

Ti and Sn co-doped anodic α -Fe₂O₃ films for efficient water splitting

Lei Wang, Chong-Yong Lee, Patrik Schmuki *

Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Martensstrasse 7, D-91058 Erlangen, Germany

ARTICLE INFO

Article history:

Received 15 December 2012

Received in revised form 15 January 2013

Accepted 15 January 2013

Available online 27 January 2013

Keywords:

α -Fe₂O₃

Ti loading

Water splitting

Photocurrent

ABSTRACT

Hematite (α -Fe₂O₃) films were produced by anodic FeOOH deposition on FTO, followed by TiCl₄ decoration and an appropriate heat treatment. Optimizing the amount of Ti addition ($1.5 \mu\text{L cm}^{-2}$ of 0.2 M TiCl₄) and annealing to 600 °C/750 °C allows to reach 1.4 mA cm^{-2} at 1.23 V (vs. RHE) with a maximum photocurrent of 3.1 mA cm^{-2} at 1.8 V (vs. RHE) in 1 M KOH under AM 1.5 (100 mW cm⁻²) simulated solar illumination. This comparably high photoresponse can be attributed to a combined Ti/Sn effect, the latter causing thermal Sn doping from the FTO. Photocurrent transients show that the main combined influence of Ti addition/Sn doping is a strong suppression of charge carrier recombination. This may be attributed to electronic