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TÓM TẮT

Bài báo đề xuất một phương pháp Newton chính quy hóa không chính xác để giải các bài toán tối ưu
không ràng buộc. Thuật toán được đề xuất thuộc vào lớp lược đồ lặp trong-ngoài. Thay vì giải các hệ tuyến
tính một cách chính xác, các chương trình giải các hệ tuyến tính lặp sẽ được áp dụng để tìm ra các hướng
tìm kiếm xấp xỉ. Chúng tôi sẽ chứng minh rằng thuật toán không chính xác sẽ bảo toàn tính chất hội tụ
địa phương nhanh của các thuật toán chính xác. Một số thực nghiệm số sẽ được thực hiện để chỉ ra những
điểm tốt của thuật toán được đề xuất.
Từ khóa: tối ưu không ràng buộc, phương pháp Newton không chính xác, chính quy hóa, chặn sai số địa
phương
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ABSTRACT

This paper proposes an inexact regularized Newton method for solving unconstrained optimization
problems. The proposed algorithm belongs to the class of outer-inner iteration scheme. Instead of solving
exactly linear systems, iterative linear solver will be applied to find approximate search directions. We will
show that the inexact algorithm preserved the fast local convergence property of exact algorithms. Some
numerical experiments are also conducted to show the benefits of our proposed algorithm.
Key words: unconstrained optimization, inexact Newton method, regularization, local error bound

1. Introduction

Let us consider the following unconstrained mini-
mization problem

min
x∈Rn

f(x), (1)

where f : Rn → R is a twice differentiable function.
This type of problem has many applications in ma-
chine learning, engineering, economics,. . . 11,24. Let
S be the solution set of the problem (1). We may as-
sume that the minimization problem (1) has a local
solution x∗ ∈ S. A conventional assumption which
is used when solving this problem is the second or-
der sufficient condition (SOSC), i.e., the Hessian
matrix ∇2f(x∗) is positive definite, see, e.g. The-
orem 2.4 in24. This assumption is very important
because it implies that x∗ is the unique local solution
of (1). This is crucial for the fast local convergence
of Newton algorithm, see, e.g. Theorem 3.5 in24.
However, in practice, this assumption is somewhat
strict and it limits the applicability of numerical al-
gorithm. With the lack of this assumption, behavior
of numerical methods can be very bad and some-
times algorithms cannot work. Recently, regularized
optimization methods emerge as good alternatives
for resolving problems of type (1), in both contexts
of convex optimization21–23 and of nonconvex op-
timization.16,19 The main idea of these regularized
methods is tend to solve a sequence of regularized
problem of the form

min
x∈Rn

Fk(x) := f(x) +
θk
2
∥x− xk∥2, (2)

where xk is the iterate at iteration k, θk > 0 is a
regularization parameter. Instead of the SOSC, in
these papers, the authors assume that the gradient
of objective provides a local error bound condition
at some x∗ ∈ S. Such a condition means that the
distance from a point to the solution set of the prob-
lem S can be upper bounded by some term related
to the gradient at that point (see (10) below).

Very recently, authors in4 proposed a Newton
method applied to the first order optimality condi-
tions of (2). This algorithm belongs to the class of
outer-inner iteration scheme. The main role of outer
iterations is to compute a trial iterate x+

k such that

(Hk + θkI)(x
+
k − xk) = −∇f(xk), (3)

where Hk is an approximation of the Hessian matrix
∇2f(xk), xk is the current iterate and θk is updated
at the beginning of each iteration. If the trial it-
erate makes a sufficient reduction on the objective
function Fk(x

