Th.s Trần Khánh Giảng viên Aprotrain-Aptech

Mục lục
2I.
Khái niệm

2I.1.
UML là gì?

2I.2.
3 ý niệm chính của UML

3I.3.
Thuận lợi và bất lợi của UML

4II.
Mô hình cấu trúc (Structural Modeling)

4II.1.
Use-Case

7II.2.
Biểu đồ đối tượng(object) và biểu đồ lớp(class)

14II.3.
Biểu đồ thành phần (component) và biểu đồ triển khai (deployment)

18III.
Mô hình tương tác (Behavioural Modeling)

18III.1.
Biểu đồ tuần tự (sequence) và biểu đồ cộng tác (collaboration)

23III.2.
Biểu đồ hoạt động(Activity)

29III.3.
Biểu đồ trạng thái(State)

UML

I. Khái niệm

I.1. UML là gì?

· UML: là viết tắt cho 3 chữ “Unified Modeling Language”

· UML là một ngôn ngữ “đồ hình” mà ở đó nó sử dụng một tập các ký hiệu đồ họa để mô hình và truyền đạt về hệ thống thông qua các sơ đồ (diagram) và các text. UML được sử dụng trong quá trình mô tả, phân tích và thiết kế các hệ thống phần mềm, đặc biệt là các hệ thống phần mềm xây dựng trên nền tảng công nghệ hướng đối tượng (Object - Oriented).
· UML gồm các phần có quan hệ mật thiết với nhau sau:
· Ký hiệu (Notation): là một tập các ký hiệu, biểu tượng được dùng trong mô hình
· Ngữ nghĩa (Semantics): Cho biết ý nghĩa của mỗi biểu tượng, chúng được hiểu như thế nào khi nằm trong hoặc không nằm trong ngữ cảnh của biểu tượng khác
· Cú pháp (Syntax): Cho biết hình dạng các biểu tượng và cách sử dụng chúng
· Văn phong thực tế (Pragmatic): Định ý nghĩa của biểu tượng để sao cho mục đích của mô hình được thể hiện và mọi người có thể hiểu được
I.2. 3 ý niệm chính của UML
· Tính ngôn ngữ (Language): Ngôn ngữ cho phép chúng ta có thể giao tiếp, truyền đạt thông điệp về một vấn đề, chủ đề nào đó. Trong quá trình phát triển hệ thống các chủ đề, vấn đề này bao gồm các yêu cầu, phương pháp và thành phần, yếu tố tạo xây dựng lên hệ thống.
· Tính mô hình (Modeling): Mô hình là sự thể hiện của vấn đề, chủ đề nào đó.

[image: image1]
Số 8 được biểu diễn trong ngôn ngữ số học sẽ rất khó cho những học sinh mới học hiểu được ý nghĩa của con số, nhưng với 8 chấm tròn hay 8 que tính thì chắc hẳn ai cũng đếm và hiểu được ý nghĩa của con số 8.
· Tính hợp nhất, thống nhất (Unified): Tạo ra một ngôn ngữ thống nhất, giúp cho tất cả những ai biết về UML đều có thể dễ dàng giao tiếp được với nhau. Nếu không có một ngôn ngữ chung, thống nhất sẽ rất khó cho các thành viên mới của một nhóm có thể nhanh chóng bắt tay ngay vào sản xuất và đóng góp năng lực vào quá trình phát triển hệ thống.
I.3. Thuận lợi và bất lợi của UML

· Thuận lợi:
· Mô hình hóa được nhiều loại hệ thống khác nhau
· Thiết lập một kết nối thẳng từ nhận thức của con người đến các sự kiện cần mô hình hóa
· Giải quyết vấn đề sử dụng lại (thừa kế) trong các hệ thống phức tạp, có nhiều ràng buộc khác nhau.
· Tạo ra được một ngôn ngữ mô hình hóa có thể hiểu được bởi người và máy
· Bất lợi:
II. Mô hình cấu trúc (Structural Modeling)
II.1. Use-Case

