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TOM TAT

Trong bai bao nay, chiing téi nghién citu mot bat ding thitc kiéu Morrey cho cac ham Sobolev c6 gié tri
trung binh bang 0. Chiing minh ciia bat déng thitc nay da duge nhic dén trong®™ va trong bai bao nay,
chiing toi sé& cai thien hing s6 C(d,n,p) da dugc dé cap tudng minh ¢ Bd dé B.1.16 trong™. Sau d6, ching
t61 nghién cttu sau hon vé mot tng dung ctia bat déng thitc kiéu Morrey nay déi véi sy hoi tu yéu ciia day
nghiém ctia phuong trinh p-Laplace véi diéu kién bién Neumann khi p — oo.

T khéa: khong gian Sobolev, phuong trinh p-Laplace, bat ding thic kiéu Morrey.
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ABSTRACT

In the present article, we study a Morrey-type inequality for Sobolev functions of mean value zero. The

proof of this inequality has been mentioned in#%

and in this paper we will improve the constant C(d,n, p)

given explicitly in” Lemma B.1.16. Then we study further an application of the Morrey-type inequality for

the weak convergence of solutions to p-Laplace equations with a Neumann boundary condition as p — oc.
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1. INTRODUCTION

Let © be a bounded, smooth domain of R™. This
paper is concerned with a Morrey-type inequality
for Sobolev functions of mean value zero in Sobolev
space W1P(Q). Sobolev spaces consist of LP func-
tions whose weak derivatives belong to LP. These
spaces provide one of the most useful settings for
the analysis of partial differential equations.

The well-known Morrey inequality in R™ (see,
for example, 1) states that if p > n then for all
v € WHP(R") and all z,y € R®

() = o) < Tl =y [ |Wdz)’1’ ,
1)

where 61,7” is a positive constant depending only on
p and n.

Now, let dn denote the distance function to the
boundary 912, that is

do(z) == inf |z —y|l, 2€Q.
y
Taking an arbitrary y € 0 in one arrives at

the following pointwise inequality, for all (x,v) €
Q x Wy (Q),

0(@)] < Cpon (de(2)) P IVUllp,  (2)

where ||.||, stands for the standard norm of L”((2).
Passing to the maximum value in the left-hand side
of we arrive at the well-known Morrey-Sobolev
inequality

Iolloo < CpnallVollp, Yo € WgP(Q),  (3)

where the constant C),, o depends only on p,n
and €. The above inequality is devoted to Sobolev
functions vanishing on the boundary and useful for
studying partial differential equations with a Dirich-
let boundary condition. The counterpart for the
Morrey-Sobolev inequality for Sobolev functions

of mean value zero can be written as

flulloo < Cpn.allVullp, (4)

for all Sobolev function u € W1P(Q) of mean value

zero, that is, it satisfies [udz = 0.
Q
In®, the authors make use of this inequality (with

a smooth and convex domain ) in studying limits
as p — oo of solutions to p-Laplace equations cou-
pled with a Neumann boundary condition.

Such a constant Cj, ,, o has been explicitly men-
tioned in” Lemma B.1.16. Finding a smaller con-
stant of the Morrey-type inequality is an inter-

esting issue.

In this short paper, we provide a better estimate
for the Morrey-type inequality with a Lipschitz
and convex domain 2. Furthermore, its application
in studying the weak convergence of solutions to p-
Laplace equations with a Neumann boundary con-
dition as p — oo is also considered in detail.

The article is organized as follows. In section
we give a new constant C' of the Morrey-type in-
equality for Sobolev functions of mean value
zero. Then, in section |3 we derive the key bound
of the gradients of solutions to p-Laplace equations
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coupled with a Neumann boundary condition. As
a consequence, we obtain the weak convergence of
solutions in Sobolev spaces as p — oo.

2. MORREY-TYPE INEQUALITY FOR
SOBOLEV FUNCTIONS OF MEAN VALUE
ZERO

Theorem 1. Let Q be a Lipschitz and convex do-
main of R™ and p > n. Then every Sobolev function
u € WHP(Q) of mean value zero, i.c. [,udzx = 0,
obeys the following inequality

dn+1 n/p 1 1/p( _ l)ll/p
ullpe < ————wy, —_— Vul|lre,
|| ”L |Q| (n+1_n/p) p—n || HLP
) Q
where w, = 13(”“/2) is the surface area of the

unit sphere in R™, T' is the gamma function, |
is Lebesgue measure of Q and d = diam(Q) is the
diameter of .

