

Hydrogen generation via photoelectrochemical water splitting using chemically exfoliated MoS₂ layers

Cite as: AIP Advances **6**, 015315 (2016); <https://doi.org/10.1063/1.4941062>

Submitted: 26 July 2015 . Accepted: 18 January 2016 . Published Online: 26 January 2016

R. K. Joshi, S. Shukla, S. Saxena, G.-H. Lee, V. Sahajwalla, and S. Alwarappan

COLLECTIONS

Paper published as part of the special topic on **Chemical Physics, Energy, Fluids and Plasmas, Materials Science and Mathematical Physics**

View Online

Export Citation

CrossMark

ARTICLES YOU MAY BE INTERESTED IN

Research Update: Strategies for efficient photoelectrochemical water splitting using metal oxide photoanodes

APL Materials **2**, 010703 (2014); <https://doi.org/10.1063/1.4861798>

Research Update: Photoelectrochemical water splitting and photocatalytic hydrogen production using ferrites (MFe₂O₄) under visible light irradiation

APL Materials **3**, 104001 (2015); <https://doi.org/10.1063/1.4931763>

Photoelectrochemical cells for solar hydrogen production: Challenges and opportunities

APL Materials **7**, 080901 (2019); <https://doi.org/10.1063/1.5109785>

Call For Papers!

AIP Advances

SPECIAL TOPIC: Advances in Low Dimensional and 2D Materials

Hydrogen generation *via* photoelectrochemical water splitting using chemically exfoliated MoS₂ layers

R. K. Joshi,^{1,a} S. Shukla,² S. Saxena,² G.-H. Lee,³

V. Sahajwalla,¹ and S. Alwarappan^{4,a}

¹Centre for Sustainable Materials Research and Technology, School of Materials Science and Engineering, University of New South Wales, NSW 2052, Australia

²Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai, India

³Department of Material Science and Engineering, Yonsei University, Seoul 120-749, Korea

⁴CSIR-Central Electrochemical Research Institute, Karaikudi 630006, Tamilnadu, India

(Received 26 July 2015; accepted 18 January 2016; published online 26 January 2016)

Study on hydrogen generation has been of huge interest due to increasing demand for new energy sources. Photoelectrochemical reaction by catalysts was proposed as a promising technique for hydrogen generation. Herein, we report the hydrogen generation *via* photoelectrochemical reaction using films of exfoliated 2-dimensional (2D) MoS₂, which acts as an efficient photocatalyst. The film of chemically exfoliated MoS₂ layers was employed for water splitting, leading to hydrogen generation. The amount of hydrogen was qualitatively monitored by observing overpressure of a water container. The high photo-current generated by MoS₂ film resulted in hydrogen evolution. Our work shows that 2D MoS₂ is one of the promising candidates as a photocatalyst for light-induced hydrogen generation. High photoelectrocatalytic efficiency of the 2D MoS₂ shows a new way toward hydrogen generation, which is one of the renewable energy sources. The efficient photoelectrocatalytic property of the 2D MoS₂ is possibly due to availability of catalytically active edge sites together with minimal stacking that favors the electron transfer. © 2016 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (<http://creativecommons.org/licenses/by/4.0/>). [<http://dx.doi.org/10.1063/1.4941062>]

Hydrogen is one of the promising energy sources beyond fossil fuel era because of its green, storables and high energy density characteristics.¹ Among the renewable energy technologies for hydrogen production, photoelectrochemical water-splitting has been widely studied as solar energy resources without environmental pollution.² Dissociation of water into hydrogen can be achieved *via* photoelectrochemical process that utilizes both light harvesting and solar fuel production. Recently, transition metal di-chalcogenides (TMDCs) consisting of few-atom-thick layers have emerged as an alternative of traditional materials in various applications due to their unique properties. TMDCs such as MoS₂ and WSe₂ have shown a great potential in immense applications of valleytronics,^{3,4} flexible electronics,⁵ high-mobility transistors^{6–8} and optoelectronic devices.^{9,10} Recently, it has been predicted that TMDCs are useful for photovoltaic applications due to their tunable band gap and strong photo-excitement.¹¹ The exfoliated MoS₂ exhibits high photoluminescence quantum yield and other unusual optical properties.^{12,13} In addition, MoS₂ nanoribbons or nanoflakes have excellent catalytic effect at the highly reactant edges, resulting in superior photo-induced catalyzing abilities.^{14–16} The strong electrocatalytic activity of the nanostructured 2D MoS₂ is attributed to the highly active edges of the MoS₂. From the first-principle calculations, nanostructured MoS₂ is preferred over bulk MoS₂ for photocatalytic application due to the larger availability of catalytically active edge sites.¹⁷ Therefore, increasing the number of active edges in