1. Element

[image: image40.wmf]Actor

Actor
· Là người sử dụng hệ thống. Người sử dụng hệ thống có thể là người, máy, hệ thống khác hoặc một hệ thống con trong mô hình. Bất cứ tương tác nào từ bên ngoài hay bên trong hệ thống đều được gọi là Actor.
· Tương tác của actor với use case được thể hiện trong kịch bản use-case và chi tiết các chức năng hệ thống phải thỏa mãn được các yêu cầu của người dùng.
[image: image41.wmf]UseCase

Use case

· Use case là một chức năng của hệ thống

· Use case là một kỹ thuật thu thập các yêu cầu chức năng của hệ thống
· Use case hoạt động dựa trên việc mô tả các tương tác đặc trưng giữa người sử dụng hệ thống và chính hệ thống (scenario)
[image: image42.wmf]UseCase

System

Boundary

System Boundary
· Là ranh giới giữa hệ thống và bên ngoài
· Phải cẩn thận với system boundary vì có thể có nhiều hệ thống nằm bên trong hệ thống khác
2. Connector:
· [image: image43.wmf]Actor

UseCase

<<

use

>>

Use: Một actor hoặc usecase yêu cầu một actor hoặc usecase khác thực hiện một vài tương tác. Quan hệ use là một loại nhỏ hơn của quan hệ phục thuộc.
[image: image44.wmf]Actor

UseCase

· Association: Thể hiện quan hệ giữa các thành phần trong mô hình.
[image: image45.wmf]Actor A

Actor B

· Generalization: Thể hiện tính kế thừa, tính sử dụng lại của các actor
· Actor B thừa kế thuộc tính và vai trò của actor A

[image: image46.wmf]UseCase

1

UseCase

2

<<

include

>>

· Inclusion: Thể hiện UseCase2 bao gồm các chức năng của UseCase1
[image: image47.wmf]UseCase

1

UseCase

2

<<

extend

>>

· Extension: UseCase2 mở rộng tác động, hành vi của Usecase1
[image: image48.wmf]UseCase

1

UseCase

2

· Realization: UseCase2 thực hiện hoặc hiện thực hóa UseCase1
[image: image49.wmf]UseCase

1

UseCase

2

· Dependency: UseCase2 phụ thuộc vào UseCase1.
3. UseCase Diagram:

Một biểu đồ UseCase thể hiện các tương tác giữa các actor và các usecase. Nó thể hiện các yêu cầu chức năng của hệ thống, thể hiện sự tương tác giữa các tác nhân bên ngoài và bên trong hệ thống với hệ thống.

[image: image2.emf]Quản lý người sử dụng

Đăng nhập

Tạo mới tài khoản

Xem chi tiết tài

khoản

Đóng tài khoản

Xóa tài khoản

<<include>>

Xem nhật ký

Xem hóa đơn

<<extend>>

<<extend>>

Người sử dụng

Người quản trị

Use Case Diagram
4. Kịch bản UseCase:
	Tên Use Case: Đăng nhập
	Mức độ khó:

	Actor Chính: Người sử dụng
	Actor Phụ:

	Mô tả:

	Điều kiện bắt đầu (Pre-Condition):

	Điều kiện sau khi dùng (Post Condition):

	Trình tự thực hiện:

	Các yêu cầu phi chức năng: Thời gian hồi đáp chức năng phải nhanh.

	Các lưu đồ mô tả khác: Không có.

II.2. Biểu đồ đối tượng(object) và biểu đồ lớp(class)
1. Object:

[image: image3.emf]Object

Object : Class

· Trong thế giới thực chúng ta có thể các đối tượng là bất cứ gì như: Người, Xe, Cây, Bàn, Nhà….
· Trong lập trình thì các đối tượng thực chất là mô hình hóa của các đối tượng trong thế giới thực dưới mỗi ngôn ngữ lập trình hay mô hình khác nhau. Chúng ta có thể thấy các đối tượng đã được định nghĩa sẵn trong một số ngôn ngữ lập trình như Number, TextField, String, File, Windows, tiến trình, collection….
· Đối tượng không phải là kiểu dữ liệu trừu tượng, một đối tượng là một thể hiện của một class khi thực hiện. Ví dụ xe hơi có biển kiểm soát là “29A-1736” là một thể hiện của lớp “xe hơi” với thuộc tính là biển kiểm soát.
· Một Object bao giờ cũng có thuộc tính và phương thức. Thuộc tính là những gì mà object có sở hữu, và nó là kiến thức mà chính bản thân object có được. Phương thức, services là những gì mà object có khả năng làm được.
· Cú pháp chung để xác định giá trị thuộc tính:
· Ví dụ: – address[1] : String = “Hà nội, Việt nam”
· Ký hiệu “-” thể hiện thuộc tính address là private
· [1] thể hiện giá trị đầu của address.Vì address có thể có 2-3 giá trị khác nhau
· String thể hiện address là một sâu ký tự (Kiểu String)
· “Hà nội, Việt nam” là giá trị của thuộc tính
Cú pháp:

visibility name [index] : type = value
· Phương thức (methods, operation, services): Vì phương thức là được chia sẻ, sử dụng bởi tất cả các đối tượng của một Class do vậy nó không thể hiện trong Object.s
2. Class:

[image: image4.emf]+Phương thức 1()

#Phương thức 2()

-Phương thức 3()

-thuộc tính 1

#thuộc tính 2

+thuộc tính 3

Tên lớp

Class

Parameter

· Lớp là sự đại diện cho một tập các đối tượng có chung thuộc tính, phương thức.
· Template Class (Parameterized Class) cho phép chức năng của nó sử dụng lại được ở các lớp biên.
· Class có thể kế thừa các đặc điểm (thuộc tính, hành vi) từ Class cha hoặc uỷ nhiệm (delegate) một service cho một class khác thực hiện.
· Class bao giờ cũng có thuộc tính (dữ liệu) và phương thức (dịch vụ, hành vi).
· Cú pháp chung của thuộc tính:
Cú pháp:
Visibility name [multiplicity ordering] : type = initial_value

Ví dụ: - EmailAddress [1..5 unordered] : String = "No email address"
· Cú pháp chung phương thức:
Cú pháp:
Visibility operation_name (parameter_list) : return_type
Ví dụ:
+ addEmailAddress (in theEmailAddress : String = "") : Boolean
3. Connector:
[image: image50.wmf]Class

1

Class

2

-

End

1

*

-

End

2

*

Class

4

Class

3

-

End

1

*

-

End

2

*

Class

5

Class

6

-

End

1

*

-

End

2

*

· Association: Thể hiện mối quan hệ giữa 2 lớp cũng như giữa 2 đối tượng (Link).
· Trong UML, sự kết hợp được định nghĩa là một quan hệ gồm một tập các mối liên kết, mỗi liên kết là một liên kết ngữ nghĩa giữa hai đối tượng hay mối quan hệ giữa hai lớp.
· Có 2 kiểu quan hệ kết hợp là một phía (uni-direction) và hai phía (bi-direction)
[image: image51.wmf]Class

1

Class

2

Class

3

End

2

End

1

E

n

d

3

Class

5

Class

4

AssociationClass

1

*

-

End

1

*

-

End

2

· N-ary association: là mối quan hệ giữa các lớp cũng như giữa các đối tượng (nhiều hơn 2).
· Association Class: Lớp kết hợp cũng như lớp bình thường, cũng có các thuộc tính, các phương thức và các quan hệ kết hợp khác. Lớp kết hợp được dùng để cộng thêm các thông tin đặc biệt vào một liên kết. Mỗi mối liên kết của kết hợp sẽ là một đối tượng của lớp kết hợp đó.
· [image: image52.wmf]Class

1

-

End

1

*

-

End

2

*

Recursive association: Sự kết hợp nối từ một lớp vào chính nó gọi là sự kết hợp đệ quy. Thực chất của sự kết hợp đệ quy là biểu diện một kết nối ngữ nghĩa giữa 2 đối tượng của cùng 1 lớp.
· [image: image53.wmf]{

OR

}

1

0

..*

0

..*

1

..*

0

..*

1

..*

Cong ty bao hiem

Hop dong bao hiem

Khach hang

Doanh nghiep

Qualified association: Quan hệ kết hợp hạn chế được dùng với qualifier (yếu tố hạn định, khóa) để xác định tập hợp các đối tượng lấy từ nhiều điểm cuối trong quan hệ kết hợp.
· Thông thường với các quan hệ một - nhiều hoặc quan hệ nhiều - nhiều người ta thường chia các đối tượng của một lớp thành các nhóm đối tượng trên cơ sở giá trị của thuộc tính trong lớp đó.
[image: image54.wmf]Class

