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ABSTRACT

A matrix polynomial (sometimes known as a A-matrix) is a polynomial of a complex variable with

matrix coefficients. Matrix polynomials play a crucial role in science and engineering. The main aim of this

paper is to study some inequalities which are related to eigenvalues and norms of matrix polynomials.
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1. INTRODUCTION

Let C™*™ denote the set of scalar matrices of size
n X n whose entries are complex numbers. For a
matriz polynomial we mean the matrix-valued
function of a complex variable of the form

P(z) = Agz 4 ...+ A1z + Ay,

where A; € C"*™ for alli = 0,...,d. If A; # 0,
P(z) is called a matrix polynomial of degree d.
When Ay = I, the identity matrix in C™**", the
matrix polynomial P(z) is called a monic.

A number \ € C is called an eigenvalue of
the matrix polynomial P(z), if there exists a
nonzero vector z € C" such that P(A\)z = 0.
Then the vector x is called, as usual, an eigen-
vector of P(z) associated to the eigenvalue .
Note that each eigenvalue of P(z) is a root of
the characteristic polynomial det(P(z)).

The polynomial eigenvalue problem (PEP)
is to find an eigenvalue A and a non-zero vector
x € C" such that P(A\)z = 0. For m =1, (PEP)
is actually the generalized eigenvalue problem
(GEP)

Ax = \Bx,

and, in addition, if B = I, we have the standard
eigenvalue problem

Ax = \x.

"Corresponding author:
Email: phamquanghung720@gmail.com

For m = 2 we have the quadratic eigenvalue
problem (QEP).

The theory of matrix polynomials was pri-
marily devoted by two works, both of which are
strongly motivated by the theory of vibrating
systems: one by Frazer, Duncan, and Collar in
1938 [FDC], and the other by P. Lancaster in
1966.

(QEPs), and more generally (PEPs), play
an important role in applications to science and
engineering. We refer to the book of I. Gohberg,
P. Lancaster and L. Rodman? for a theory of
matrix polynomials and their applications.

Matrix analysis is a research field of basic
interest and has applications in scientific com-
puting, control and systems theory, operations
research, mathematical physics, statistics, eco-
nomics and engineering disciplines. Sometimes
it is also needed in other areas of pure mathe-
matics.

A lot of theorems in matrix analysis appear
in the form of inequalities. Given any complex-
valued function defined on matrices, there are
inequalities for it. We may say that matrix in-
equalities reflect the quantitative aspect of ma-
trix analysis.

In this paper, we propose some inequalities
which are related to eigenvalues and norms of
matrix polynomials.

The paper is organized as follows. In the
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next section we recall some preliminaries. In
Section 3 we establish some inequalities related
to norms of matrix polynomials. Finally, in the
last section we propose some inequalities for
eigenvalues of matrix polynomials.

2. PRELIMINARIES

Throughout this paper, by a positive integer p
we mean p > 1 or p = 0.

For a matrix A = (a;;) € C™*", a positive
integer p and a vector p-norm |.|, on C", the

matriz p-norm of A is defined by
1

P

n
lai;[P ], (1 <p<o0),
‘A‘p = i;l
- max |a| (p=00).
i,7=1,...,n

The operator p-norm of A is defined by
[Allp = max{|Az], |z]p = 1}
For any matrix A € C"*", the number

p(A) := max{|\|, A € o(A)}

is called the spectral radius of A, where o(A)
denotes the spectrum of A, i.e. the set of all
eigenvalues of A.

The spectral radius can be compared to the
operator p-norm_as follows.

Lemma 2.1.%. For any A € C"*", p(A4) <
[Alp-

For a (d 4+ 1) - tuple A = (Ag, ..., Ag) of
matrices A; € C"*"™ the matrix polynomial

Pa(z) = Azt + .+ Az + A

is called the matriz polynomial associated to A.

The spectrum of the matrix polynomial Pa (z)
is defined by

7(A) = o(Pa(z)) = {\ € Cldet(Pa(2)) = 0},

which is the set of all its eigenvalues.