^aCorresponding author's email: r.joshi@unsw.edu.au (Rkj), alwarappan@cecri.res.in (SA)

the 2D MoS₂ is critically important to bring out an efficient hydrogen evolution reaction (HER).^{18–20} In this work, we employed thin MoS₂ film with numerous active edges as an efficient photocatalytic material. Photo-catalytic hydrogen generation using 2D materials shows a promising way toward straightforward and cost-effective procedures of hydrogen production.

Similar to graphene, ultrathin MoS₂ flakes can be obtained using mechanical or chemical exfoliation methods. Here MoS₂ layers were prepared using chemical exfoliation method in solvent. For this purpose, a mixture of MoS₂ powder and N-Methyl-2-pyrrolidone (NMP) solvent was ultra-sonicated for 10 hours. The solution was further centrifuged repeatedly three times at 10,000 RPM for 10 minutes. The final product contains the few layered MoS₂ flakes. In order to produce the thin MoS₂ film for water splitting and other electrochemical experiments, MoS₂ dispersion was sprayed on the chosen substrates. For over-pressure observation experiments, 1μm-thick MoS₂ film was prepared on an alumina template using a vacuum filtration. Current-voltage measurements were conducted to study the photocatalytic hydrogen generation from these layers.

Figure 1 represents the typical transmission electron microscopy (TEM) micrograph, selected area electron diffraction (SAED) pattern, Raman spectrum and photoluminescence spectrum of the chemically exfoliated MoS₂ layers used for photocatalytic hydrogen generation. Figure 1(a) shows the morphology of the exfoliated MoS₂ layers. The rolled-up edges are evidently observed. The inset of Figure 1(a) is the high resolution TEM image of the exfoliated MoS₂, indicating that a typical hexagonal pattern of MoS₂ is maintained without any defects in the grain. The spacing of 2.7 Å corresponds to the inter-atomic spacing of MoS₂ can be seen. The SAED of Figure 1(b) shows that the exfoliated MoS₂ sample has a single crystal structure. In the Raman spectrum of bulk MoS₂, two distinct vibrational modes can be noticed at 383 cm⁻¹ for in-plane mode (E¹_{2g}) and at 408 cm⁻¹

