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TOM TAT

Bai bao dé xuat mot phuong phap Newton chinh quy héa khong chinh xac dé giai cac bai toan tdi wu
khong rang budc. Thuat toan dude dé xuét thudc vao 16p luge dod Lip trong-ngoai. Thay vi gidi cac hé tuyén
tinh mot cach chinh xac, cdc chuong trinh giai cac hé tuyén tinh lap sé dudc a4p dung dé tim ra cac huéng
tim kiém x4p xi. Chiing toi sé ching minh ring thuat toan khong chinh x4c sé bao toan tinh chit hoi tu
dia phuong nhanh ciia cac thuat toan chinh xac. Mot s6 thitc nghiém s6 sé duge thuc hién dé chi ra nhitng
didm t6t ctia thuat toan duge dé xuét.

T khéa: toi wu khong rang budc, phuong phdp Newton khong chinh zdc, chinh quy héa, chdn sai s6 dia
phuong
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ABSTRACT

This paper proposes an inexact regularized Newton method for solving unconstrained optimization

problems. The proposed algorithm belongs to the class of outer-inner iteration scheme. Instead of solving

exactly linear systems, iterative linear solver will be applied to find approximate search directions. We will

show that the inexact algorithm preserved the fast local convergence property of exact algorithms. Some

numerical experiments are also conducted to show the benefits of our proposed algorithm.
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1. INTRODUCTION

Let us consider the following unconstrained mini-
mization problem

min f(z), (1)
where f : R™ — R is a twice differentiable function.
This type of problem has many applications in ma-
chine learning, engineering, economics,. .. 1?4, Let
S be the solution set of the problem (1). We may as-
sume that the minimization problem (1) has a local
solution z* € §. A conventional assumption which
is used when solving this problem is the second or-
der sufficient condition (SOSC), i.e., the Hessian
matrix V2f(x*) is positive definite, see, e.g. The-
orem 2.4 in?4. This assumption is very important
because it implies that z* is the unique local solution
of (1). This is crucial for the fast local convergence
of Newton algorithm, see, e.g. Theorem 3.5 in2%.
However, in practice, this assumption is somewhat
strict and it limits the applicability of numerical al-
gorithm. With the lack of this assumption, behavior
of numerical methods can be very bad and some-
times algorithms cannot work. Recently, regularized
optimization methods emerge as good alternatives
for resolving problems of type (1), in both contexts

21-23 and of nonconvex op-

of convex optimization
timization.%1? The main idea of these regularized
methods is tend to solve a sequence of regularized

problem of the form

. O 2
F. — e — 2
ireuri k() f(x)+ > |l — k|7, (2)

where xj is the iterate at iteration k, 6, > 0 is a
regularization parameter. Instead of the SOSC, in
these papers, the authors assume that the gradient
of objective provides a local error bound condition
at some z* € S. Such a condition means that the
distance from a point to the solution set of the prob-
lem S can be upper bounded by some term related
to the gradient at that point (see (10) below).
Very recently, authors in* proposed a Newton
method applied to the first order optimality condi-
tions of (2). This algorithm belongs to the class of
outer-inner iteration scheme. The main role of outer
iterations is to compute a trial iterate x: such that

(Hy, + 0p1) ()} — 1) = =V f(2), (3)

where Hy, is an approximation of the Hessian matrix
V2 f(xy), 21 is the current iterate and 6y, is updated
at the beginning of each iteration. If the trial it-
erate makes a sufficient reduction on the objective
function Fj(x}) and its gradient VFy(z}), it will
be set as the starting point of the next iteration,
ie., xpy1 = x; If this is not the case, a sequence
of inner iterations for minimizing Fj will be applied
for obtaining a sufficient reduction on Fj(xx41) and
V Fi(xk+1). This outer-inner iterations are also ap-
plied in the framework of constrained optimization,
see235°810 for further reading. In both outer and
inner iterations, the main computational cost lies
in solving exactly the linear system (3). In practi-
cal applications where the size of problems are very
enormous, factorizing a large matrix to solve such a

linear system may take a long time to execute the
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algorithm. To deal with this problem, inxact New-
ton method has been proposed for solving nonlin-
ear equation'? and unconstrained optimization'3.
This method is also applied in the framework of

constrained optimization, e.g. 11027,

.. However, in
these papers, one still resorts to the second order
sufficient conditions for the fast local convergence of
their algorithms. In2?, the authors proposed a regu-
larized trust-region Newton method for solving (1).
In numerical experiments, authors considered the
possibility of applying an inexact solver for solving
subproblem which is somewhat similar to (3). How-
ever, convergence analysis for their algorithm in this
inexact case has not been studied.