effects but also to a different morphology observed for Ti treated samples. The work shows that simple anodic nanoporous films have a high potential for optimization towards highly efficient hematite based photoelectrodes.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

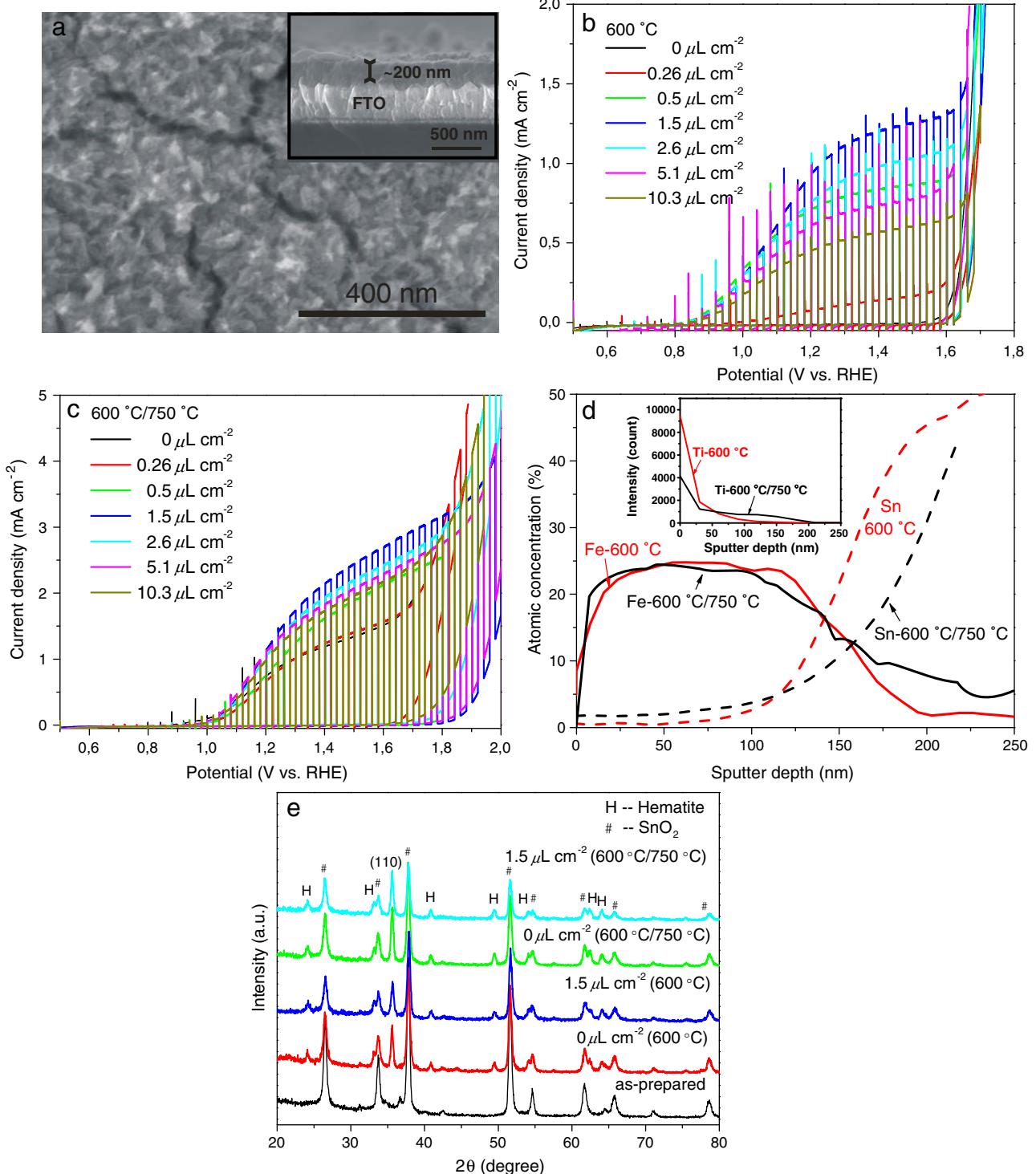
Since the first reports on photoelectrochemical (PEC) water splitting using a TiO₂ photoelectrode, a high number of other semiconductor materials have been investigated and developed with the ultimate goal to directly convert solar energy into clean and renewable hydrogen fuel [1–5]. Considerable efforts have been directed to using photoanodes of hematite (α -Fe₂O₃) due to its suitable band gap for visible light absorption ($\approx 2.2 \text{ eV}$), its photocorrosion stability, but also due to its abundance and environmental compatibility. In principle, α -Fe₂O₃ has a valence band edge position that allows for an unbiased oxidation of water to oxygen without application of an external bias. However, the PEC activity of α -Fe₂O₃ is limited by several factors, most importantly a short hole diffusion length and a poor oxygen evolution reaction kinetics [4].