+
k ) and its gradient ∇Fk(x

+
k ), it will

be set as the starting point of the next iteration,
i.e., xk+1 = x+

k . If this is not the case, a sequence
of inner iterations for minimizing Fk will be applied
for obtaining a sufficient reduction on Fk(xk+1) and
∇Fk(xk+1). This outer-inner iterations are also ap-
plied in the framework of constrained optimization,
see2,3,5–8,10 for further reading. In both outer and
inner iterations, the main computational cost lies
in solving exactly the linear system (3). In practi-
cal applications where the size of problems are very
enormous, factorizing a large matrix to solve such a
linear system may take a long time to execute the
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algorithm. To deal with this problem, inxact New-
ton method has been proposed for solving nonlin-
ear equation12 and unconstrained optimization13.
This method is also applied in the framework of
constrained optimization, e.g.1,10,27.... However, in
these papers, one still resorts to the second order
sufficient conditions for the fast local convergence of
their algorithms. In29, the authors proposed a regu-
larized trust-region Newton method for solving (1).
In numerical experiments, authors considered the
possibility of applying an inexact solver for solving
subproblem which is somewhat similar to (3). How-
ever, convergence analysis for their algorithm in this
inexact case has not been studied.

In this paper, we will propose an inexact regu-
laried Newton method for solving problem (1). Our
algorithm has the same vain of outer-inner algorithm
scheme as.4 However, instead of solving exactly lin-
ear systems at each iteration which maybe too ex-
pensive, we will introduce an application of inexact
method to their algorithm. In this case, the toler-
ance of the inexactness will be considered carefully
so that the fast convergence of the algorithm is still
preserved. In particular, at each iteration k, an in-
exact linear solver, e.g. conjugate gradient, will be
applied to solve the “inexact” solution x+

k that sat-
isfies

∥(Hk + θkI)(x
+
k − xk) +∇f(xk)∥ ≤ ηk, (4)

where {ηk} is a sequence of positive number which
must be chosen. Many iterative linear solvers can
be applied for solving (4), e.g., conjugate gradi-
ent method20, MINRES25, LSQR26, GMRES28,
LSMR15. Since the coefficient matrix Hk + θkI is
positive definite, we will choose the conjugate gra-
dient method for solving (4) . We will prove that
this inexactness does not affect to the fast local
convergence of the algorithm in4 even for degener-
ate cases. More specifically, our proposed algorithm
attains a superlinear convergence under a local er-
ror bound condition which is milder than the usual
SOSC. These good theoretical results will be verified
by some numerical experiments. In addition, numer-
ical results also show us that the proposed inexact
algorithm can help to reduce the computational time
compared with exact algorithms.

The paper is organized as follows. Some nota-
tions and description of algorithm will be introduced
in Section 2. Section 3 is devoted to the convergence
analysis of the proposed algorithm. Some numeri-
cal experiments are reported in Section 4 to verify
theoretical results and to demonstrate the effective-
ness of our proposed algorithm. The paper ends with

some conclusion.

2. Notation and algorithm descrip-

tion

Notation For two real vectors x = [x1, x2, . . . , xn]
⊤

and y = [y1, y2, . . . , yn]
⊤ in the vector space Rn, x⊤y

is used to denote the Euclidean scalar product. The
associated norm is the ℓ2-norm, i.e., ∥x∥ = (x⊤x)1/2.

The notation x ≤ y (x ≥ y) indicates that xi ≤ yi
(resp. xi ≥ yi) for all i = 1, n. For a vector x ∈ Rn,

the notation diag(x) stands for the diagonal matrix
whose diagonal entries are components of vector x.

The induced norm of a rectangular matrix M is de-
fined by ∥M∥ = max{∥Mx∥ : ∥x∥ ≤ 1}. Let M

be a square symmetric matrix, i.e. M = M⊤. The
smallest eigenvalue of the matrix M is denoted by
λmin(M). The notation M ⪰ 0 means that M is
a semi-positive definite matrix, i.e. λmin(M) ≥ 0.

The open ball of radius r and center x is denoted
by B(x, r) = {y|∥y − x∥ < r}. The solution set of
the problem (1) will be denoted by S. For every
x ∈ Rn, the notation d(x) = inf

y∈S
∥x−y∥ denotes the

distance from x to the solution set S. In this case,
if the solution set is nonempty, the notation x̄ will
be used to denote the projection of x onto S, i.e.,
∥x− x̄∥ = d(x).

We now introduce our proposed algorithm in
this paper. Let m be a natural number and γ >

0, σ ∈ (0, 1), κ > 0, η−1 > 0, θ̄ > 0 and
ϵ > 0. At the beginning of the algorithm, a start-
ing point x0 ∈ Rn should be defined. The de-
tails of our algorithm is given in Algorithm 1.

