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TÓM TẮT

Trong bài báo này, chúng tôi nghiên cứu một bất đằng thức kiểu Morrey cho các hàm Sobolev có giá trị
trung bình bằng 0. Chứng minh của bất đẳng thức này đã được nhắc đến trong4,7,9 và trong bài báo này,
chúng tôi sẽ cải thiện hằng số C(d, n, p) đã được đề cập tường minh ở Bổ đề B.1.16 trong7. Sau đó, chúng
tôi nghiên cứu sâu hơn về một ứng dụng của bất đẳng thức kiểu Morrey này đối với sự hội tụ yếu của dãy
nghiệm của phương trình p-Laplace với điều kiện biên Neumann khi p→∞.
Từ khóa: không gian Sobolev, phương trình p-Laplace, bất đẳng thức kiểu Morrey.
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ABSTRACT

In the present article, we study a Morrey-type inequality for Sobolev functions of mean value zero. The
proof of this inequality has been mentioned in4,7,9 and in this paper we will improve the constant C(d, n, p)

given explicitly in7 Lemma B.1.16. Then we study further an application of the Morrey-type inequality for
the weak convergence of solutions to p-Laplace equations with a Neumann boundary condition as p → ∞.
Key words: Sobolev spaces, p-Laplace equations, Morrey-type inequality.

1. Introduction

Let Ω be a bounded, smooth domain of Rn. This
paper is concerned with a Morrey-type inequality
for Sobolev functions of mean value zero in Sobolev
space W 1,p(Ω). Sobolev spaces consist of Lp func-
tions whose weak derivatives belong to Lp. These
spaces provide one of the most useful settings for
the analysis of partial differential equations.

The well-known Morrey inequality in Rn (see,
for example,1,4,5) states that if p > n then for all
v ∈W 1,p(Rn) and all x, y ∈ Rn

|v(x)− v(y)| ≤ Cp,n|x− y|1−n/p
(∫

Rn

|∇v|pdx
) 1

p

,

(1)
where Cp,n is a positive constant depending only on
p and n.

Now, let dΩ denote the distance function to the
boundary ∂Ω, that is

dΩ(x) := inf
y∈∂Ω

|x− y| , x ∈ Ω.

Taking an arbitrary y ∈ ∂Ω in (1) one arrives at
the following pointwise inequality, for all (x, v) ∈
Ω×W 1,p

0 (Ω),

|v(x)| ≤ Cp,n (dΩ(x))
1−n/p ‖∇v‖p, (2)

where ‖.‖p stands for the standard norm of Lp(Ω).
Passing to the maximum value in the left-hand side
of (2) we arrive at the well-known Morrey-Sobolev
inequality

‖v‖∞ ≤ Cp,n,Ω‖∇v‖p, ∀v ∈W 1,p
0 (Ω), (3)

where the constant Cp,n,Ω depends only on p, n

and Ω. The above inequality is devoted to Sobolev
functions vanishing on the boundary and useful for
studying partial differential equations with a Dirich-
let boundary condition. The counterpart for the
Morrey-Sobolev inequality (3) for Sobolev functions
of mean value zero can be written as

‖u‖∞ ≤ Cp,n,Ω‖∇u‖p, (4)

for all Sobolev function u ∈ W 1,p(Ω) of mean value
zero, that is, it satisfies

∫
Ω

udx = 0.

In6, the authors make use of this inequality (with
a smooth and convex domain Ω) in studying limits
as p → ∞ of solutions to p-Laplace equations cou-
pled with a Neumann boundary condition.

Such a constant Cp,n,Ω has been explicitly men-
tioned in7 Lemma B.1.16. Finding a smaller con-
stant of the Morrey-type inequality (4) is an inter-
esting issue.

In this short paper, we provide a better estimate
for the Morrey-type inequality (4) with a Lipschitz
and convex domain Ω. Furthermore, its application
in studying the weak convergence of solutions to p-
Laplace equations with a Neumann boundary con-
dition as p→∞ is also considered in detail.