Work to improve the electronic properties of iron oxide dates back more than 50 years. Morin [6,7] studied the conduction mechanism in oxides which have partially filled d levels and he attempted to add impurities to increase conductivity. Doping of α -Fe₂O₃, including Si [8,9], Ti [6,10–14], Pt [15,16], Mo [17], Cr [17], and Sn [18,19], has been extensively investigated to yield improved PEC performance. The performance improvement is ascribed to the enhanced conductivity due to the increased donor concentration and catalytic effect, namely a promoted charge-transfer process of photogenerated electrons and holes at the photoanode/electrolyte interface. Highest performance hematite layers meanwhile reach $>3 \text{ mA cm}^{-2}$ (under AM 1.5 illumination) at elevated applied voltages; usually they are produced by sophisticated (vacuum) or multistep processes [5,14]. Own previous

work [20,21] has been based on a simple and cheap anodic α -Fe₂O₃ deposition technique [22] that we optimized towards layer thickness and annealing temperature in view of morphology and solar light water splitting efficiency – we showed that by this trivial approach, remarkable water splitting efficiencies can be reached. In the present work, we explore the effect of Ti impregnation and annealing, i.e. an approach that avoids the use of specialized equipment and metal-organic precursors.

2. Experimental

In order to fabricate FeOOH layers, anodic electrodeposition was carried out according to previous work [20,21] to prepare FeOOH layers of a thickness of $\sim 200 \text{ nm}$ (1.95 cm^2 of surface area). As substrate we used fluorine-doped tin oxide glass (FTO-TCO22-15, Solaronix). Before deposition, the FTO glass was washed with acetone, ethanol, and then deionized water. The Ti doping was carried out by pipetting TiCl₄ onto the as-prepared FeOOH films. A series of Ti doped α -Fe₂O₃ films was obtained using various amounts of TiCl₄ [(0.26 (of 0.02 M TiCl₄)), or 0.5, 1.5, 2.6, 5.1, and $10.3 \mu\text{L cm}^{-2}$ of 0.2 M TiCl₄ solutions]. Then the films were annealed in air at 600 °C for 2 h, and then further annealed at 750 °C for an additional 20 min. The second annealing induced substantial Sn diffusion from the FTO glass [18], while still sufficient conductivity of the FTO was provided (as received: 15 ohm/square; after 600 °C: ~ 20 ohm/square; after 600 °C/750 °C: ~ 26 ohm/square).


The photoelectrochemical experiments were carried out in three-electrode configuration under simulated AM 1.5 (100 mW cm⁻²) illumination provided by a solar simulator (300 W Xe with optical filter, Solarlight; RT) in 1 M KOH solution using Ag/AgCl (3 M KCl) as the reference electrode, and a platinum foil as the counter electrode. Photocurrent vs. voltage (*I*-*V*) characteristics and photocurrent spectra were recorded as previously reported [20,21].

* Corresponding author. Tel.: +49 9131 85 275 75; fax: +49 9131 85 275 82.

E-mail address: schmuki@ww.uni-erlangen.de (P. Schmuki).

X-ray diffraction (X'pert Philips MPD with a Panalytical X'celerator detector, Germany) was carried out using graphite monochromized Cu K α radiation (Wavelength 1.54056 Å). Chemical characterization was carried out by X-ray photoelectron spectroscopy (PHI 5600, spectrometer, USA) using AlK α monochromatized radiation. Time of flight secondary ion mass spectrometry (TOF-SIMS) negative depth profiles

were recorded on an Ion-ToF ToF-SIMSS instrument operating in dual beam mode. A pulsed 25 keV Bi $^{+}$ liquid-5 metal ion beam bunched down to <0.1 ns was used for spectra generation and a 2 keV Cs $^{+}$ ion beam for sputter-removal of the samples (scan rate 0.3 nm s $^{-1}$). A field-emission scanning electrode microscope (Hitachi FE-SEM S4800, Japan) was used for the morphological characterization of the electrodes.