Algorithm 1: (kth iteration)

Input: m ∈ N, γ > 0, σ ∈ (0, 1), θ̄ > 0,
κ > 0, ϵ > 0, η−1 > 0 and x0 ∈ Rn

Output: an optimal solution xk

1 Choose θk > 0, δk > 0 such that such that
Hk = ∇2f(xk) + δkI ⪰ 0 and set
θk = min{γ∥∇f(xk)∥σ, θ̄},
ηk = κmin{∥∇f(xk)∥1+σ, ηk−1}.

2 Compute an trial iterate x+
k which satisfies

the condition (4).
3 Choose ζk > 0 such that {ζk} → 0.
4 If ∥∇f(x+

k )∥ ≤ ζk, then set xk+1 = x+
k .

Otherwise, apply a sequence of inner
iterations to find xk+1 such that

∥∇f(xk+1)∥ ≤ ζk. (5)

5 If ∥∇f(xk+1)∥ ≤ ϵ, then terminate the
algorithm. Otherwise, set k ← k + 1 and go
to Step 1.
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In the first step, the regularization parameter δk
will be chosen such that the approximation of the
Hessian matrix is semi-positive definite. In particu-
lar, this parameter is chosen such that

δk ≤ β1 max{0,−λmin(∇2f(xk))}, for all k ∈ N,
(6)

for some β1 ≥ 1. In4 and29, authors proposed to
choose δk = β1 max{0,−λmin(∇2f(xk))}. Appar-
ently, this choice validates the requirement (6). In
our algorithm, we adopt the same strategy to choose
δk. It worths to note that recently, authors in9 pro-
pose a simple search algorithm based on the indef-
inite factorization method MA5714 to find an δk
satisfying (6). The regularization parameter θk and
the “forced” parameter will be defined based on the
norm of the gradient of the current iteration xk.

Step 2 is devoted to calculate an approximation so-
lution x+

k with the tolerance ηk defined in Step 1.
In Step 3, we choose a tolerance for the condition
to trigger the inner iteration algorithm in Step 4.
In Step 4, if the trial iterate x+

k creates a sufficient
reduction on the first order optimality condition, we
set it as the starting point of the next iteration. Oth-
erwise, we will apply a sequence of inner iteration to
find an iterate xk+1 such that the condition. Step 5
is the stopping condition of the algorithm.

Because our main concern in this paper is the
local behavior of an inexact regularized Newton
method, the globalization scheme is not mentionned
here. It should be of interest to develop our local
scheme to global one by using globalization tech-
niques as in4,9.

3. Asymptotic analysis of the al-

gorithm

Asymptotic analysis of Algorith 1 is conducted
under the following assumptions.

Assumption 1. The function f is twice differen-
tiable, ∇2f is locally Lipschitz continuous and the
set S of minimizers to (1) is nonempty.

From the closeness of S and the coerciveness of
the norm, for every x ∈ Rn, there exists x̄ ∈ S such
that

d(x) = ∥x− x̄∥. (7)

Assumption 2. The gradient provides a local error
bound condition at some x∗ ∈ S.

From the two above assumptions, there exist
postive numbers ℓ, L, r, τ such that for all x, y ∈

B(x∗, r),

∥∇f(x)−∇f(y)∥ ≤ ℓ∥x− y∥, (8)

∥∇2f(x)−∇2f(y)∥ ≤ L∥x− y∥, (9)

d(x) ≤ τ∥∇f(x)∥, (10)

γ∥∇f(x)∥σ ≤ θ̄, (11)

From the definition of θk and ηk in Step 2 of Al-
gorithm 1 and inequalities (8), (10) and (11) for all
k ∈ N such that xk ∈ B(x∗, r),

θk = γ∥∇f(xk)∥σ ≥ γbσd(xk)
σ, (12)

ηk = κ∥∇f(xk)∥1+σ ≤ κℓ1+σd(xk)
1+σ. (13)

Firstly, we recall a result about the upper bound
of the regularization parameter δk satisfying (6) via
the distance function.