For a monic matrix polynomial Pa(z) =
I.Zd + Ad_lzdil + ...+ Alz + Ao, with AZ €
C™*™ the(dn X dn)—matrix

[0 I 0o - 0
0 0 r ... 0
Ca=1: : : :
0 0 0o - I

|—Ag —A; —A —Ag-1]

is called the companion matriz of the ma-
trix polynomial Pa(z) or of the tuple
(Ag,..., Ag—1,1).

Note that the spectrum o(A) of Pa(z) coin-
cides to the spectrum o(Ca) of Ca 2

For two (d+1)-tuples A = (Ag, ..., Aq_1,1)
and A = (Ay,...,A4_1,I), the relation between
the operator norms of their difference and those
of their companion matrices is given in the fol-
lowing lemma.
Lemma 2.2.%. Let A = (Ay,...,Aq_1,I) and
A = (Ay,...,A,_1,1) be (d+ 1)-tuples. Then
for any integer p > 0, we have

|Ca — CAHP =||A - AHp-

Theorem 2.1.°. Let Z € C™*" be a positive
definite matrix with extremal eigenvalues a, b.
Then for all vectors h € C",

ol pid
(Bl |Z:h, < B, Zh)
where | - |, denotes the matrix p-norm.

For a vector x € C™. Note that z* is the
conjugate transpose of x.

Concerning inequalities of eigenvalues of
scalar matrices, we have the following results
obtained by Hassan (2014).

Theorem 2.2.5. Let A € C"*" be a positive
definite matrix and x and y € C™ such that
lz] = |y| = 1 and z*y = 0. Assume that
the eigenvalues of A, in increasing order, are
A1 < As <... <\, Then we have the following
Wielandt inequalities.

(1) fo*Ay] < 3

< e V(@A) (y* Ay);

(2) o Az—y*Ay| < 323t (2" Azty* Ay)? -

An+A1
sa Ay
2\ n
@ oy <max{ (353) |, a0
T
(y*ATy).

Theorem 2.3.°. Let A € C™ ™ be a posi-
tive definite matrix and x and y € C" such
that || = |y| = 1 and z*y = 0. Assume that
the eigenvalues of A, in increasing order, are
/\1 S )\2 S S >\n Then

" Ay| < 333t (a Ar + y* Ay).
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Theorem 2.4.5. Assume that A is a positive
definite matrix of size n, and let the eigenvalues
of A, in increasing order, be A; < Ay < ... < A,
Then

>\n - >\l
*Ax —yt Ayl <
2" Az —y* Ay| < N

(z* Az + y" Ay).

3. SOME INEQUALITIES FOR
NORMS OF MATRIX
POLYNOMIALS

In this section, we will propose some inequal-
ities for norms of matrix polynomials.

For an (d+1)-tuple A = (Ag, -+, Ad—1, Aq)
of matrices A; € C"*". |Al, := max{|Az|, :
lz|, = 1} with A is a matrix of dimension
(d+1)n x n.

Firstly, we establish some properties of
norms of tuples of matrices.

Proposition 3.1. Let A = (Ag, -+, Ag—1, Aq)
and B = (By,---,B4-1,Bq), where A;,B; €
C™*™, Then for any positive integer p, the
followings hold true.

(1) There is a constant ¢ > 0 such that
|Av|, < c|v|, for any vector v € C".

(2) ||All, > 0, with equality if and only if
A=0.

(3) A +Bll, < [|Afly + 1B
(4) [[cAllp = lc|.[|A]lp, for ¢ € R.
(5) [|ATBIl, < [|A"]l,]B],-

(6) 1Al = (A",

(7) |ATA], = [|AAT], = (A3,

(8) 1(Av,w)| < Al JolpJuwly, for any v €
C™ and w € Cld+hnxn

(9) Al < n?|Al,.

Proof. Note that for a matrix A = (a;;) €
Cmn pe It

|All, = inf{c > 0:[Az|, < c|z|,, x € C"}.
(1) For any vector v € C", we have

AQU

Alv
Av = )
Agv

For 1 < p < oo, we have

d
Avfp = AP
i=0
For each 1 = 0,...,d, there exists ¢; > 0 such

that |A;v|, < ¢ifvlp, foralli =0,...,d.
Taking ¢’ = ‘I%aXd{Ci}, we get |[Av|, < c|vlp,
1=0,...,

where ¢ = ¢/(d + 1)/P.
For p = oo, we have
|Av|oo = max |A4A;v]|eo.
i=0,....d

=0U,...,

For each 1 = 0,...,d, there exists ¢; > 0 such

that |A;v|s < ¢i|v]oo, for all i =0,....d.