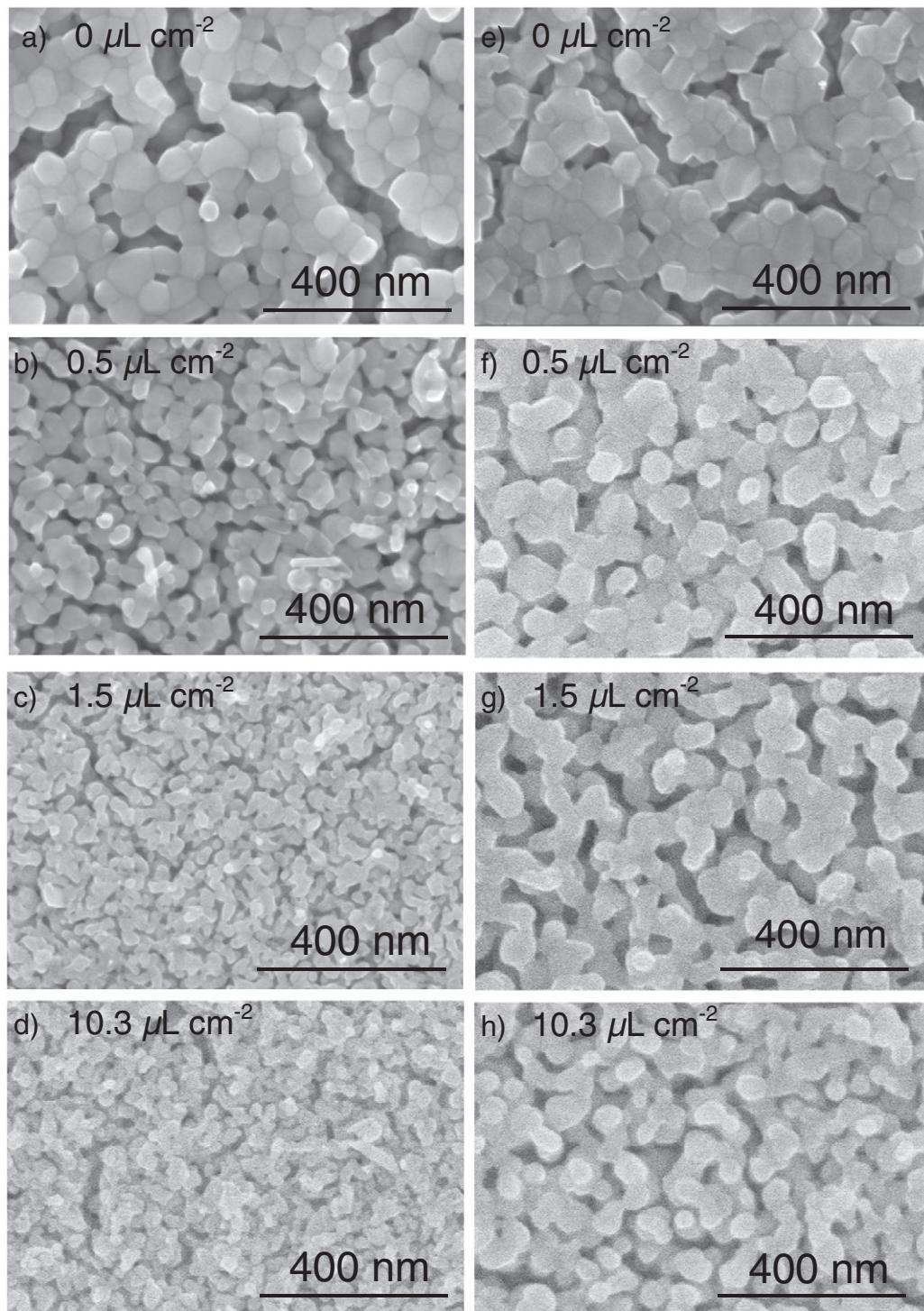


Fig. 1. (a) SEM top view and cross-section of the as-prepared FeOOH film; (b,c) current-potential characteristics with chopped light α -Fe₂O₃/FTO electrodes doped with various amounts of Ti (0.2 M TiCl₄) and annealed at (b) 600 °C and (c) 600 °C/750 °C, respectively. *Conditions:* 1 M KOH solution (pH 13.6), 2 mV s $^{-1}$ scan rate. Photocurrent corresponds to AM 1.5 100 mW cm $^{-2}$ simulated sunlight; (d) XPS Fe and Sn depth profiles of 2.6 μ L cm $^{-2}$ Ti (0.2 M TiCl₄) doped α -Fe₂O₃/FTO electrodes annealed at 600 °C and 600 °C/750 °C (inset of TOF-SIMS Ti depth profiles); (e) XRD patterns of Ti doped α -Fe₂O₃/FTO electrodes annealed at 600 °C and 600 °C/750 °C.

3. Results and discussion

In order to investigate key parameters for Ti-loading we carried out some screening experiments using a ~200 nm thick anodic iron oxide layer on FTO (prepared as in literature [20–22]) (Fig. 1a). Based on our previous work we selected two annealing conditions: 600 °C (where typically full conversion of the anodic deposit layer to hematite can be achieved), and 750 °C where not only annealing but also significant Sn-diffusion (doping) from the FTO substrate into the α -Fe₂O₃ structure can be found [20]. Fig. 1b shows the PEC water splitting results