Lemma 1 (Lemma 2 in4). For all k ∈ N such that
xk ∈ B(x∗, r/2), we then have δk ≤ β1Ld(xk).

Next lemma to demonstrate that the search di-
rection of the inexact Newton method, i.e. x+

k − xk,
obtained from (4) will be upper bounded by the dis-
tance function evaluated at the current iterate xk.

Lemma 2. Let

C1 :=

(
κℓ1+σ +

(
1

2
+ β1

)
Lr1−σ

)
1

γbσ
+ 2.

For all k ∈ N such that xk ∈ B(x∗, r/2),

∥x+
k − xk∥ ≤ C1d(xk). (14)

Proof. Let k ∈ N such that xk ∈ B(x∗, r/2). Firtsly,
let us select x̄k ∈ S with d(xk) = ∥xk − x̄k∥. We
then have ∇f(x̄k) = 0. This fact and the Lipschitz
continuity of f imply that

∇f(xk)

=∇f(xk)−∇f(x̄k)

=

∫ 1

0

∇2f(x̄k + t(xk − x̄k))(xk − x̄k)dt

=

∫ 1

0

[
∇2f(x̄k + t(xk − x̄k))−∇2f(xk)

]
(xk − x̄k)dt

+∇2f(xk)(xk − x̄k) (15)

By noting that ∇2f(xk) = (Hk + θk) − (δk + θk)I,
one gets

(Hk + θkI)
−1∇2f(xk)(xk − x̄k)

=xk − x̄k − (δk + θk)(Hk + θkI)
−1(xk − x̄k) (16)

From (4), (15), (16) and using (9), we get

∥x+
k − xk∥ (17)

≤
∥∥(Hk + θkI)

−1
[
(Hk + θkI)(x

+
k − xk) +∇f(xk)

]∥∥
+
∥∥(Hk + θkI)

−1∇f(xk)
∥∥

≤
∥∥(Hk + θkI)

−1
∥∥(ηk +

L

2
∥xk − x̄k∥2

)
+ ∥xk − x̄k∥+ (δk + θk)

∥∥(Hk + θkI)
−1
∥∥ ∥xk − x̄k∥

(18)
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Since Hk ⪰ 0 and θk > 0, we have ∥(Hk+θkI)
−1∥ ≤

1
θk
. Using this inequality, Lemma 1, (12) and noting

that ∥xk − x̄k∥ = d(xk) ≤ r, we then deduce from
(18) that

∥x+
k − xk∥

≤ 1

θk

(
κl1+σd(xk)

1+σ +
L

2
d(xk)

2

)
+ 2d(xk) +

β1L

θk
d(xk)

2

≤
((

κℓ1+σ +

(
1

2
+ β1

)
Lr1−σ

)
1

γbσ
+ 2

)
d(xk),

from which completes the proof.

We now show that the sequence of distances from
iterates generated by Algorithm 1 to the solution set
S will decrease with a superlinear rate.

Lemma 3. Let

C2 = τ

(
κℓ1+σ +

((
β1L+

L

2
C1

)
r1−σ + γlσ

)
C1

)
.

For all k ∈ N such that xk ∈ B(x∗, r
2(1+C1)

), we
have

d(x+
k ) ≤ C2d(xk)

1+σ.

Proof. Let k ∈ N be such that xk ∈ B(x∗, r
2(1+C1)

).
Since C1 > 2, by virtue of Lemma 2, one gets

∥x+
k − x∗∥ ≤ ∥x+

k − xk∥+ ∥xk − x∗∥
≤ C1d(xk) + ∥xk − x∗∥
≤ (C1 + 1)∥xk − x∗∥

<
r

2
.