Taking ¢ = 4n01axd{ci}, we have |Av|oo < ¢]v]oo.
1=0,...,

(2) It is obvious that ||A|, > 0.
|All, =0 if and only if
Aol’

A:z:]p:O@‘ =0

Adl‘
& A, =0,Yi=0,...,d.
& A, =0, Vi=0,....d

p

e A o= 0, Vi=0,....d
Thus A = 0.
(3) We have

IA + B, = max{|(A + B)zl, : |z[, = 1}.

For any = € C" such that |z|, = 1, we have
(A +B)z|, = [Az + Bul, < [Az|, + [Bzlp.
Taking maximum over all x € C" such that

[zlp = 1, we obtain [A+B[, < [|A[,+[B],.
(4) We have ||cA ||, = max{|cAz|, : |z|, = 1}

= max{[c].|Aal, : lal, = 1)
= |e|. max{|Aal, : lal, = 1)
= lelI Al

(5) For any = € C™ such that |z|, = 1, we have
(A"B)z|, = |AT(Bz)],
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< |AT|Bzl, < |AT]|IB]||z],-
Thus [|A"B|| < |A"][|B|.

(6) For any vector x € C", we have

|A:c|12, =|(Az, Az)| = |(:Jc,ATAx)|

< |z|,.|AT Az|, (Cauchy-Schwarz inequality)
< [ATA[,.[a];.

= |Azl} < |ATApfa]}.

= |Axl, < \/|ATA]p.Jal}.

= Al < \/IATA],.
= Al < [ATA, < [AT[,]All- (3)
When A # 0, we receive
A, < HATHpTaHd 1A, < (AT ]l,.
So [[Afl, = [[A7 -
(7) From (5) and (6), we have
IA[7 < |ATA[l, < [|AT[ 1A, = (Al
Thus A7 = [|AT A,
(8) For any v € C",w € Cl+nx" apply the
Cauchy-Schwarz inequality, we obtain
(Av,w)| < [Avlpfwly < (Al o]l
(9) From (8), let v = ¢; € C"w = ¢; €
Cl+Dn we have
laij| = [(Aei ;)] < Al
withi=1,...,n and j=1,...,(d+ 1)n.
Hence, 7, lay| < n?[[Af, and Ao <
n2 Al
Similarly ||4;]] < n?||Al,,Vi=0,...,d.
Therefore, max;—g._. q||A:]] < n?|Al,.
Thus Ay < n? Al

In order to prepare for main results of this
section, we need the following lemmas.

Lemma 3.1. Let P5(\) = I.\% be a monic
matrix polynomial whose corresponding com-
panion matrix is Cz. Then for any integer p >

0, we have
ICall, < 1.
Proof. We have
[0 I 0 0]
0 0 I 0
Ca= |1 :
000 -+ I
o0 0 --- 0]

For any x = (11,29, ..., 24,)" € C9" such that

|z, = 1, we have

-0 I 0 . 0- 1 Tn41
o o0 I - 0 .
. . Tdn
07 = . . et
AT : : 0
0 0 O I . .
0 0 0 0] L¥dn 0 |
and
_mn+l_
dn 1
’ Ldn . (Zi:n-i—l ’xi’p)p7 D> 1
0 11, |, max  lail, p=oo.
L 0
Moreover,
dn 1 dn 1
p P
(Z !) s( W) = Ja], =1
i=n+1 i=1
and
max || < 1.
i=n+1,...,dn
Thus
]
‘ xg" <1, forany p>1.
p
L 0 |

It follows that |Czz|, <1 for any p > 1.
Since ||Cxll, = max{|Czx|, : |z|, = 1}, we
have [|Cg||, < 1.

The proof is complete.

Lemma 3.2. Let A = (Ao,...,A4-1,1) and
A =(0,...,0,1) be (d + 1)-tuples. Then for
any integer p > 0, we have

1A — Al < [|A]],.
Proof. We have
IA = All, = max{|(A — A)z|, : [z, = 1}.