In this paper, we will propose an inexact regu-
laried Newton method for solving problem (1). Our
algorithm has the same vain of outer-inner algorithm
scheme as.* However, instead of solving exactly lin-
ear systems at each iteration which maybe too ex-
pensive, we will introduce an application of inexact
method to their algorithm. In this case, the toler-
ance of the inexactness will be considered carefully
so that the fast convergence of the algorithm is still
preserved. In particular, at each iteration k, an in-
exact linear solver, e.g. conjugate gradient, will be
applied to solve the “inexact” solution I‘;: that sat-
isfies

[(Hy + 06 ) (2 — 22) + V(@) <me,  (4)

where {nx} is a sequence of positive number which
must be chosen. Many iterative linear solvers can
be applied for solving (4), e.g., conjugate gradi-
ent method?°, MINRES?°, LSQR?2®, GMRES?,
LSMR 5. Since the coefficient matrix Hy + 051 is
positive definite, we will choose the conjugate gra-
dient method for solving (4) . We will prove that
this inexactness does not affect to the fast local

convergence of the algorithm in*

even for degener-
ate cases. More specifically, our proposed algorithm
attains a superlinear convergence under a local er-
ror bound condition which is milder than the usual
SOSC. These good theoretical results will be verified
by some numerical experiments. In addition, numer-
ical results also show us that the proposed inexact
algorithm can help to reduce the computational time
compared with exact algorithms.

The paper is organized as follows. Some nota-
tions and description of algorithm will be introduced
in Section 2. Section 3 is devoted to the convergence
analysis of the proposed algorithm. Some numeri-
cal experiments are reported in Section 4 to verify
theoretical results and to demonstrate the effective-
ness of our proposed algorithm. The paper ends with

some conclusion.

2. NOTATION AND ALGORITHM DESCRIP-

TION
Notation For two real vectors = = [z, T2,...,T,] "

and Yy = [y17y27 e 7y'r7,]—r
is used to denote the Euclidean scalar product. The

in the vector space R™, 2 Ty

associated norm is the fy-norm, i.e., |z|| = (z ")/
The notation x < y (z > y) indicates that z; < y;
(resp. m; > y;) for all i = 1,n. For a vector x € R,
the notation diag(x) stands for the diagonal matrix
whose diagonal entries are components of vector z.
The induced norm of a rectangular matrix M is de-
fined by ||M| = max{||Mz| : ||z| < 1}. Let M
be a square symmetric matrix, i.e. M = M. The
smallest eigenvalue of the matrix M is denoted by
Amin(M). The notation M > 0 means that M is
a semi-positive definite matrix, i.e. Amin(M) > 0.
The open ball of radius 7 and center z is denoted
by B(x,r) = {y|lly — || < r}. The solution set of
the problem (1) will be denoted by S. For every
2z € R™, the notation d(z) = ;gg |l —yl|| denotes the

distance from z to the solution set S. In this case,
if the solution set is nonempty, the notation z will
be used to denote the projection of = onto S, i.e.,
lz = Z[| = d(z).

We now introduce our proposed algorithm in
this paper. Let m be a natural number and v >
0,06 € (0,1), kK > 0, n—y > 0, § > 0 and
€ > 0. At the beginning of the algorithm, a start-
ing point zg € R™ should be defined. The de-
tails of our algorithm is given in Algorithm 1.

Algorithm 1: (kth iteration)
Input: m € N, v > 0,0 € (0,1), § > 0,
k>0,¢e>0,n_1>0and zp € R”
Output: an optimal solution xj
1 Choose 65 > 0, > 0 such that such that
Hy, = V2f(xy) + 0,1 = 0 and set
0 = min{~[[V f(z)]|°, 0},
me = kmind ||V f (@) [, ne—1}-
2 Compute an trial iterate ZC; which satisfies
the condition (4).
Choose j, > 0 such that {(x} — 0.
If [V f(z))] < Ck, then set zpq = 2.
Otherwise, apply a sequence of inner

»w

iterations to find zpy; such that

IVf(@rg2) ] < G- ()

If |V f(xk+1)]| <€, then terminate the
algorithm. Otherwise, set k <— k + 1 and go
to Step 1.