This means that x+
k ∈ B(x∗, r

2 ). Hence, local error
bound condition (10) holds at x+

k , i.e.,

d(x+
k ) ≤ τ∥∇f(x+

k )∥. (19)

With the notation u+
k := x+

k −xk we deduce from (4)
that

∥∇f(xk) +∇2f(xk)u
+
k ∥

≤
∥∥(Hk + θkI)(u

+
k ) +∇f(xk)

∥∥ ∥(θk + δk)u
+
k ∥

≤ ηk + (θk + δk)∥u+
k ∥. (20)

The differentiability of f gives us

∇f(x+
k ) =∇f(xk) +

∫ 1

0

∇2f(xk + tu+
k )u

+
k dt

=∇f(xk) +∇2f(xk)u
+
k

+

∫ 1

0

[
∇2f(xk + tu+

k )−∇
2f(xk)

]
u+
k dt.

Taking the norm on both sides, using (9), (20) and
Lemma 2, we obtain

∥∇f(x+
k )∥ ≤ηk + (δk + θk)∥x+

k − xk∥+
L

2
∥x+

k − xk∥2

≤ηk + (δk + θk)C1d(xk) +
L

2
C2

1d(xk)
2.

(21)

Combining (19) with (21) and using (8), (13)
Lemma 1, we then get

d(x+
k )

≤τ
(
κl1+σd(xk)

1+σ + (β1Ld(x) + γlσd(x)σ)C1d(xk)

L

2
C2

1d(xk)
2

)
≤τ
(
κℓ1+σ +

((
β1L+

L

2
C1

)
r1−σ + γlσ

)
C1

)
×

× d(xk)
1+σ,

which completes the proof.

By following the same argument as in Section 2
of9, we can prove that if the sequence of iterates
is close enough to the region of the solution set S,
the inner iteration algorithm will never be triggered.
Moreover, Algorithm 1 will converge to some solu-
tion of the problem (1) with a superlinear rate of
converence. The main result of this paper is sum-
marized in the theorem below.

Theorem 4. Let Assumption 1 and 2 holds at
x∗ ∈ S. Assume that Algorithm 1 generates an in-
finite sequence of iterates {xk}. There exists R > 0
such that if at an iteration k0 ∈ N, xk0

∈ B(x∗, R),
then for all k ≥ k0, xk+1 = x+

k , {xk} converges to
x̂ ∈ S and

lim
k→∞

∥xk+1 − x̂∥
∥xk − x̂∥

= 0.

4. Numerical experiments

In this section, we will make some numerical ex-
periments to show the advantages of the our pro-
posed algorithm. Algorithm 1 is implemented in
MATLAB R2012a. Parameters of this algorithm are
chosen as below: ϵ = 10−8, σ = 0.5, θ̄ = 0.1,
γ = 10−2, κ = 0.99, η−1 = 0.1 β1 = 2. The con-
jugate gradient method24 will be applied to solve
system (4). Because we are only interested in the lo-
cal behavior of Algorithm 1, the globalization strat-
egy is not implemented. In particular, we do not in-
voke Steps 4 and 5 in Allgorithm 1. Instead, we will
choose starting points which are sufficiently close to
the optimal solution of the problem for which The-
orem 4 can be applied. The investigation related to
global behavior of this algorithm is out of the current
work and should be the topic of another research in
the future.
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4.1. Superlinear convergence of Algorthm 1

This section is devoted to verify the theoretical
research developed in this paper. In particular, we
will show that Algorithm 1 attains the superlinear
rate of convergence in some neighborhood of an op-
timal solution in which the local error bound condi-
tion holds true.

Let us consider the problem (1) in R2, where

f(x) =


1

2
(x2 − 1)2 if x1 ∈ [1, 11]

1

8
(x1 − 1)4(x1 − 11)4

+ 1
2 (x2 − 1)2 otherwise.

(22)

The first and second derivatives of f are

∇f(x) =



(
0

x2 − 1

)
if x1 ∈ [1, 11]

(x1 − 1)3×
×(x1 − 11)3(x1 − 6)

x2 − 1

 otherwise.

and

∇2f(x) =


diag([0, 1]⊤) if x1 ∈ [1, 11]

diag([(x1 − 1)2(x1 − 11)2×
×(7x2

1 − 84x1 + 227), 1]⊤) otherwise.