1

Class

2

-

End

1

1

-

End

2

*

· Or-association: là một ràng buộc trên hai hay nhiều quan hệ kết hợp, để xác định các đối tượng của một lớp chỉ có thể tham gia vào một quan hệ kết hợp tại một thời điểm.
· [image: image55.wmf]Class

4

Class

3

-

End

1

1

-

End

2

*

Aggregation: là một trường hợp đặc biệt của quan hệ kết hợp được dùng để biểu diễn “Tổng thể - Thành phần”, điều đó có nghĩa là một lớp sẽ bao gồm một hoặc nhiều lớp khác.
· Với quan hệ tập hợp thì khi Class1 bao gồm Class2 nhưng không sở hữu. Class2 tồn tại một cách độc lập, khi Class1 mất đi thì Class2 không bị mất đi.
· Quan hệ aggregation được coi như quan hệ có môt(has - a).
· [image: image56.wmf]Class

5

Class

6

Composition: Mạnh hơn aggregation ở chỗ Class4 bao gồm Class3 nhưng lại sở hữu Class3. Class3 không tồn tại bên ngoài Class4 và khi Class4 mất đị thì Class3 cũng mất đi.
· Với quan hệ tập hợp thì khi Class tạo thành mất đi(Class1) thì Class được tạo thành không bị mất đi(Class2).
· Quan hệ aggregation được coi như quan hệ có môt(has - a).
[image: image57.wmf]Class

7

Class

8

· Generalization: Là quan hệ giữa một lớp tổng quát (Class5) và một lớp đặc biệt (Class6).
· Class5 được gọi là lớp cha và Class6 được gọi là lớp con.
· Lớp con được kế thừa toàn bộ thuộc tính và phương thức mà lớp cha có.
[image: image58.wmf]Class

1

Class

2

· Realization: Class8 hiện thực hóa Class7. Class8 là lớp hiện thực và Class7 là lớp đặc tả.
· Class7 là Interface và Class8 là một lớp thực hiện Interface
[image: image59.wmf]Class

Parameter

· Dependency: Là một liên kết giữa 2 lớp trong đó một lớp độc lập(Class1) và một lớp phụ thuộc(Class2). Những thay đổi trong lớp độc lập sẽ ảnh hưởng đến lớp phụ thuộc.
· Class2 sử dụng tham số là một đối tượng của Class1
· Class2 có thuộc tính là đối tượng kiểu Class1
· Class2 gọi một hàm của Class1
[image: image60.wmf]Class

6

T

:

Class

1

· Template: Khuôn hình là một lớp chưa được đặc tả đầy đủ, là lớp có tham số (parameterized class) mà trong đó đặc tả cho lớp thật sự được thực hiện bằng cách gán các tham số (parameter) cho khuôn hình. Tham số có thể là lớp hay kiểu nguyên thủy.
· [image: image61.emf]:Object

Ví dụ:

// File Class1.h

class Class1

{

public:Class1();

virtual ~Class1();

};

//File Class6.h

template<Class1 T>

class Class6
{

Class6();

Virtual ~Class6();

};

4. Một số thuật ngữ:

· Visibility (Scope): Thể hiện phạm vi truy cập đối với thuộc tính hay phương thức của Class…
· Stereotype: Tạm dịch là gia nghĩa, có nghĩa là làm gia tăng thêm ý nghĩa của một Class. Nội dung được đặt trong <<abc>> , ở đây abc chỉ mang tính chất giải thích rõ nghĩa thêm mà không có ảnh hưởng gì tới Class.
· Cardinality (Multiplicity): Xác định số đối tượng của mỗi lớp có thể liên kết với nhau. Và nó có thể là: *, 0, 0..*, 0..1, 1, 1.., 1..*, 2..8
5. Object Diagram:

[image: image5.emf]A : Đại lý

B : Đại lý Furture : Xe máy

Dream : Xe máy

Wave : Xe máy

Jupiter : Xe máy

Hà nội : Đại lý

có

có

có

có

có

có

6. Class Diagram:

[image: image6.emf]Đại lý Xe máy

Hãng Nước

1

*

-Màu : string

-Phân khối : double

Sản phẩm

0..* 0..*

II.3. Biểu đồ thành phần (component) và biểu đồ triển khai (deployment)
· Biểu đồ thành phần (component diagram) mô hình hóa các thành phần của hệ thống.
· Biểu đồ thành phần là một biểu đồ trừu tượng ở mức cao hơn biểu đồ lớp.
· Thông thường các thành phần được thực hiện bởi một hoặc nhiều class hay object khi thực hiện (runtime).

· Thông thường biểu đồ thành phần được áp dụng trong quá trình thiết kế để xác định các activities sẽ thực hiện xây dựng hệ thống như thế nào, xác định các thành phần của hệ thống mà các activities sẽ tập trung vào đó.

[image: image7.emf]Package

Component

Node

Interface

Dependency

[image: image8.png]Tz

[image: image9.png]Requiredinterface.

@)

Tz

[image: image10.png]Tz

Prowdedintertace

[image: image11.png]IniiTace

[image: image12.png]Componentt

Componentz

1. Element:

· Component:

· Package:
2. Connector:

3. Component Diagram:

4. Deployment Diagram:

[image: image13.emf]Package

Component

Node

Interface

Dependency

[image: image14.png]Tz

[image: image15.png]Requiredinterface.

@)

Tz

[image: image16.png]Tz

Prowdedintertace

[image: image17.png]IniiTace

[image: image18.png]Componentt

Componentz

[image: image19.png]Components Are Physical Files

s 1 .

Demaitayer. ——

[image: image20.png]Components Can Contain
Components

[image: image21.png]Instances of Components Can be Deployed

Web Saver

<<TCR/P>>

[—]

Applcation Server

==]
T comntuea

communication
channel

deployment node

[image: image22.png]Packages & Namespaces

namespace Objectttorkey

<
Class Classa
<
¥
namespace Examples
<
closs ClassB
<
3
¥
3

namespace MoreExamples
<
using ObjectMorkey Examples;

Class Classa
<

¥

private Class8 b;

Objectonkey
Clssa
Exampies
Classs
b 0.1
Morexamples
Classh

[image: image23.png]Packages & Folders

packages
SubFolder
App.ic
% ChassBics
Classh.c:

% AssemblyInb.cs

III. Mô hình tương tác (Behavioural Modeling)
III.1. Biểu đồ tuần tự (sequence) và biểu đồ cộng tác (collaboration)
Biểu đồ tuần tự thể hiện một chuỗi các sự kiện, hành vi của đối tượng theo một trình tự thời gian. Nó được sử dụng để mô tả dòng thông điệp được gửi đi và và các đối tượng phối hợp nhận và xử lý để trả về kết quả mà theo yêu cầu mà thông điệp gửi đến.
Biểu đồ tuần tự thông thường được sử dụng như một mô hình giải thích cho kịch bản usecase.
Biểu đồ tuần tự thể hiện rất rõ đối tượng nào tương tác với đối tượng nào và thông điệp là gì.

Khi đọc một biểu đồ tuần tự ta đọc từ trái qua phải và từ trên xuống dưới.
1. Các ký hiệu và quy tắc sử dụng:

· [image: image62.emf][image: image63.emf]Message(Call)

Message

Self Message

Return Message

Return Message

Destroy

Thành phần tham gia vào biểu đồ tuần tự có thể là Actor, các Object và một số thành phần sau:
· [image: image64.wmf]Actor

Boundary (View): Là một khuôn lớp để một hình một vài danh giới hệ thống, điển hình ta có thể thấy Boundary là giao diện chương trình. Nó thể hiện các tương tác giữa người dùng với hệ thống ở múc độ giao diện màn hình. Nó thường được sử dụng trong biểu đồ tuần tự và nhìn nhận dưới mô hinh MVC.
· Entity (Model): Là một kho (Store) để thu thập thông tin và knowledge trong hệ thống và được áp dụng trong MVC.
· [image: image65.wmf]UseCase