for different amount of Ti doped electrodes after annealing at 600 °C. Consistent with earlier results at 550 °C, the Ti-free sample annealed at 600 °C for 2 h shows a negligible response (<0.02 mA cm⁻² at 1.23 V (vs. RHE)), almost indistinguishable from the dark current. However, significant photocurrents are measured for samples after Ti loading. The photoresponse increases dramatically as the dosing of Ti is increased from 0.26 μ L cm⁻² to 1.5 μ L cm⁻², and gradually decreased for doses of 2.6 μ L cm⁻² and higher. The optimum dosed Ti electrode with 1.5 μ L cm⁻² shows a plateau in the potential range from 1.2 V (vs. RHE) to 1.6 V (vs. RHE); in our case with a photocurrent

Fig. 2. SEM top views doped with α -Fe₂O₃/FTO electrodes and annealed at 600 °C (a–d) and 600 °C/750 °C (e–h).

magnitude from 0.95 mA cm^{-2} to 1.32 mA cm^{-2} . Also a beneficial shift in the onset potential is observed from 0.9 V (vs. RHE) for $0.26 \mu\text{L cm}^{-2}$ to 0.8 V (vs. RHE) for $1.5 \mu\text{L cm}^{-2}$ dosing.

Following further annealing treatment at $750 \text{ }^\circ\text{C}$ (Fig. 1c), all electrodes exhibit a strongly enhanced photocurrent. The onset of water oxidation photocurrent for $1.5 \mu\text{L cm}^{-2}$ Ti dosing is at 0.95 V (vs. RHE) reaching 1.4 mA cm^{-2} at 1.23 V (vs. RHE), with a maximum photocurrent of 3.1 mA cm^{-2} at 1.8 V (vs. RHE). An examination of XPS sputter depth profiles provides the distribution of Sn throughout the iron oxide after annealing at $600 \text{ }^\circ\text{C}$ and $600 \text{ }^\circ\text{C}/750 \text{ }^\circ\text{C}$ (Fig. 1d). From TOF-SIMS (inset of Fig. 1d), after annealing at $600 \text{ }^\circ\text{C}$ a higher Ti concentration at the surface and a tail throughout the sample is present. At $600 \text{ }^\circ\text{C}/750 \text{ }^\circ\text{C}$ the Ti distribution is homogenized over the sample thickness indicating diffusional penetration. At the same time for $600 \text{ }^\circ\text{C}/750 \text{ }^\circ\text{C}$, a Sn concentration-tail throughout the sample is observed. The X-ray diffraction (XRD) patterns for the Ti-free and Ti doped $\alpha\text{-Fe}_2\text{O}_3$ electrodes (Fig. 1e) show peaks clearly corresponding to $\alpha\text{-Fe}_2\text{O}_3$ (JCPDS 86-0550) on a FTO substrate [22]. In both cases the [110] peak becomes sharper after additional annealing at $750 \text{ }^\circ\text{C}$. The strong [110] diffraction implies that the growth axis of the $\alpha\text{-Fe}_2\text{O}_3$ nanoparticles is along [110].