(%]




In the first step, the regularization parameter dg
will be chosen such that the approximation of the
Hessian matrix is semi-positive definite. In particu-

lar, this parameter is chosen such that

0 < By max{0, —/\min(VQf(xk))}, for all k € N,

(6)
for some £, > 1. In* and??, authors proposed to
choose 0 = 1 max{0, —Amin(V2f(zx))}. Appar-
ently, this choice validates the requirement (6). In
our algorithm, we adopt the same strategy to choose
d%. It worths to note that recently, authors in® pro-
pose a simple search algorithm based on the indef-
inite factorization method MABS7T™ to find an d
satisfying (6). The regularization parameter ) and
the “forced” parameter will be defined based on the
norm of the gradient of the current iteration zy.
Step 2 is devoted to calculate an approximation so-
lution x: with the tolerance n;, defined in Step 1.
In Step 3, we choose a tolerance for the condition
to trigger the inner iteration algorithm in Step 4.
In Step 4, if the trial iterate x; creates a sufficient
reduction on the first order optimality condition, we
set it as the starting point of the next iteration. Oth-
erwise, we will apply a sequence of inner iteration to
find an iterate zpy1 such that the condition. Step 5
is the stopping condition of the algorithm.

Because our main concern in this paper is the
local behavior of an inexact regularized Newton
method, the globalization scheme is not mentionned
here. It should be of interest to develop our local
scheme to global one by using globalization tech-

niques as in%?.

3. ASYMPTOTIC ANALYSIS OF THE AL-
GORITHM

Asymptotic analysis of Algorith 1 is conducted
under the following assumptions.

Assumption 1. The function f is twice differen-
tiable, V2 is locally Lipschitz continuous and the
set S of minimizers to (1) is nonempty.

From the closeness of S and the coerciveness of
the norm, for every x € R", there exists T € S such
that

d(z) = ||z — z[|. (7)

Assumption 2. The gradient provides a local error
bound condition at some x* € S.

From the two above assumptions, there exist
postive numbers ¢, L,r, 7 such that for all z,y €

B(z*,r),

IVf(z) = Vi)l <z -yl (8)
IV2f(z) = V2f ()l < Lllz = yll, 9)
d(z) <7V (), (10)

YNV f=))7 <0, (11)

From the definition of 6 and 7 in Step 2 of Al-
gorithm 1 and inequalities (8), (10) and (11) for all
k € N such that x, € B(z*,r),

O =YV f(@p)l|” = b7 d (k)7 (12)
e = ||V fzp) |77 < pF7d(z) T (13)
Firstly, we recall a result about the upper bound

of the regularization parameter J satisfying (6) via
the distance function.

Lemma 1 (Lemma 2 in*). For all k € N such that
x € B(x*,r/2), we then have §;, < B1Ld(zy).

Next lemma to demonstrate that the search di-

rection of the inexact Newton method, i.e. x; — Tk,

obtained from (4) will be upper bounded by the dis-
tance function evaluated at the current iterate xj.

Lemma 2. Let

Cri= (w0 4 (L4 ) pi—o) = 42
2 b

For all k € N such that xy, € B(z*,r/2),
o = @ell < Crd(zw). (14)

Proof. Let k € N such that x, € B(z*,r/2). Firtsly,
let us select Zy € S with d(zg) = ||zx — Zk||. We
then have V f(Zx) = 0. This fact and the Lipschitz
continuity of f imply that

V f(zr)
=V f(xx) = Vf(Zk)

_ / V2 f (@ + t(ag — ) (g — B)dt

1
:/0 (V2 Tk + tar, — 7)) — V2F(20)] 2k — )t

+ V2 f (k) (wr — Zp) (15)

By noting that V2f(zx) = (Hy + k) — (0 + 01)1,
one gets

(Hg + 0k 1) 'V f (1) (21 — T1)
=), — Tk — (O + Ok) (Hi + Ok )~ (21 — Z1)  (16)
From (4), (15), (16) and using (9), we get
o = (17)
<||(Hi + 0xD) ™" [(Hi + 0u)(xff — 21) + V f ()]
+ || (Hy + 6kD) 'V f () |

L
<||(Hi + 6D~ (nk + 5 Il —mn?)