The article is organized as follows. In section 2,
we give a new constant C of the Morrey-type in-
equality (4) for Sobolev functions of mean value
zero. Then, in section 3, we derive the key bound
of the gradients of solutions to p-Laplace equations
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coupled with a Neumann boundary condition. As
a consequence, we obtain the weak convergence of
solutions in Sobolev spaces as p→∞.

2. Morrey-type inequality for

Sobolev functions of mean value

zero

Theorem 1. Let Ω be a Lipschitz and convex do-
main of Rn and p > n. Then every Sobolev function
u ∈ W 1,p(Ω) of mean value zero, i.e.

∫
Ω
udx = 0,

obeys the following inequality

‖u‖L∞ ≤
dn+1−n/p

|Ω| (n+ 1− n/p)ω
1−1/p
n

(
p− 1

p− n

)1−1/p

‖∇u‖Lp ,

(5)

where ωn = 2πn/2

Γ(n/2) is the surface area of the
unit sphere in Rn, Γ is the gamma function, |Ω|
is Lebesgue measure of Ω and d = diam(Ω) is the
diameter of Ω.

Proof. Set

C(d, n, p) :=
dn+1−n/p

n+ 1− n/p
ω1−1/p
n

(
p− 1

p− n

)1−1/p

.

We divide the proof into three steps.
Step 1. Fix any x ∈ Rn. Let us prove that for any
Rn-valued measurable function W ∈ L∞(Rn;Rn),
we have for all p > n

∫
B(0,d)

1∫
0

|W (x+tz)||z|dtdz ≤ C(d, n, p)‖W‖Lp(B(x,d)),

(6)
where B(y, d) is the Euclidean ball of radius d and
center y in Rn. To this aim, we make use of the
change of variables in polar coordinates by the bi-
jection Φ : B(0, d)\{0} −→ (0, d]×∂B(0, 1) defined
as Φ(z) := (r, z

′
) =

(
|z|, z|z|

)
. More precisely, one

has

∫
B(0,d)

g(z)dz =

d∫
0

rn−1

∫
∂B(0,1)

g(rz
′
)dS(z

′
)dr. (7)

Now applying (7) with g(z) :=
1∫
0

|W (x + tz)||z|dt

on B(0, d) for the second line below, and g(z) :=

|W (x + z)||z|1−n on B(0, r) for the fifth, we arrive

the following estimate∫
B(0,d)

1∫
0

|W (x+ tz)||z|dtdz

=

d∫
0

rn−1

∫
∂B(0,1)

1∫
0

|W (x+ trz
′
)|rdtdS(z

′
)dr

=

d∫
0

rn−1

∫
∂B(0,1)

r∫
0

|W (x+ τz
′
)|dτdS(z

′
)dr (set τ = rt)

=

d∫
0

rn−1

r∫
0

τn−1

∫
∂B(0,1)

|W (x+ τz
′
)|τ1−ndS(z

′
)dτdr

=

d∫
0

rn−1

∫
B(0,r)

|W (x+ z)||z|1−ndzdr

≤
d∫

0

rn−1

 ∫
B(0,r)

|W (x+ z)|pdz


1/p ∫

B(0,r)

|z|q(1−n)dz


1/q

dr.

(8)

Here, for the last line, we used Hölder’s inequality
with q = p

p−1 .
By r ≤ d, observe that ∫

B(0,r)

|W (x+ z)|pdz


1/p

≤ ‖W‖Lp(B(x,d)).

On the other hand, using again (7) with g(z) =
|z|q(1−n) we can compute explicitly∫
B(0,r)

|z|q(1−n)dz =

r∫
0

τn−1

∫
∂B(0,1)

τ q(1−n)dS(z
′
)dτ

= ωn

r∫
0

τ
1−n
p−1 dτ

=
ωn

1−n
p−1 + 1

r
1−n
p−1 +1 = ωn

p− 1

p− n
r

p−n
p−1 .