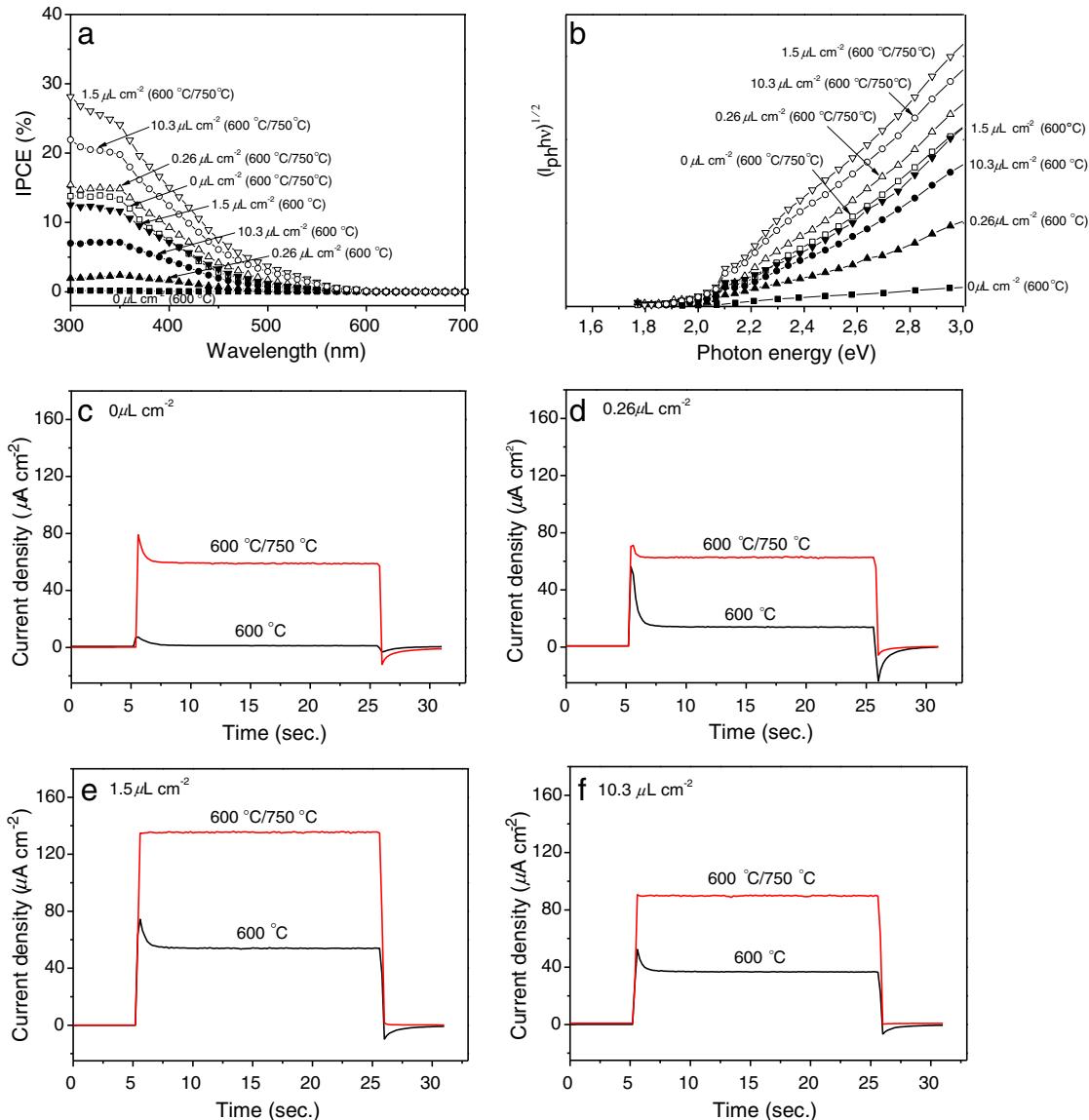


Fig. 3. (a) Incident photon conversion efficiency (IPCE) at an applied potential of 1.5 V (vs. RHE) in 1 M KOH for Ti doped $\alpha\text{-Fe}_2\text{O}_3$ /FTO electrodes annealed at $600 \text{ }^\circ\text{C}$ and $600 \text{ }^\circ\text{C}/750 \text{ }^\circ\text{C}$; (b) the band gap was determined from $(i_{ph}hv)^{1/2}$ vs. photon energy (hv) plots for the corresponding Ti doped $\alpha\text{-Fe}_2\text{O}_3$ /FTO electrodes; (c–f) photocurrent at 360 nm at an applied potential of 1.5 V (vs. RHE) in 1 M KOH for various amounts of Ti (0.2 M TiCl_4) doped $\alpha\text{-Fe}_2\text{O}_3$ and Ti/Sn co-doped $\alpha\text{-Fe}_2\text{O}_3$ electrodes.