The function f is twice continuously differentiable
and the second derivative ∇2f is Lipschitz contin-
uous on R2. The solution set is S = [1, 10] × {1}.
The local error bound condition (10) holds at any
x∗ = (x∗

1, 1) ∈ S such that 1 < x∗
1 < 10. In-

deed, let r = min{x∗
1 − 1, 10 − x∗

1} > 0. For all
x = (x1, x2) ∈ B(x∗, r), we have

d(x,S)2 = (x2 − 1)2

= ∥∇f(x)∥2

which implies that the error bound condition (10)
is validated at x∗ with τ = 1. We note that, how-
ever, the matrix ∇2f is singular for all x = (x1, x2)

such that x1 ∈ [1, 10] which means that the SOSC
does not holds in this example. From the starting
point x0 = (9.0,−50), our algorithm converges to
solution x̂ = (9.0, 1.0) after 4 iterates. The behavior
of Algorithm in this example is showed in Fig 1.
In this figure, we plot norms of xk − x∗, where
x∗ = [9, 1] is the optimal solution. From this figure,
we can see that the slope of the graph after each it-
eration will be more negative. This means that the
sequence {∥xk+1−x∗∥

∥xk−x∗∥ } tends to zero. In other word,
Algorithm 1 attains the superlinear convergence in
this case.

0 1 2 3 4
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10
−2

10
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∗

‖

 

 

Algorithm 1

Fig. 1: Behavior of Algorithm 1 when solving (1) with

f is given by (22).

4.2. Execution time on large-scale problems

As we have mentioned in Section 1, when solving
large-scale problems, an exact algorithm may take a
long time to solve the linear system (3) which is the
main burden in Newton method. Our aim in this sec-
tion is to show the advantage of our inexact scheme
when solving large-scale optimization problems. In
particular, we will implement an exact version of
Algorithm 1 in which the linear system 3 will be
solved (exactly) instead of Step 2 of Algorithm 1.
To solve the linear sytem (3), the coefficient matrix
Hk + θkI will be factorized by an LDL decomposi-
tion, see, e.g.,17. Because there is no computation of
the square roots of the diagonal elements is needed,
this decomposition is more stable and more efficient
than Gaussian eliminization or Cholesky decompo-
sition.

In this section, we will consider some large-
scale unconstrained problems under form (1) in the
CUTEst collection18. We will compare CPU times
to solve each problem by the inexact and the exact
algorithms. Tab. 1 shows us the numerical results
when applying these two algorithms in solving some
problem in CUTEst. We will collect problems which
satisfy two requirements: the size of a problem (the
number of variables) is greater than 1000, and both
algorithms are succeed in solving the problem within
200s. We compare only the problems with n ≥ 1000

because these two algorithms solve the others very
fast. This makes the comparisons unfair. From this
table, we can see that in most of problems, the inex-
act algorithm take less time to solve than the exact
one. This demonstrates the benefit when using an
inxact algorithm instead of the exact algorithm to
solve unconstrained optimization problem.
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Problem
Size

(n)

Inexact

algorithm

Exact

algorithm

Arwhead 5000 58.02 70.99
bdqrtic 5000 2.43 2.54
broydn7d 1000 19.91 19.95
brybnd 5000 87.30 94.86
dqdrtic 5000 52.08 44.12
edensch 5000 6.48 6.83
engval1 5000 88.27 87.85
freuroth 5000 165.98 169.00
noncvxun 1000 4.20 3.44
penalty1 1000 7.65 8.86
sensors 1000 116.56 122.10

Tab. 1: Execution times (in second) of the inexact and

the exact algorithms on large-scale problem in

CUTEst collection (n is the number of vari-

ables)

5. Conclusion

In this paper, we propose an inexact regular-
ized Newton method for unconstrained optimiza-
tion. The algorithm is a variant of the algorithm in4

where linear systems for finding search direction are
solved approximately with a suitable tolerance. As-
symptotic convergence analysis is performed to show
that under some local error bound condition, the al-
gorithm attains a superlinear rate of convergence.
Some numerical experiments are conducted to verify
theoretical results and to show the advantage of our
proposed algorithm. In the future, some researches
for globalizing our proposed algorithm should be in-
terested.
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