Controller: Là một khuôn lớp để thể hiện các control, quản lý các thực thể. Control được tổ chức và schedule cho các tương tác khác nhau với các thành phần khác nhau.
· [image: image66.wmf]UseCase

System

Boundary

Lifelines: Thể hiện sự tồn tại của đối tượng theo thời gian (thời gian sống của đối tượng). Trong UML nó được biểu diễn bởi được đường nét rời đứng.
· Activations: Thể hiện thời gian, chu trình sống của đối tượng khi thực hiện một service nào đó (thời gian mà service đó còn tồn tại). Trong UML nó được biểu diễn bằng một hình chữ nhật hẹp, đứng.
· [image: image67.wmf]Actor

UseCase

<<

use

>>

Message: Một object gửi một thông điệp đến một object khác nhờ thực hiện một service nào đó mà nó không có. Khi gửi một message có thể có tham số kèm theo và đó là knowledge (data) của object gửi.
· Message (Call, Procedure): gọi một phương thức cụ thể của object đích.
· Self message: Self message là tự gọi một phương thức ngay tại trong lớp đó.
· Return message: Là message kết quả trả về sau khi đã thực hiện một message gửi
· Destroy: Kết thúc chu trình sống của đối tượng thì ta phải huỷ đối tượng.
2. Biểu đồ sequence(diagrams):

[image: image24.png]A class operation messag

with parameter_value - To ity | —— instance

return_value,

focus of control

timeline

b returns control to

[image: image25.png]someClient

avee : Account

FundsTransferTx(payer, payee, amount)

Al

be: FundsTransferTx

execute()

withdraw(amount)

—

S

deposit(amount)

[image: image26.png]Conditional Messages

¢ FundsTransferTx aver : Account. vee : Acc

[amount <= payer.availableFunds] withdfaw(amount)

deposit(amount)

[image: image27.png]Assignments

¢ FundsTransferTx paver : Account

fundsAvailable := getAvailableFunds() |

[amount <= fundsAvailable] withdraw(amount)

deposit(amount)

[image: image28.png]Iterations

+ DataAccessObject + DataReader

notEof := Next()

!

{while noteof)

[image: image29.png]Recursion

DAORegistry

Blj_\ load()

[image: image30.png]Using Stereotypes Icons

L. 2

i PerformClick()
| addltemButton_Click(sender, e)

<<create>>

newltem : Invoiceltem

III.2. Biểu đồ hoạt động(Activity)
1. Các ký hiệu và quy tắc sử dụng:

· Thể hiện dòng công việc (workflow) trong hệ thống
· Mỗi activity là một state thực hiện một action nào đó
· Biểu đồ activity mô tả trạng thái của các activity bởi chỉ ra tuần tự mà các activty thực hiện.

· Biểu đồ activity có thể biểu diễn được các activity mà ở đó có sự rẽ nhánh (branch) và các activity mà ở đó xảy ra đồng thời tại cùng một thời điểm (parallel activity).

· Activity diagram sẽ thể hiện rõ hơn một usecase bởi mô tả các hành động (action) nào cần được đặt vào đó và chúng xảy ra khi nào.
· Ta có thể sử dụng activity diagram khi cần mô tả những thuật toán tuyến tính phức tạp và một số mô hình ứng dụng với các tiến trình xử lý song song.

· Activity diagram không cho ta thấy được các đối tượng ứng xử và cộng tác với đối tượng khác như thế nào.
· Khi đọc activity diagram ta đọc từ trên xuống dưới.