Note that the (d+1)-tuple (A — A) =

(Ag, Ay, ,Ag—1,0) is a matrix of dimension
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(d+ 1)n x n:

Then, with x = (z1, ...

ty
[ Ay T [ Apz ] t:
A1 Al.%' n
(A — A)w = : T = : =1,
' ’ tdn
Agq Ag1x 0
o0 ] 0| |
. 0 -
tin«l»l
with | @ | = Az Vi=0,...d—1.
ti+1)n
Thus
~ dn 1/p
(&~ Ayl = (L lop)
i=1

1/p
d
< (z I mrp) .

We also have

_tl .
[ Apz ] t'n
All'
Ax = = s
Adflx i{:jn
Iz !
Tn
dn no 1/p
and |Azl, = ( \ti|p+2\xj|p> 2).
i=1 j=1

It follows from (1) and (2)_that
(A = A)z|, < [Azl,.

Then max{|(A — A)z|, : |z, = 1} <
max{|Az|, : [z[, = 1}.
Thus A Al, < A,

The proof is complete.

The first main result in this section is pre-
sented as follows, which is a version for matrix
polynomials of Lemma 2.1.

Theorem 3.1. Let Pa(\) = I+ A, A1+
...+ A1\ + Ay be a monic matrix polyno-
mial whose corresponding (d + 1)- tuple is
A = (Ap,...,Aq-1,I). Then for any integer p >
0, we have
p(A) < [[Allp +1.
Proof. 1t follows from Lemma 2.1 that

p(Ca) < [ICallp-

From the sub-additivity of the operator p-norm,
we have
ICally < ICa — Callp + ICAllp:
where C'g is the companion matrix of the matrix
polynomial Pg (\) = A%
It follows from Lemma 3.1 and Lemma 3.2 that
ICa = Callp < [[All, and [[Call, <1.
Since p(A) = p(Ca), we have
p(A) < ||Allp +1.

The proof is complete.

For a matrix A € C™™ If A is positive defi-
nite matrix then we write A>0.

Now we establish a version for matrix poly-
nomials of Theorem 2.1.

Theorem 3.2. Let Pao(\) = Z?:o A;\' be
a matrix polynomial with A; > 0. Let a;,b;
be extremal eigenvalues of A;, for all i=0,...,d.
Then for any vector h € C", we have

[olp-|Pa(A)-hlp < H (h, Pa([ADh) ,

a;+b; d
Where H — max {ﬁm}izo .
Proof. We have
d i
|hlp|-Pa(A)hlp = |hlp.| 325—g AiX" Ry,
d i
< |hlp. Zi:o |A; A"y,
d i
< ’h‘p-zz‘:o(mi-h‘p)(’/\ ’)7
d i
=2 izo([lp-|As.R[p).(]X]).
It follows from Theorem 2.1 that
a; L b, L
(g2)2+(34)2
’h|p"Ai'h’p§ = :
Thus

(h, Ash) .
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d d
e )hf)’ Lo = K- (@ (A 7 (3 A )
<t (SR o
; 4 =K - /(" Pa([A])2) (y* Pa(I\)y).
< H. ) (hy Aih) [N'| The proof is complete
=H. Zj:o (h, Aih) (2) Similarly to the arguments given in (1).
: d
= H. <h72§l:o AilAlz-h> Theorem 4.2. Let Pa(\) = Y A\ be a

= H.(h, PA(|ADh) - . . " :

The proof is complete matrix polynomial whose coefficient matrices

P prete: A; € C™*™ are positive definite for all i =
.,dand A;A; > 0foralli,j =0,...,d. Let