It is also interesting to consider the morphology of the structures; Fig. 2 displays micrographs of the different electrodes. The Ti-free $\alpha\text{-Fe}_2\text{O}_3$ electrode annealed at $600 \text{ }^\circ\text{C}$ exhibits a mesoporous structure with round and oval particles of diameters of $40\text{--}60 \text{ nm}$ (Fig. 2a), whereas the particle diameters are smaller ($\approx 20\text{--}40 \text{ nm}$) for Ti doped samples (Fig. 2b–d). One may deduce that decoration with Ti reduces particle aggregation during annealing. A smaller particle size is beneficial due to lower bulk recombination (short life time of excited holes) [3]. Moreover, the overall film porosity increases and provides a larger contact area between semiconductor electrode and electrolyte, which facilitates charge carrier transfer to the electrolyte. The additional annealing at $750 \text{ }^\circ\text{C}$ (Fig. 2e–h) produces larger feature size of $40\text{--}100 \text{ nm}$ for the Ti-free sample. The Ti doped electrodes show slightly lower particle sizes but an obviously less sintered morphology compared with the Ti-free electrode.

Fig. 3a shows the incident photocurrent conversion efficiencies (IPCEs) as a function of the incident light wavelength for various amounts of Ti loading on the $\alpha\text{-Fe}_2\text{O}_3$ electrodes measured at an applied potential of 1.5 V (vs. RHE). Over the entire range from 300 nm to 600 nm , Ti loading leads to an enhanced IPCE compared with

the Ti-free electrode, and electrodes annealed at 600 °C/750 °C result in a significantly enhanced IPCE compared with those annealed at 600 °C. The maximum IPCE values are 25% and 12% at 330 nm for 1.5 $\mu\text{L cm}^{-2}$ doped Ti electrodes annealed at 600 °C/750 °C and 600 °C, respectively. The resulting indirect band-gap E_g values, i.e. from a $(i_{\text{ph}}h\nu)^{1/2}$ vs. photon energy ($h\nu$) plot, are in the order of 1.9–2.1 eV (Fig. 3b), in accordance with reported data for $\alpha\text{-Fe}_2\text{O}_3$ [4]. The effect of the combined Ti/Sn doping becomes more clearly from the transient photoresponse behavior (Fig. 3c–f). The transient ratio values ($i_{\text{steady}}/i_{\text{initial}}$) are in the range of 0.25–0.73 after annealing at 600 °C, whereas for Ti doping after annealing at 600 °C/750 °C, the transient ratio values close to one have been attained (except for the Ti-free sample). From the comparison it is evident that doping is particularly effective in reducing/eliminating the decay of the photocurrent (i.e. in combination with Sn doping leads to rectangular phototransients). Even though it is not evidently clear if the main effect of Ti is surface related (e.g. by decorating recombination centers with TiO_2), due to some bulk doping effects, or is morphology related, the present paper clearly shows that doping can aid to strongly suppress charge carrier recombination [23,24].

4. Conclusions

We have demonstrated the feasibility to strongly improve $\alpha\text{-Fe}_2\text{O}_3$ electrodes produced by a simple anodic deposition technique by combining a TiCl_4 treatment and Sn doping. Results show that the combined process performed in this work leads to a drastically lower recombination rate, which can be ascribed to electronic effects, i.e. substitutional doping and/or surface passivation combined with morphological effects. Optimal Ti doping amount (1.5 $\mu\text{L cm}^{-2}$ of 0.2 M TiCl_4) on $\alpha\text{-Fe}_2\text{O}_3$ annealed at 600 °C/750 °C reaches remarkable 1.4 mA cm^{-2} at 1.23 V (vs. RHE), with a maximum photocurrent of 3.1 mA cm^{-2} at 1.8 V (vs. RHE) in 1 M KOH under AM 1.5 (100 mW cm^{-2}) conditions.