[image: image31.emf]State

Action State

InitialState, Start

End, Final

Decision, Conrol Flow

Fork Transition

Join Transition

Transition

<no send action>

<no receive action>

2. Biểu đồ (Activity diagram):
[image: image32.png]Activity Diagrams Model Process Flow

inti=s;
%
intk=i%5;

intj

forfintn =1 n < k+ 1;0++)

<
‘Console. WiteLine(Treration # + n);

¥

Console.ReadLine();

int

int

int

AN ANA)

[else]

guard
condition

M

Console.ReadLine()

-/ N

Console WriteLine("Iteration #" +)

~

waiting state -

end state™

) i s
awaiting key-press | branch .

ey pressed ...
VP T event

L
O

T

e

N
o

[image: image33.png]Objects & Responsibilities in C#

‘public class ClassA

{
private ClassBb =new ClassB0:

public void MethodAQ
{

mis1
=2

mtk=i+g;

int n =b MethodB(Y:

Console WriteLine(n. ToSiring():

public class ClassB
{
private ClassC e =new ClassCO;
‘public int MethodB(nt 1)
{
b=kl
setum ¢ MethodC(b):
¥
¥
public class ClassC
{
public int MethodC(int b)
{
remmb-1;
¥

[image: image34.png]Swim-lanes

Classh b: Classt < ClassC
[]
s ~
(m D
- ~
(m D
- ~
(Cmx)
(Cintn = b.methods®))
)
(Cmo-k)

[

- S
| = rewmb-1)

[image: image35.png]Search Defintion
Zero itams found

0 Rasults
Enter Another Saarch

Display Results

Selectan Enty

Dispiay tem Datail

Final

[image: image36.png]nifist
ITisz=0

Ivald Entey logaing i Login Deried

s Tis 1=

Valid Enty [Tres <3]

Final

Logged In

Final

[image: image37.png]Creste pocourt ocourt
select Create
Aosount command

ereateNsmooount)

submithewAocountDetsil)

[image: image38.png]Hem01 dingtem
quantity=2,

0ra2008-10:31.

1001 Graer

Stockbem
Thile = UML for Beginners

-
)

Jaseph Osborne
osourt

Hem2 dinetem
auantity=1

ora2008.02-11.

1001 Oraer

Lisrios = $30.00
Authar= Dave Nawbie
Stockbem

Listprioe = 330.00
Thile = Softuare Developementwith UML
Authar= Ken Lunn

[| hemo3 sinetem

quantty

Franciz Rectisld

ora2008.03-12

Hem01 dingtem

=T

FR01 Orger

quantty

Stockbem

Listprioe = 330.00
Thile = UML Distilad
Authar= Martn Fowar

III.3. Biểu đồ trạng thái(State)

1. Các ký hiệu và quy tắc sử dụng:

2. Biểu đồ (Activity diagram):

[image: image39.png]