4. SOME INEQUALITIES FOR 2,y € C" such that [z] = |y| = 1 and z*y = 0.

EIGENVALUES OF MATRIX

POLYNOMIALS Assume o(4;) = {\, ’)\;f} is the speétrum
of the matrix A; and A\] <Ay < ... < A] ., for
In this section we establish some inequalities alli =0,...,d. Then, we have
for eigenvalues of matrix polynomials. |z* Pa(N)y]? <
Firstly, we propose a version of Theorem 2.2 {M.(a:*Pﬁ(|/\|)x)(y*Pﬁ(|/\)y) A2 1
for matrix polynomials. M. (2" PX(IA 4 2)2) (" PR (1A + 2])y), [Al <1,
d ‘ where o . .
matrix polynomial whose coefficient matrices Proof. We have
A; € C™ ™ are positive definite. Let z,y € C"
be such that |z| = |y| =1 and 2*y = 0. Assume ~ |z*Pa(A)y* = (Zaj*A % >
o(A;) = {A[,..., AL} is the spectrum of the
matrix A; and A} < Xy < ... < AL, for all <@+1)EL o(@” Aiy)* ().
i=0,...,d. Then the followings hold true. It follows from Theorem 2(3) that
* * * 1 .
(1) [e"Pa(Ny| < K((&" Pa(]A)2) (y" Pa(Ap)) 2 (d4 1) 2% (2" Asy) (V1) <(d+1)
(2) |a* PA(N) — y* Pa(\)y] S max { (ﬁ) }m @A)y A
< K((d+1)(a* Pa(|A))2 +y* Pa(|A)y)? mtk

A 2} |
7/\1 4( PA(P‘Dy) ) < M - Z *AQ *A?y)(p\lz)Z

Here K = max { /\nl N } .
i When ]/\\ > 1
Proof. (1) We have
d

d
[ Pa(Nyl =) ANy <Yt Ayl A

d
[a*Pa(Vyl* < M -y (" Afa) (y" Ady) (A1)
=0

d
=0 =0 _ * 42102 * 421172
It follows from Theorem 2.2 (1) that =M- Z(x A7 N [Px) (y™ AT N Py)
. i=0
AL L= A 1
AZ )\ i - . *AZ 2 . d d
Z |:c y|| ‘ ( —I— )\,1) (l’ x) S M\l <Z($*Af|,\z‘2w)2> . (Z(y*"l?|)‘i|2y)2>-
=0 i=0

* i 7
( Azy)2 Al Since A2 > 0,Vi =0, ..., d, thus,

- i % T i\ s d 2
i=0
Zw*A i)} Zy A} " [w*(ZA?W)w] - [y*(ZAmz)y} |
i=0 i=0
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Since A;A4; > 0,Vi=0,...
d N2

[z*Pa(Ny]? < M - [x*<ZAi\/\Z’) x]
i=0

[y*<§;AiIV)2y]

= M- (& PR(I\)2)(y" PA(IA)y)-

When || < 1:

It is easy to see that |Af|? < (|\ + 2[%)*
d

,d,i # 7 hence

. Hence

2" Pa(\yl? < M- (a" Afz)(y" Afy) - (IA+2[)*
. =0

=M ) (@ AN+ 2)’2) - (" AN+ 2)).

Simﬂ;loy, we receive

2" Pa(\)yl* < M-(z" P(IA+2))2)(y" PA(IA+2])y)-

The proof is complete.

Theorem 4.3. Let P4())

d
= ) AN be a
1=0

matrix polynomial whose coefficient matrices
Ai € C™"™ are positive definite for all i =

.,d. Let z,y € C" such that |z| = |y| =1
andxy—() Assume o(A;) = {\i, ... N }is
spectrum of matrix 4; and \j < \j < < )\fI )

for all i =0,...,d. Then we have

* 1 * *
a0yl < K- ( PalW)a+y PA<|Ar>y),

A —/\’ d
AL +,\1 :
i=0

Proof. We have

where K = max

2" Pa (A ANy

d .
<Yl Al
i=0

d .
1 Al
< = A; *A; ‘
;2( Hl)m @A) N
d . .
<LK (@ Az 4y AiA'y)

i=0

.

IN

d d
1K - <Zx*Ai\/\|’x + Zy*Ai\/\|zy>
i=0 i=0

= 41 (*PaN)a + 5" PaCAD )

The proof is complete.

Theorem 4.4. Let P4())

d
= ) AN be a
1=0

matrix polynomial whose coefficient matri-
ces A; € C™ " are positive definite for all

i=0,...,d. Assume o(4;) = {\, ...,)\fﬁ}is
spectrum of matrix 4; and A} <\ < ... < /\f%7
foralli =0,...,d. Then we have

|z* Pa(A)z — y* Pa(\)y|
< K. (x*PA<|A|>x+y*PA<|A|>y),

XL —)\7‘ d
WlthK:maX{w} O.
1=
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