+ ek = 2kl + (6 + 0x) || (Hy + 0x1) || [l2x — |
(18)



Since Hy, = 0 and 6, > 0, we have ||(Hx+0,1)7 Y| <
é. Using this inequality, Lemma 1, (12) and noting

that ||xg — Z|| = d(ag) < 7, we then deduce from
(18) that
o —
1 L
<— ([ wIMT7d(ap) T 4+ Zd(a)?
O 2
L
+ 2d(xy) + 681—(1(%)2
k
<[ [ rette + 1 + By ) Lrt—e L +2) d(zx)
— 2 ’yba )
from which completes the proof. O

We now show that the sequence of distances from
iterates generated by Algorithm 1 to the solution set
S will decrease with a superlinear rate.

Lemma 3. Let

L
Co=T (RWU + <<[31L + 201> =7 4 710) cl> .

For all k € N such that xj, € B(x*,m% we
have

d(z)) < Cod(ay)' 7.
Proof. Let k € N be such that x, € B(x*, M)

Since Cy > 2, by virtue of Lemma 2, one gets

28 — 2| < llaff — anll + [|ox — 2|
< Cid(wg) + [lzg — 27|
< (Cy + D||zx — 27|

<

< .

DN

This means that z; € B(z*, 5). Hence, local error
bound condition (10) holds at x, i.e.,

d(@y) < 7V (19)

With the notation u) := z;" —x, we deduce from (4)
that

IV f () + V2 f (@)u) |
< ||(Hi + 0u D) (w)) + V f ()] 10k + 65wt |
< + (O + 1) || . (20)

The differentiability of f gives us
1
Vi) =Vf(zy) + / V2 f (g + tu) )uyf dt
0
=V f(ax) + V2 f(@r)uf
1
+ / (V2 f (2 + tufl) — V2 f(zx)] wf dt.
0

Taking the norm on both sides, using (9), (20) and
Lemma 2, we obtain

L
IV @O <+ Gk + )|z — 2ell + 3l — 2|

L
<ni + (6r + 60)Crd(zr) + 5012d(xk)2~
(21)

Combining (19) with (21) and using (8), (13)
Lemma 1, we then get

d(zy)

<r <5l1+”d(xk)1+" + (61 Ld(x) +~417d(2)7) Crd(x,)
SOt

<r <H€1+” + <(51L + ]2301) = 4 ’yl”) C’l) X

X d(xk)lJro—,

which completes the proof. O

By following the same argument as in Section 2
of?, we can prove that if the sequence of iterates
is close enough to the region of the solution set S,
the inner iteration algorithm will never be triggered.
Moreover, Algorithm 1 will converge to some solu-
tion of the problem (1) with a superlinear rate of
converence. The main result of this paper is sum-
marized in the theorem below.

Theorem 4. Let Assumption 1 and 2 holds at
z* € S. Assume that Algorithm 1 generates an in-
finite sequence of iterates {xy}. There exists R > 0
such that if at an iteration ko € N, zy, € B(z*, R),
then for all k > ko, Tpr1 = x;, {zx} converges to
z€S8 and

iy NERn = 2]

— =0.
koo ||zk — |

4. NUMERICAL EXPERIMENTS

In this section, we will make some numerical ex-
periments to show the advantages of the our pro-
posed algorithm. Algorithm 1 is implemented in
MATLAB R2012a. Parameters of this algorithm are
chosen as below: ¢ = 1078, ¢ = 0.5, § = 0.1,
v =102k = 0.99, n_; = 0.1 B; = 2. The con-
jugate gradient method?* will be applied to solve
system (4). Because we are only interested in the lo-
cal behavior of Algorithm 1, the globalization strat-
egy is not implemented. In particular, we do not in-
voke Steps 4 and 5 in Allgorithm 1. Instead, we will
choose starting points which are sufficiently close to
the optimal solution of the problem for which The-
orem 4 can be applied. The investigation related to
global behavior of this algorithm is out of the current
work and should be the topic of another research in
the future.



4.1. Superlinear convergence of Algorthm 1

This section is devoted to verify the theoretical
research developed in this paper. In particular, we
will show that Algorithm 1 attains the superlinear
rate of convergence in some neighborhood of an op-
timal solution in which the local error bound condi-
tion holds true.