Acknowledgments

The authors would like to acknowledge Anja Friedrich, Helga Hildebrand, and Ulrike Marten-Jahns for their assistance in the SEM,

XPS, and XRD measurements. We thank DFG and the DFG cluster of excellence “Engineering of Advanced Materials” (EAM) for the financial support.

References

- [1] A. Fujishima, K. Honda, *Nature* 238 (1972) 37.
- [2] A. Duret, M. Grätzel, *The Journal of Physical Chemistry B* 109 (2005) 17184.
- [3] J. Brillet, M. Grätzel, K. Sivula, *Nano Letters* 10 (2010) 4155.
- [4] K. Sivula, F. Le Formal, M. Grätzel, *ChemSusChem* 4 (2011) 432.
- [5] S.D. Tilley, M. Cornuz, K. Sivula, M. Grätzel, *Angewandte Chemie, International Edition* 49 (2010) 6405.
- [6] F.J. Morin, *Physical Review* 83 (1951) 1005.
- [7] F.J. Morin, *Physical Review* 93 (1954) 1195.
- [8] Y.Q. Liang, C.S. Enache, R. Van De Krol, *International Journal of Photoenergy* 2008 (2008) 739864.
- [9] I. Cesar, A. Kay, J.A.G. Martinez, M. Grätzel, *Journal of the American Chemical Society* 128 (2006) 4582.
- [10] J.H. Kennedy, M. Anderman, R. Shinar, *Journal of the Electrochemical Society* 128 (1981) 2371.
- [11] N. Uekawa, M. Watanabe, K. Kaneko, F. Mizukami, *Journal of the Chemical Society, Faraday Transactions* 91 (1995) 2161.
- [12] C.J. Sartoretti, M. Ulmann, B.D. Alexander, J. Augustynski, A. Weidenkaff, *Chemical Physics Letters* 376 (2003) 194.
- [13] J.A. Glasscock, P.R.F. Barnes, I.C. Plumb, N. Savvides, *Journal of Physical Chemistry C* 111 (2007) 16477.
- [14] G. Wang, Y. Ling, D.A. Wheeler, K.E.N. George, K. Horsley, C. Heske, J.Z. Zhang, Y. Li, *Nano Letters* 11 (2011) 3503.
- [15] Y.S. Hu, A. Kleiman-Shwarzstein, A.J. Forman, D. Hazen, J.N. Park, E.W. McFarland, *Chemistry of Materials* 20 (2008) 3803.
- [16] H.G. Cha, J. Song, H.S. Kim, W. Shin, K.B. Yoon, Y.S. Kang, *Chemical Communications* 47 (2011) 2441.
- [17] A. Kleiman-Shwarzstein, Y.S. Hu, A.J. Forman, G.D. Stucky, E.W. McFarland, *Journal of Physical Chemistry C* 112 (2008) 15900.
- [18] Y. Ling, G. Wang, D.A. Wheeler, J.Z. Zhang, Y. Li, *Nano Letters* 11 (2011) 2119.
- [19] J.S. Jang, J. Lee, H. Ye, F.R.F. Fan, A.J. Bard, *Journal of Physical Chemistry C* 113 (2008) 6719.
- [20] L. Wang, C.Y. Lee, P. Schmuki, *Electrochimica Acta* 91 (2013) 307.
- [21] L. Wang, C.Y. Lee, P. Schmuki, *Journal of Materials Chemistry A* 1 (2013) 212.
- [22] R.L. Spray, K.S. Choi, *Chemistry of Materials* 21 (2009) 3701.
- [23] S.R. Pendlebury, M. Barroso, A.J. Cowan, K. Sivula, J. Tang, M. Grätzel, D.R. Klug, J.R. Durrant, *Chemical Communications* 47 (2011) 716.
- [24] S.R. Pendlebury, A.J. Cowan, M. Barroso, K. Sivula, J. Ye, M. Grätzel, D.R. Klug, J. Tang, J.R. Durrant, *Energy & Environmental Science* 5 (2012) 6304.