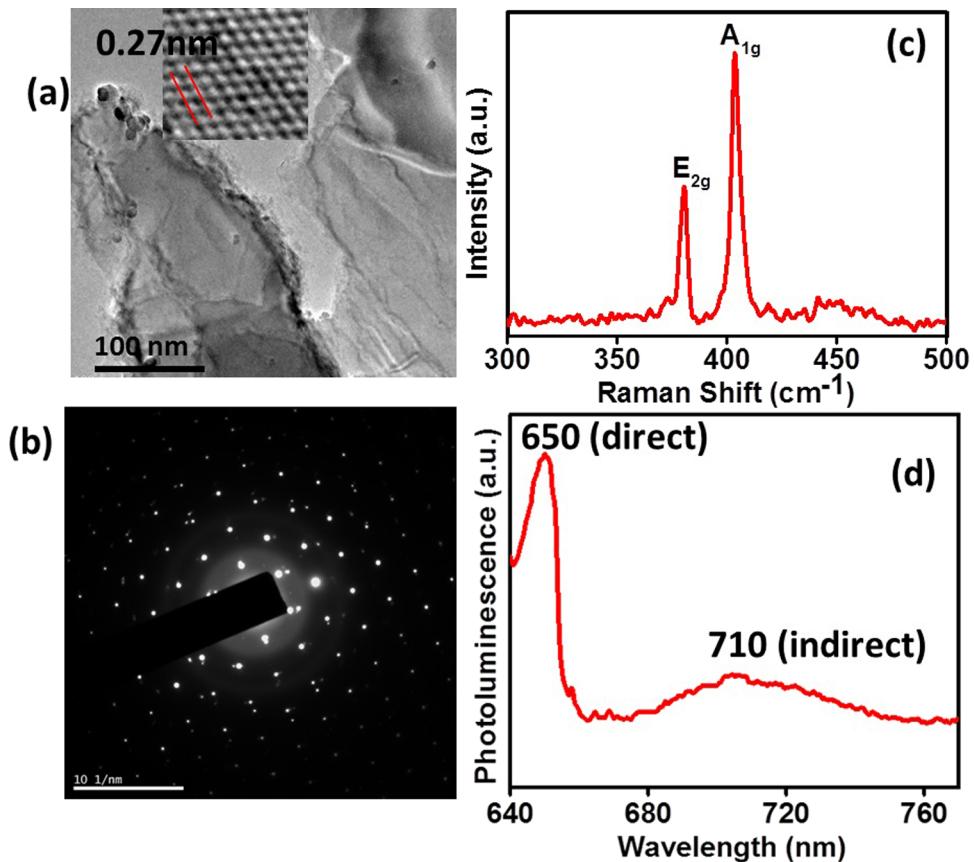


FIG. 1. Structural and optical characteristics of chemically exfoliated MoS₂ layers: (a) TEM micrograph of the exfoliated MoS₂. The inset shows high resolution TEM image in atomic scale. (b) SAED pattern (c) Raman spectrum and (d) photoluminescence spectrum of the MoS₂ layers.

out-of-plane mode (A_{1g}).²¹ Of these two vibrational modes, the interlayer vibrational mode is the fingerprint of the material that corresponds to the chemical composition of the material synthesized. Furthermore, their position is directed by the number of atomic layers present in the material. In the present work, the MoS_2 layers synthesized exhibited a peak centered at 388.6 cm^{-1} and 403.1 cm^{-1} due to the E_{2g} and A_{1g} modes respectively. Our experimental values upon comparison with the theoretical values reported in the literature,²¹ with frequency difference of 22.5 cm^{-1} suggest few (3) layered samples. Photoluminescence (PL) measurement was performed on the selected MoS_2 samples. Figure 1(d) shows two emission peaks around 650 nm and 710 nm , which correspond to direct (1.90 eV), and indirect (1.74 eV) bandgap transition, respectively suggesting presence of exfoliated layers. Enhancement in bandgap suggests the possible photocatalytic application using chemically exfoliated layers.

First principle calculations using density functional theory suggests direct optical transition at the K point in the Brillouin zone corresponds to the peak marked by a red arrow in the electronic band structure for mono-layered MoS_2 as shown in figure 2. This band gap is found to decrease and the lowest band (green) becomes doubly degenerate at the K point in bulk MoS_2 . First principle calculations were performed using density functional theory as implemented in the Vienna Ab-initio Simulation Package (VASP). The details of calculations have been described elsewhere.²² K-points mesh of $16 \times 16 \times 8$ and was generated using Monkhorst-Pack scheme to sample the reciprocal space for electronic structures calculations.

In order to measure the amount of the photocatalytically generated hydrogen through the MoS_2 film, we fabricated the simple set-up of figure 3. The thin film of exfoliated MoS_2 coated on the porous alumina template by a vacuum filtration was immersed in a container filled with a deionized water. Top of the container was sealed with a thin rubber balloon, which can be blown up as hydrogen is generated. Upon exposure to visible light (60 W-AM 1.5) at a distance of 10 cm from the MoS_2 film, the balloon starts to expand and. The size of balloon increase with time and formation of bubbles on the MoS_2 film surface was observed. This confirms that hydrogen generation occurs through water splitting initiated by photocatalytic activity of MoS_2 films. The size of the balloon is eventually saturated after a day and maintained unchanged for three weeks. It should be noted that this experiment was conducted only for 3 weeks. To confirm the photocatalytic effect of the exfoliated MoS_2 , we also performed the same experiment with bulk MoS_2 (before exfoliation) bare alumina template, or nothing in a water container with the sealed balloon on its top. No bubbles or gas generation was found in these three conditions.