Proof. Set

dn—i—l—n/p wl " _1 1-1/p
n+1l—n/p " p—n ’

We divide the proof into three steps.

Step 1. Fix any x € R™. Let us prove that for any
R™-valued measurable function W € L% (R™;R"),
we have for all p > n

C(d,n,p) :=

1

/ /\W(m—l—tz)Hz\dtdz < Cd, 1, D)W o 5001,

B(0,d) 0

(6)
where B(y,d) is the Euclidean ball of radius d and
center y in R™. To this aim, we make use of the
change of variables in polar coordinates by the bi-
jection ® : B(0,d)\ {0} — (0,d] x B(0,1) defined
as ®(z) == (r,z) = (|z|,ﬁ)
has

. More precisely, one

Now applying with g(z f W (x + tz)||z|dt

on B(0,d) for the second line below, and g(z) :=
|W (z + 2)||z]*=™ on B(0,r) for the fifth, we arrive

B(0,r) 0

the following estimate
1
/ |W (z + tz)||z|dtd=z

B(0,d) 0
d 1
:/r”_l / /|W(w+trz/)|rdtd5(zl)dr

9B(0,1) 0

0
- /dr”—l / /|W(x +72)|drdS(z )dr (set T = rt)

0 8B(0,1) 0
:/ / / erTz |TlfndS(z/)der
0 9B(0,1)
d
= [t / [W(z + 2)||z|' "dzdr
0 B(0,r)
1/p
/ / W(z + z)[Pdz / 12|70 dz
0 B(0,r) B(0,r)

(8)
Here, for the last line, we used Holder’s inequality
with ¢ = 2.
P
By r < d, observe that

1/p

/ W (x4 2)[Pdz

B(0,r)

< Wl Lr(B(a,a))-

On the other hand, using again @ with g(z) =
|2|7=") we can compute explicitly

T

/|Z|q(17")dz:/7'"71 / Tq(lfn)dS(z/)dT

aB(0,1)
T

1—n
wy [ TP=TdT

0
w 1 n —1 o
= i =, B
P +1 p—n
It follows that
1
/\W(:chtz)Hz\dtdz
B(0,d) 0
d
p—1\Y" [ .y p=ny\1/a
< Wllze(B@,a) ( wn /r (Tp,l) dar
p—n

.
= WllLr(B@.a) (wnp -

1-1/p n+l—n/p
p—1 d
= |W||zr(B(z Wn mtl—nln
Wllze (s ,d))< p— ) n+1—n/p

Step 2. We are now in a position to show the as-
sertion of Theorem [l for the case of smooth function
u. In this case, set

Vu(z) ifzeQ
Wix) =
(@) {o if € R\ Q.



Since fQ u(y)dy = 0, we get for any = € Q
ue) = 77 | () =)y
_ ﬁ /Q/O (Ve +t(y — 7)), 2 — y))didy

1 1
<L / / V(e + ty — )|z — yldedy
o JoJs

1
< —

[ / /‘W@H(y—wnum—ymtdy

B(z,d) 0

1 1
_ IQI/B(M)/O W (2 + t2)|) 2| dtd.

Following Step 1, we obtain

Cd,n,p
()] < (m)nwnmwdn

_ C(d,n,p)
= THVUHLP(Q)a

e

which completes the proof for smooth functions.
Step 3. For the general case, we make use a smooth
approximation. Fix any u € WUP(Q) satisfying
fQ udx = 0. Then there exists a sequence of smooth
functions u. of mean value zero such that u. con-
verges to u strongly in L™(Q) (1 < m < oo0) and
ue converges to u strongly in W1P(Q) as e — 0.
Passing to the limit as € — 0, from the inequality

1
uellLm @)y < [ |luel| Lo (o)

1 C(d,n,p
< |of* |Q|> A

we obtain

1 C(d;n,p)
T HVU”Lp(Q)-

l|lull Lm oy < €2

Letting m — oo we arrive to

C(d,n,p)

