

To overcome the limitations of the FSM-H 
algorithm, we use the following property in 
generating i-edge subgraph candidates from 
regular i-1-edge frequent subgraphs.
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Property 1 Given α = (a0, a1, …, an) is 
a minimum DFS code of a graph G. If β = (a0, 
a1, …, an, b) is a minimum DFS code then the 
following is true:

i) b  is greater than or equal to a0.

ii) If b is a backward edge of the form (vi, 
vj), j < i then b is greater than or equal to the edge 
of α that contains vj. 

iii) If b is a forward edge of the form (vi, 
vj), j > i then b is greater than or equal to the edge 
of α that contains vi. 

Proof.

Let G’ be the graph of DFS code β.

i) Assume b < a0. We build a DFS code 
β' of graph G’ that b is the first edge of the DFS 
code. It is easy to see β’< β, which contradicts 
the hypothesis β is the minimum DFS code.

ii) If ak (0 ≤ k ≤ n) contains vertices vj and 
ak > b then DFS code β' = (a0, a1, ..., ak-1, b’, 
a’n, ..., a’k+1, ak), is a DFS code of G' and β' < β  
should conflict with the hypothesis β is the 
minimum DFS code of G’. Let b = (i , j, li, l(i, j), lj) 
we denote b’ = (j, i, lj, l(j, i), li). 

iii)  If b < ak (0 ≤ k ≤ n) then β’ = (a0, a1, 
…, ak-1, b, bk, …, bn) is a DFS code of G’, and  
β’ < β, should conflict with the hypothesis  is the 
minimum DFS code of G’.

We build an algorithm to generate DFS 
codes k+1-edge from minimum DFS code k-edge 
and graph G, based on property 1.

Algorithm 1. Generate DFS codes k+1-edge

Input: Minimum DFS code k-edge dfsMin, 
graph G 
Output: {β | β ∈ children(dfsMin), β is a DFS 
code of a subgraph in G}
Format: Canditate_generation(dfsMin, G)
Action:
1. C = ∅
2. rmp = rightMostPath(dfsMin)
3. vMax = rmp[0]

4. minLabel = dfsMin[0].fromLabel
// Backward edges
5. for each v in rmp:
6.     e = (vMax, v)
7.     if e in G and e not in dfsMin then
8.        for each e’ in dfsMin: 
 9.       if e’ > e then continue
10.       dfs = dfsMin∪{e}
11.       C = C ∪ dfs 
// Forward edge from vMax
12. for each v in G.adjList(vMax):
13.       e = (vMax, v)
14.       if e not in dfsMin and 
                            label(e) >=minLabel then
15.            dfs = dfsMin∪{e}
16.            C = C ∪ dfs 
//Forward edges of the form (u,v), where u in rmp 
17. for each v in rmp, v ≠ vMax: 
18.     for each v’ in G.adjList(v):
19.         e = (v, v’)
20.         if e not in dfsMin then
21.           for each e’ in dfsMin:
22.             if e’>e then continue     
23.             dfs = dfsMin∪{e}
24.             C = C ∪ dfs 
25. return C

The correctness of the algorithm is 
confirmed by property 1. The time complexity of 
algorithm 1 in the worst case is O (k.m), where k 
is the number of edges in dfsMin, and m= |E(G)|.

In the gSpanMR algorithm we check if 
a DFS code is the minimum DFS code? The 
algorithm is as follows:

Algorithm 2. Check the minimum DFS code.

Input: DFS code for check dfsCode

Output: True if dfsCode is minimum, False 
otherwise
Format: isMin(dfsCode).
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Action:
1. g = to_Graph(dfsCode)
2. minDFS = ∅
3. return tryIsMin(dfsCode, minDFS, 0)

Procedure tryIsMin(dfsCode, minDFS, i)  
checks whether the ith edge of dfsCode is a 
edge in the minimum DFS code; minDFS is the 
minimum DFS code i-1 edge. 

Sub tryIsMin(dfsCode, minDFS, i)
1. if i > length(dfsCode) then return true
2. list = List of smallest edges in g can grow for 
minDFS
3. for each e in list:
4.     if e < dfsCode[i] then return False
5.         minDFS = minDFS ∪ {e}
6.     chk = tryIsMin(dfsCode, minDFS, i+1)
7.     if chk = False then return False
8.     minDFS = minDFS – {e} 

Algorithm 2 uses branch-and-bound 
method, so in practice it is better than the 
algorithm to find the minimum DFS code of a 
graph, although the worst case complexity of 
algorithm 2 is O(2n), where n is the number of 
edges of dfsCode. 