It follows that∫
B(0,d)

1∫
0

|W (x+ tz)||z|dtdz

≤ ‖W‖Lp(B(x,d))

(
ωn

p− 1

p− n

)1/q
d∫

0

rn−1
(
r

p−n
p−1

)1/q
dr

= ‖W‖Lp(B(x,d))

(
ωn

p− 1

p− n

)1/q
d∫

0

rn−n/pdr

= ‖W‖Lp(B(x,d))

(
ωn

p− 1

p− n

)1−1/p
dn+1−n/p

n+ 1− n/p .

Step 2. We are now in a position to show the as-
sertion of Theorem 1 for the case of smooth function
u. In this case, set

W (x) :=

{
∇u(x) if x ∈ Ω

0 if x ∈ Rn \ Ω.
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Since
∫

Ω
u(y)dy = 0, we get for any x ∈ Ω

u(x) =
1

|Ω|

∫
Ω

(u(x)− u(y)) dy

=
1

|Ω|

∫
Ω

∫ 1

0

〈∇u(x+ t(y − x)), x− y)〉dtdy

≤ 1

|Ω|

∫
Ω

∫ 1

0

|∇u(x+ t(y − x))||x− y|dtdy

≤ 1

|Ω|

∫
B(x,d)

1∫
0

|W (x+ t(y − x))||x− y|dtdy

=
1

|Ω|

∫
B(0,d)

∫ 1

0

|W (x+ tz)||z|dtdz.

Following Step 1, we obtain

|u(x)| ≤ C(d, n, p)

|Ω|
‖W‖Lp(B(x,d))

=
C(d, n, p)

|Ω|
‖∇u‖Lp(Ω),

which completes the proof for smooth functions.
Step 3. For the general case, we make use a smooth
approximation. Fix any u ∈ W 1,p(Ω) satisfying∫

Ω
udx = 0. Then there exists a sequence of smooth

functions uε of mean value zero such that uε con-
verges to u strongly in Lm(Ω) (1 ≤ m < ∞) and
uε converges to u strongly in W 1,p(Ω) as ε → 0.
Passing to the limit as ε→ 0, from the inequality

‖uε‖Lm(Ω) ≤ |Ω|
1
m ‖uε‖L∞(Ω)

≤ |Ω| 1m C(d, n, p)

|Ω|
‖∇uε‖Lp(Ω)

we obtain

‖u‖Lm(Ω) ≤ |Ω|
1
m
C(d, n, p)

|Ω|
‖∇u‖Lp(Ω) .

Letting m→∞ we arrive to

‖u‖L∞(Ω) ≤
C(d, n, p)

|Ω|
‖∇u‖Lp(Ω) ,

which completes the proof.

Remark 2. The above Morrey-type inequality is in-
spired by the estimate (B.1.3) of7 p. 556 for smooth
functions of mean value zero. However, it is worth
noting that the inequality given in Theorem 1 is a
little bit sharper than the one in7 p. 556, where the
constant is explicitly stated by

C =
dn+1−n/p

|Ω|n
ω1−1/p
n

(
p− 1

p− n

)1−1/p

.

3. Applications

Give a Lipschitz and convex domain Ω of Rn, we
consider limits as p → ∞ of solutions up to the p-

Laplace problems coupled with a Neumann bound-
ary condition−div

(
|∇u(x)|p−2∇u(x)

)
= f(x) in Ω

|∇u(x)|p−2 ∂u

∂η
= 0 on ∂Ω.

(9)

For a fixed p > n, the equation (9) has unique so-

lution up of mean value zero, that is
∫

Ω

updx = 0.

This is a standard result in the field of calculus of
variations and partial differential equations. In fact,
consider the variational problem

min
u∈Sp

{∫
Ω

|∇u|p

p
dx−

∫
Ω

uf dx

}
, (10)

where Sp :=

{
u ∈W 1,p(Ω) :

∫
Ω

udx = 0

}
. The cost

functional in (10) is lower semi-continuous, coercive
and strictly convex on the non-empty convex set
Sp. Therefore, there exists a unique minimizer up
to (10), which is also a weak solution of problem
(9), that is, it verifies∫

Ω

|∇up|p−2∇up.∇φdx =

∫
Ω

fφdx, ∀φ ∈ C∞(Ω).