For quantitative analysis of the photocatalytic effect of exfoliated MoS_2 , photo-current generated by the MoS_2 was measured. The MoS_2 suspension was sprayed on Si substrates of $1 \times 1 \text{ cm}^2$. The current-voltage (I-V) characteristics was measured in a dark condition or under visible light illumination. I-V characteristics from positive to negative bias clearly indicated that the MoS_2 film

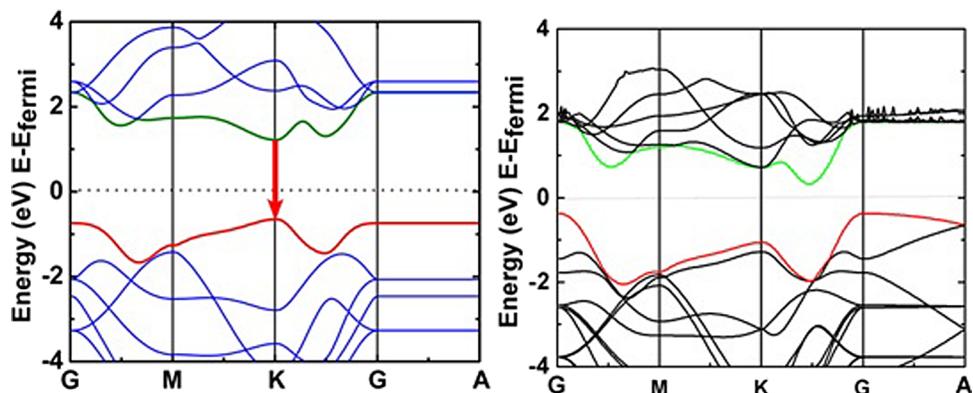


FIG. 2. Electronic band structure of mono-layer MoS_2 along the high symmetry directions(left). The lowest conduction band and the highest valence band are marked in green and red, respectively. Emission corresponding to $\sim 705 \text{ nm}$ as observed in the (right) electronic band diagram of bulk MoS_2 showing indirect bandgap.

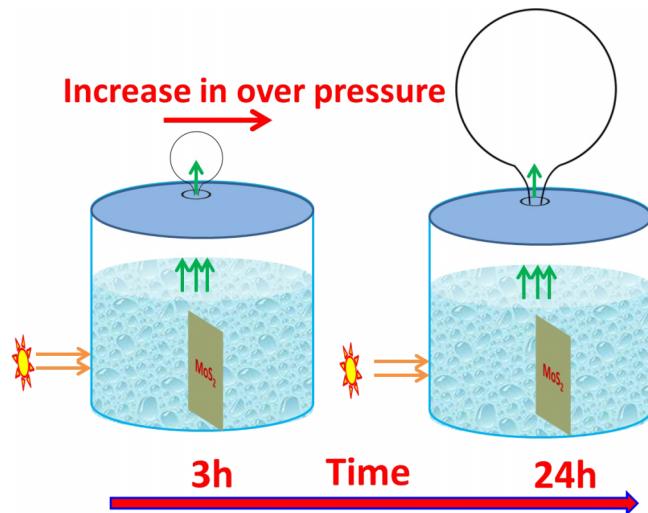


FIG. 3. Schematic of the water-splitting experimental setup. The over pressure was measured by observing blowing- up of a balloon as a function of time when the MoS_2 film in water was exposed to visible light.