8

Counting

Arithmetic

� EMBED Visio.Drawing.11 ���

� EMBED Visio.Drawing.11 ���

� EMBED Visio.Drawing.11 ���

� EMBED Visio.Drawing.11 ���

� EMBED Visio.Drawing.11 ���

� EMBED Visio.Drawing.11 ���

� EMBED Visio.Drawing.11 ���

� EMBED Visio.Drawing.11 ���

� EMBED Visio.Drawing.11 ���

� EMBED Visio.Drawing.11 ���

� EMBED Visio.Drawing.11 ���

� EMBED Visio.Drawing.11 ���

� EMBED Visio.Drawing.11 ���

� EMBED Visio.Drawing.11 ���

� EMBED Visio.Drawing.11 ���

� EMBED Visio.Drawing.11 ���

� EMBED Visio.Drawing.11 ���

� EMBED Visio.Drawing.11 ���

� EMBED Visio.Drawing.11 ���

� EMBED Visio.Drawing.11 ���

� EMBED Visio.Drawing.11 ���

� EMBED Visio.Drawing.11 ���

� EMBED Visio.Drawing.11 ���

� EMBED Visio.Drawing.11 ���

[image: image68.wmf]Actor

UseCase

[image: image69.wmf]Actor A

Actor B

[image: image70.wmf]UseCase

1

UseCase

2

<<

include

>>

[image: image71.wmf]UseCase

1

UseCase

2

<<

extend

>>

[image: image72.wmf]UseCase

1

UseCase

2

[image: image73.wmf]UseCase

1

UseCase

2

[image: image74.wmf]Class

1

Class

2

-

End

1

*

-

End

2

*

Class

4

Class

3

-

End

1

*

-

End

2

*

Class

5

Class

6

-

End

1

*

-

End

2

*

[image: image75.wmf]Class

1

Class

2

Class

3

End

2

End

1

E

n

d

3

Class

5

Class

4

AssociationClass

1

*

-

End

1

*

-

End

2

[image: image76.wmf]Class

1

-

End

1

*

-

End

2

*

[image: image77.wmf]{

OR

}

1

0

..*

0

..*

1

..*

0

..*

1

..*

Cong ty bao hiem

Hop dong bao hiem

Khach hang

Doanh nghiep

[image: image78.emf]�

cd Class Model

��������������������������

Doanh nghiêp

Nhân viên

- tên: String

- tuoi: int

�

Tuoi

*

1

[image: image79.wmf]Class

1

Class

2

-

End

1

1

-

End

2

*

[image: image80.wmf]Class

4

Class

3

-

End

1

1

-

End

2

*

[image: image81.wmf]Class

7

Class

8

[image: image82.wmf]Class

5

Class

6

[image: image83.wmf]Class

1

Class

2

[image: image84.wmf]Class

Parameter

[image: image85.wmf]Class

6

T

:

Class

1

[image: image86.png]@)

Boundary

[image: image87.png]ety

[image: image88.png]

[image: image89.emf]:Object

[image: image90.emf][image: image91.emf]Message(Call)

Message

Self Message

Return Message

Return Message

Destroy

_1214199597.vsd
Object

Object : Class

_1214481046.vsd
Class5

Class6

_1214489413.vsd
A : Đại lý

B : Đại lý

Furture : Xe máy

Dream : Xe máy

Wave : Xe máy

Jupiter : Xe máy

Hà nội : Đại lý

có

có

có

có

có

có

_1214912041.vsd
State

Action State

InitialState, Start

End, Final

Decision, Conrol Flow

Fork Transition

Join Transition

Transition

<no send action>

<no receive action>

_1214919293.vsd
Package

Component

Node

Interface

Dependency

_1214747409.vsd
:Object

_1214747471.vsd

_1214909257.vsd
Message(Call)

Message

Self Message

Return Message

Return Message

Destroy

_1214490437.vsd
Đại lý

Xe máy

Hãng

Nước

1

*

-Màu : string
-Phân khối : double

Sản phẩm

0..*

0..*

_1214483716.vsd
Class1

Class2

_1214485179.vsd
Class

Parameter

_1214486213.vsd
Class6

T:Class1

_1214481970.vsd
Class7

Class8

_1214399370.vsd
Class1

-End1

*

-End2

*

_1214478064.vsd
Class1

Class2

-End1

1

-End2

*

_1214479666.vsd
Class4

Class3

-End1

1

-End2

*

_1214477239.vsd
Doanh nghiep

{OR}

Hop dong bao hiem

1

0..*

0..*

1..*

0..*

1..*

Cong ty bao hiem

Khach hang

_1214292433.vsd
Class1

Class2

-End1

*

-End2

*

Class4

Class3

-End1

*

-End2

*

Class5

Class6

-End1

*

-End2

*

_1214393717.vsd
Class1

Class2

Class3

End2

End1

End3

Class5

Class4

AssociationClass1

*

-End1

*

-End2

_1214200178.vsd
+Phương thức 1()
#Phương thức 2()
-Phương thức 3()

-thuộc tính 1
#thuộc tính 2
+thuộc tính 3

Tên lớp

Class

Parameter

_1213166580.vsd
Actor

UseCase

<<use>>

_1213166897.vsd
Actor A

Actor B

_1213167494.vsd
UseCase1

UseCase2

<<extend>>

_1213168676.vsd
UseCase1

UseCase2

_1213172583.vsd
System

Quản lý người sử dụng

Đăng nhập

Tạo mới tài khoản

Xem chi tiết tài
khoản

Đóng tài khoản

Xóa tài khoản

<<include>>

Xem nhật ký

Xem hóa đơn

<<extend>>

<<extend>>

Người sử dụng

Người quản trị

_1213168425.vsd
UseCase1

UseCase2

_1213167236.vsd
UseCase1

UseCase2

<<include>>

_1213166698.vsd
Actor

UseCase

_1213078261.vsd
UseCase

_1213081864.vsd
System

UseCase

Boundary

_1213020084.vsd
Actor