Let us consider the problem (1) in R?, where

;m 1) it @y € [1,11]
fla) = (@ = ¥z — 1)
+3 (w2 — 1) otherwise.
(22)

The first and second derivatives of f are

L)
if x1 € [1,11]

T — 1
Vi) = (21 — 1)°x

x(x1 — 11)3(x; — 6) otherwise.

T — 1

and

diag([0,1] 1) if 1 €1,
V2 f(x) = < diag([(z1 — 1)2(z1 — 11)%x

x (Tz3 — 84x1 +227),1]T)

The function f is twice continuously differentiable
and the second derivative V2f is Lipschitz contin-
uous on R?. The solution set is S = [1,10] x {1}.
The local error bound condition (10) holds at any
x* (z3,1) € S such that 1 < 2z < 10. In-
deed, let » = min{z} — 1,10 — 27} > 0. For all
x = (z1,22) € B(x*,r), we have

d(m,8)2 = (15 — 1)?
= IVf(2)|?

which implies that the error bound condition (10)
is validated at «* with 7 = 1. We note that, how-
ever, the matrix V2f is singular for all x = (z1,22)
such that x; € [1,10] which means that the SOSC
does not holds in this example. From the starting

point zg = (9.0, —50), our algorithm converges to
solution Z = (9.0, 1.0) after 4 iterates. The behavior
of Algorithm in this example is showed in Fig 1.
In this figure, we plot norms of x; — x*, where
x* =1[9,1] is the optimal solution. From this figure,
we can see that the slope of the graph after each it-
eration will be more negative. This means that the
sequence { %
Algorithm 1 attains the superlinear convergence in

} tends to zero. In other word,

this case.

otherwise.

~__ | | - Algorithm 1

k

Fig. 1: Behavior of Algorithm 1 when solving (1) with
f is given by (22).

4.2. Execution time on large-scale problems

As we have mentioned in Section 1, when solving
large-scale problems, an exact algorithm may take a
long time to solve the linear system (3) which is the
main burden in Newton method. Our aim in this sec-
tion is to show the advantage of our inexact scheme
when solving large-scale optimization problems. In
particular, we will implement an exact version of
Algorithm 1 in which the linear system 3 will be
solved (exactly) instead of Step 2 of Algorithm 1.
To solve the linear sytem (3), the coefficient matrix
Hj. + 0,1 will be factorized by an LDL decomposi-
tion, see, e.g.,'”. Because there is no computation of
the square roots of the diagonal elements is needed,
this decomposition is more stable and more efficient
than Gaussian eliminization or Cholesky decompo-
sition.

In this section, we will consider some large-
scale unconstrained problems under form (1) in the
CUTESst collection'®. We will compare CPU times
to solve each problem by the inexact and the exact
algorithms. Tab. 1 shows us the numerical results
when applying these two algorithms in solving some
problem in CUTESst. We will collect problems which
satisfy two requirements: the size of a problem (the
number of variables) is greater than 1000, and both
algorithms are succeed in solving the problem within
200s. We compare only the problems with n > 1000
because these two algorithms solve the others very
fast. This makes the comparisons unfair. From this
table, we can see that in most of problems, the inex-
act algorithm take less time to solve than the exact
one. This demonstrates the benefit when using an
inxact algorithm instead of the exact algorithm to
solve unconstrained optimization problem.



Problom Size Inexact Exact
(n) algorithm | algorithm
Arwhead 5000 58.02 70.99
bdgrtic 5000 2.43 2.54
broydn7d 1000 19.91 19.95
brybnd 5000 87.30 94.86
dgdrtic 5000 52.08 44.12
edensch 5000 6.48 6.83
engvall 5000 88.27 87.85
freuroth 5000 165.98 169.00
noncvxun 1000 4.20 3.44
penaltyl 1000 7.65 8.86
sensors 1000 116.56 122.10

Tab. 1: Ezecution times (in second) of the inexact and
the exact algorithms on large-scale problem in
CUTEst collection (n is the number of vari-
ables)

5. CONCLUSION

In this paper, we propose an inexact regular-
ized Newton method for unconstrained optimiza-
tion. The algorithm is a variant of the algorithm in*
where linear systems for finding search direction are
solved approximately with a suitable tolerance. As-
symptotic convergence analysis is performed to show
that under some local error bound condition, the al-
gorithm attains a superlinear rate of convergence.
Some numerical experiments are conducted to verify
theoretical results and to show the advantage of our
proposed algorithm. In the future, some researches
for globalizing our proposed algorithm should be in-
terested.
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