is highly sensitive to the visible light. In contrast, no such photo-current was measured for bulk MoS_2 . With no external voltage applied, the visible light creates enough carriers on the surface of semiconducting MoS_2 , corresponding to a current of approximately $0.2\mu\text{A}$, which is roughly three magnitude of orders higher than that under no illumination of the light. To measure the photoelectrochemical response of the exfoliated MoS_2 film, we set up the experiment of figure 4(a). The MoS_2 film deposited on the gold substrate of $1 \times 1 \text{ cm}^2$ was used as anode and platinum plate was employed as cathode. When the MoS_2 film is exposed to a visible light, electron-hole pairs are generated. Then, photo-excited electrons in MoS_2 are transferred to the Pt counter electrode. On the Pt electrode, H^+ ions are reduced, leading to generation of hydrogen bubbles, as reported in the typical photoelectrochemical experiments.^{23–27} During the experiment, bubble formation was clearly detected in a water. The holes in the MoS_2 electrode oxidize the OH^- ions so that a current flows through photoelectrochemical reaction. The photoelectrochemical current curves of Figure 4(a) show that the MoS_2 film on Au are more efficient than the bare Au electrode when exposed to the visible light. To verify the dynamic optical response in photo-current, the electrical current was measured at 0.5 V under the periodic illumination. Figure 4(b) shows the photo-current ratio of I/I_0 , where I and I_0 is the photo-currents under illumination and in dark, respectively. Under, the photo-current ratio reaches over 10, which indicates the high efficiency of hydrogen generation

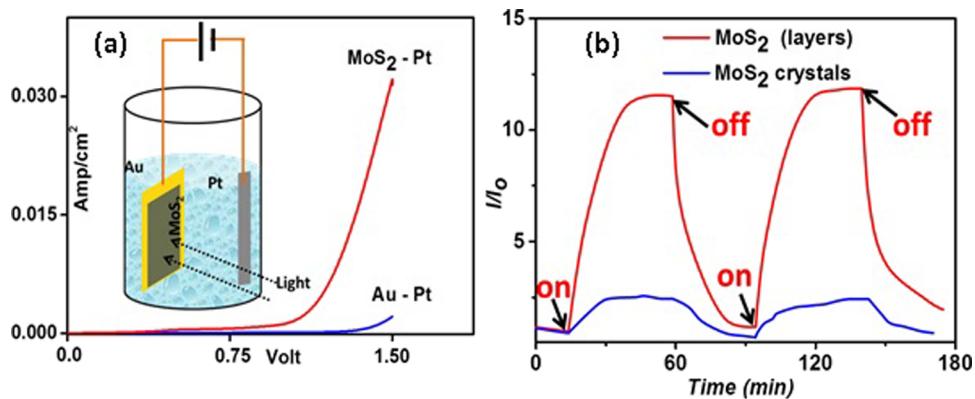


FIG. 4. (a) Current-voltage (I-V) characteristics under illumination. Schematic of the inset shows experimental set-up. (b) Photo-current ratio of I/I_0 under periodic illumination for exfoliated MoS_2 film and bulk MoS_2 film.

by photoelectrochemical activity of the MoS₂ film. This result shows that 2D MoS₂ can be used as an active catalyst for hydrogen generation. It is expected that the larger area monolayer film of the exfoliated MoS₂ will have the more enhanced photocatalytic behaviour due to increased area of MoS₂ film, indicative of more reactive MoS₂ edges.

In conclusions, we have developed a straightforward procedure to study hydrogen generation through water-splitting by the photoelectrochemical activity of 2D MoS₂. The chemically exfoliated MoS₂ layers were characterized for their structural quality prior to their use for hydrogen generation experiment. The over-pressure created by formation of hydrogen *via* water splitting by MoS₂ catalyst was investigated by measuring the blowing-up of the balloon. In the quantitative analysis of photocatalytic effect, a large amount of photo-current in exfoliated MoS₂ film, which is higher than that in bulk MoS₂, was observed under the illumination of visible light. Our work shows a new way toward hydrogen generation by 2D MoS₂, which is required for our future energy plan.

ACKNOWLEDGEMENT

RKJ acknowledges Prof. A. K. Geim and Dr V. J. Kravets of the University of Manchester. This work in part was funded by faculty start up research grant of the University of New South Wales. SA acknowledges CSIR for supporting this research through the grant CSC0101 (MULTIFUN). G.H.L. acknowledges support from the Basic Science Research Program (NRF-2014R1A1A1004632) through the National Research Foundation (NRF) funded by the Korean government Ministry of Science, ICT and Future and in part by the Yonsei University Future-leading Research Initiative of 2014.