Based on the gSpan algorithm and the 
approach of the FSM-H algorithm, we developed 
the gSpanMR algorithm with 3 phases:

Phase 1 (Preparation): this phase reads 
data from HDFS, explores frequent edges of a 
set of graphs and writes the results to HDFS to 
prepare for phase 2.

Phase 2 (Mining): this phase explores 
frequent k+1-edge subgraphs from frequent 
k-edge subgraphs. This phase consists of many 
steps starting from k = 0 until no more frequent 
subgraphs are explored.

Phase 3 (Collection): this phase collects 
all sub-graphs often exploited in phase 2.

Algorithm 3. gSpanMR
Input: D is set of graphs, minimum support minSup
Output: Set of frequent subgraphs of D with 
minimum support minSup

Action:
// Phase 1
key: id of a graph 
value: a graph
Mapper_Preparation(Text key, Text value)
1.     intermediate_key = null
2.     intermediate_value = serialize(value) // 
Convert graph into byte sequence
3.     omit(intermediate_key, intermediate_value)
key: a DFS Code
values: byte sequences of graphs
Reducer_Preparation(DFSCode key, 
ByteWritable values)
1. forall value in values:
2.      write_to_file(key, value)  
// Phase 2
key: a DFS code k-edge
value: byte sequence of graphs that contain key
Mapper_Mining(DFSCode key, ByteWritable 
value)
1. listGraph = convert_to_List_Graph(value) 
//convert byte sequence to list of graphs
2. C = ∅
3. forall g in listGraph:
4.   C = C ∪ Canditate_generation(key, g)
5. forall c in C:
6.    if isMin(c):
7.        v = serialize(c.OL) 
8.        emit(c, v)
key: a DFS Code
values: byte sequences of graphs
Reducer_Mining(DFScode key, ByteWritable 
<values>)
1. forall value in values:
2.    support+=getsupport(value)
3.    if support ≥ minSup:
4.       forall value in values:
5.           write_to_file(key, value)  
// Phase 3
key: a DFS code k-edge
value: byte sequence of graphs that contain key
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Mapper_Collection(DFSCode key, 
ByteWritable value)

1. gText = 

convert_DFSCode_to_Graph_Text(key) 

//Convert DFS code to graph in format text

2. emit(gText, null)

key: a abugraph in format text

values: null
Reducer_Collection(Text key, Text values)
1. write_to_file(key)

4. IMPLEMENTATION AND EXPERIMENT

We have implemented the gSpanMR algorithm 
on the Hadoop platform in the Java programming 
language. We conducted experiments on a 
system of 5 PCs with CPU: Intel Core 2 Duo 
E8400 3.00GHz, RAM: 4GB, installed Ubuntu 
14.04, Hadoop 2.7.3, including 1 MasterNode 
and 4 NameNode. Three datasets are created 
from Graphgen tool with the number of graphs 
are 5000, 7000 and 10000 graphs respectively, 
the number of vertices in the graph is from 20 
to 40 vertices, the minimum support is 20%. 
Experimental results as shown in Table 2.

Table 2. Runtime of FSM-H and gSpanMR

Number of 
graphs FSM-H gSpanMR

5000 1050s 820s

7000 2134s 1721s

10000 3930s 3122s

Figure 4. Experimental results comparing the execution 
time of FSM-H and gSpanMR

Through experimental results show that 
the execution time of the algorithm gSpanMR 
less FSM-H algorithm. The more the graphs 
increase, the more the difference in time 
increases due to the reduction of many subgraph 
candidates and the minimum DFS code test.

5. CONCLUSIONS

With the improved subgraph candidates and 
testing the minimum DFS code in the gSpanMR 
algorithm, it has been shown to improve the 
time it takes to perform the frequent subgraph 
mining algorithm. In the future, we will continue 
to improve gSpanMR algorithm and implement 
gSpanMR algorithm on Spark environment to 
limit the reading and writing data in external 
memory.
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