(11)
In this section, we are interested in studying the be-
havior of solutions up as p→∞. More precisely, we
will show that the sequence {up} converges weakly
in Sobolev spaces to a 1-Lipschitz function u∞ as
p→∞.

3.1. Bound of the gradients

Our aim is to prove that the Lp-norm of the gra-
dients∇up is bounded independently of all p ≥ n+1.

Lemma 3. Let up be a unique solution to (9) with∫
Ω
updx = 0. Then there exists a positive constant

C independent of p ≥ n+ 1 such that

‖∇up‖Lp(Ω) ≤ C
1

p−1 for all p ≥ n+ 1. (12)

Proof. As a consequence of Theorem 1, there exists
a positive constant CΩ independent of p ≥ n + 1
such that

‖u‖L∞(Ω) ≤ CΩ ‖∇u‖Lp(Ω) (13)

for all p ≥ n + 1 and all Sobolev functions u ∈
W 1,p(Ω) of mean value zero, i.e.,

∫
Ω
udx = 0. In

particular, applying for u = up we get

‖up‖L∞(Ω) ≤ CΩ‖∇up‖Lp(Ω), for all p ≥ n+ 1.
(14)

On the other hand, using (11) with φ = up, Hölder’s
inequality and (14), we obtain∫

Ω

|∇up|p dx =

∫
Ω

fup dx ≤ ‖f‖L1(Ω) ‖up‖L∞(Ω)

≤ CΩ‖f‖L1(Ω)‖∇up‖Lp(Ω).
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It follows that

‖∇up‖Lp(Ω) ≤ C
1

p−1 for all p ≥ n+ 1,

with C := CΩ‖f‖L1(Ω) being independent of all
p ≥ n+ 1.

3.2. Weak convergence

As a consequence of the previous bound of the
gradients, we obtain uniform convergence of up and
weak convergence of the gradients ∇up.

Proposition 4. Let up be a unique solution to
(9) with

∫
Ω
updx = 0. Then, up to a subsequence,

up converges uniformly on Ω to a limit function
u∞ ∈ W 1,∞(Ω) and ∇up ⇀ ∇u∞ weakly in Lm(Ω)
as p→∞ for any 1 ≤ m <∞. Moreover, the limit
function u∞ is 1-Lipschitz, that is,

|∇u∞(x)| ≤ 1 for a.e. in Ω.

Proof. Fix any m > n. Let p∗ =
p

m
. Using Hölder’s

inequality with p∗ and q∗ satisfying
1

p∗
+

1

q∗
= 1 and

Lemma 3, we obtain

‖∇up‖Lm(Ω)

(∫
Ω

|∇up|mdx

) 1
m

≤
(∫

Ω

|∇up|mp
∗
dx

) 1
mp∗

(∫
Ω

dx

) 1
mq∗

= ‖∇up‖Lp(Ω)|Ω|
1
m−

1
p

≤ |Ω|
1
m−

1
pC

1
p−1

(15)
for all p ≥ max{n + 1,m}, where C is a con-
stant independent of p from Lemma 3. Observe that
|Ω|

1
m−

1
pC

1
p−1 → |Ω| 1m as p → ∞. Hence, the se-

quence of gradients ∇up is bounded in Lm(Ω) and
so is {up} in W 1,m(Ω) (up is of mean value zero).
Therefore, up to a subsequence, up converges uni-
formly on Ω to a limit function u∞ and∇up ⇀ ∇u∞
weakly in Lm(Ω) as p → ∞. Obviously, the weak
convergence of ∇up also holds true in Lm(Ω) for
any 1 ≤ m ≤ n. Finally, taking the limit as p → ∞
in (15), we arrive to

‖∇u∞‖Lm(Ω) ≤ |Ω|
1
m . (16)

Letting m→∞ we obtain ‖∇u∞‖L∞(Ω) ≤ 1, which
completes the proof.
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