- ¹ N.S. Lewis and D.G. Nocera, *Proc. Natl. Acad. Sci.* **103**, 15729 (2006).
- ² M.G. Walter, E.L. Warren, J.R. McKone, S.W. Boettcher, Q. Mi, E.A. Santori, and N.S. Lewis, *Chem. Rev.* **110**, 6446 (2010).
- ³ H. Zeng, J. Dai, W. Yao, D. Xiao, and X. Cui, *Nat.Nanotechnol.* **7**, 490 (2012).
- ⁴ K.F. Mak, K.L. McGill, J. Park, and P.L. McEuen, *Science* **344**, 1489 (2014).
- ⁵ S. Bertolazzi, J. Brivio, and A. Kis, *ACS Nano* **12**, 9703 (2011).
- ⁶ R. Kapper, D. Voiry, S. E. Yalcin, B. Branch, G. Gupta, A. D. Mohite, and M. Chhowalla, *Nature Mat.* **13**, 1128 (2014).
- ⁷ B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, *Nat.Nanotech.* **6**, 147 (2011).
- ⁸ X. Cui, G-H. Lee, Y.D. Kim, G. Arefe, P.Y. Huang, C-H. Lee, D.A. Chenet, X. Zhang, L. Wang, F. Ye, F. Pizzocchero, B.S. Jessen, K. Watanabe, T. Taniguchi, D.A. Muller, T. Low, P. Kim, and J. Hone, *Nature Nanotech.* **10**, 534 (2015).
- ⁹ C. Petit, C. Taleb, and M.P. Pilani, *J.Phys.Chem B* **103**, 1805 (1999).
- ¹⁰ C.H. Lee, G-H. Lee, A.M. van der Zande, W. Chen, Y. Li, M. Han, X. Cui, G. Arefe, C. Nuckolls, T.F. Heinz, J. Guo, J. Hone, and P. Kim, *Nature Nanotech.* **9**, 676 (2014).
- ¹¹ K.F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, *Phys.Rev.Lett.* **105**, 136805 (2010).
- ¹² E.S. Kadantsev and P. Hawrylak, *Solid state Commun.* **152**, 909 (2012).
- ¹³ A. Splendiani, L. Sun, Y. Zhang, T. Li, Y. Kim, C-Y. Chim, G. Galli, and F. Wang, *Nano.Lett.* **10**, 1271 (2010).
- ¹⁴ Q. Xiang, J. Yu, and M. Jaroniec, *J. Am. Chem. Soc.* **134**, 6575 (2012).
- ¹⁵ F.A. Frame and F.E. Osterloh, *J.Phys.Chem C* **114**, 10628 (2010).
- ¹⁶ J.V. Lauritsen, J. Kibsgaard, S. Helveg, H. Topsøe, B.S. Clausen, E. Laegsgaard, and F. Besenbacher, *Nat. Nanotech.* **2**, 53 (2007).
- ¹⁷ Y. Li, Y-L. Li, C.M. Araujo, W. Luo, and R. Ahuja, *Cat.Sci.Technol.* **3**, 2214 (2013).
- ¹⁸ M. Wang, L. Chen, and L. Sun, *Energy.Environ. Sci.* **5**, 6763 (2011).
- ¹⁹ P. Du and R. Eisenberg, *Energy.Environ. Sci.* **5**(2012), 6012 (2012).
- ²⁰ S. Min and G. Lu, *J.Phys.Chem. C* **116**, 25415 (2012).
- ²¹ C. Lee, H. Yan, L.E. Brus, T.F. Heinz, J. Hone, and S. Ryu, *ACS Nano* **4**, 2695 (2010).
- ²² S. Saxena and T.A. Tyson, *ACS Nano* **4**, 351 (2010).
- ²³ A. Fujishima and K. Honda, *Nature* **238**, 37 (1972).
- ²⁴ P.J. Boddy, *J. Electrochem.Soc.: Solid state Science* **115**, 199 (1968).
- ²⁵ A. Fujishima and K. Honda, *Bull. Chem. Soc.* **44**, 1148 (1971).
- ²⁶ F. Osterloh and B.A. Parkinson, *MRS Bulletin* **36**, 18 (2011).
- ²⁷ D. Voiry, M. Salehi, R. Silva, T. Fujita, M. Chen, T. Asefa, V. B. Shenoy, G. Eda, and M. Chhowalla, *Nano Lett.* **13**, 6222 (2013).