Jull (o) < =2 1Vl 10

which completes the proof. O

Remark 2. The above Morrey-type inequality is in-
spired by the estimate (B.1.3) of p. 556 for smooth
functions of mean value zero. However, it is worth
noting that the inequality given in Theorem [I] is a
little bit sharper than the one in'” p. 556, where the
constant is explicitly stated by

_ dn+17n/pw171/p p— 1 1-1/p
p—n '

3. APPLICATIONS

Give a Lipschitz and convex domain €2 of R™, we
consider limits as p — oo of solutions w, to the p-

4

Laplace problems coupled with a Neumann bound-
ary condition

—div (|Vu(2)[P72Vu(z)) = f(z) in

9
|VU($)|p_2(;:; =0 on 0. ©

For a fixed p > n, the equation @ has unique so-
lution wu, of mean value zero, that is [ u,dz = 0.
This is a standard result in the field o? calculus of
variations and partial differential equations. In fact,
consider the variational problem

P
min {/ [Vul dx — / uf dx}, (10)
u€Sp Q P Q

where S, := qu € WHP(Q) : /
Q
functional in (|10)) is lower semi-continuous, coercive

udx = O}. The cost

and strictly convex on the non-empty convex set
Sp. Therefore, there exists a unique minimizer u,
to , which is also a weak solution of problem
@, that is, it verifies

/ |V, |P~2Vu,.Vodr = / fodz, Yo € C°(Q).
Q Q (1)
In this section, we are interested in studying the be-
havior of solutions u, as p — oo. More precisely, we
will show that the sequence {u,} converges weakly
in Sobolev spaces to a 1-Lipschitz function uy, as
p — o0.

3.1. Bound of the gradients

Our aim is to prove that the LP-norm of the gra-
dients Vu,, is bounded independently of all p > n+1.
Lemma 3. Let u, be a unique solution to @ with

Jo updx = 0. Then there exists a positive constant
C independent of p > n+ 1 such that

IVupll gy < C77 forall p>n+1.  (12)

Proof. As a consequence of Theorem (I}, there exists
a positive constant Cq independent of p > n + 1
such that

ull L= @) < Ca [I[Vullpq) (13)

for all p > n + 1 and all Sobolev functions u €
WP(Q) of mean value zero, ie., [,udz = 0. In
particular, applying for u = u, we get

[upllLo (@) < CallVupll Lo (), for all p = n + % :
14
On the other hand, using with ¢ = u,, Hélder’s
inequality and , we obtain
[Vl = [ fuy de < e gl

< CollfllLr @ IVupllLr)-



It follows that
Vupl rr ) < Cv 7 forall p>n+1,

with C' := Cql|f|/11(n) being independent of all
p>n+1. O

3.2.  Weak convergence

As a consequence of the previous bound of the
gradients, we obtain uniform convergence of u, and
weak convergence of the gradients Vu,.

Proposition 4. Let u, be a unique solution to
@ with fQ updr = 0. Then, up to a subsequence,

u, converges uniformly on Q to a limit function
Uoo € WH(Q) and Vu, — Vuo, weakly in L™ ()
as p — oo for any 1 < m < oo. Moreover, the limit
Sfunction us is 1-Lipschitz, that is,

[Vueo(z)| <1 for a.e. in Q.

Proof. Fix any m > n. Let p* = Ly Using Holder’s
m

1 1
inequality with p* and ¢* satisfying —+— =1 and
p q
Lemma [3] we obtain

Vgl ( /Q Vupmdx)
< (/ |Vup|mp*dx) v </ d:c) "
Q Q

1
= ||vupHLp(Q)‘Q|m

1 1 1
<|oFicr

1
P

(15)
for all p > max{n + 1,m}, where C is a con-
stant independent of p from Lemma 3] Observe that
| mTr O | w as p — oo. Hence, the se-
quence of gradients Vu, is bounded in L™ () and
so is {u,} in WH™(Q) (u, is of mean value zero).
Therefore, up to a subsequence, u, converges uni-
formly on Q to a limit function u., and Vup, = Ve
weakly in L™(Q) as p — oo. Obviously, the weak
convergence of Vu, also holds true in L™ () for
any 1 < m < n. Finally, taking the limit as p — oo
in (15), we arrive to

| Vttoo || Lm0y < Q7. (16)

Letting m — oo we obtain ||V | (o) < 1, which
completes the proof.
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