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TÓM TẮT

Trong bài báo này, chúng tôi áp dụng nguyên lý cực đại cho hàm điều hòa dưới trên mặt phẳng phức
để chứng minh một số kết quả liên quan tới các hàm chỉnh hình và hàm điều hòa dưới xác định trong đĩa
đơn vị trên mặt phẳng phức.
Từ khóa: nguyên lý cực đại, hàm điều hòa dưới, hàm chỉnh hình, lý thuyết thế vị, giải tích phức.
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ABSTRACT

In this note, we apply the maximum principle of subharmonic functions on the complex plane to prove
some results related to the holomorphic functions and the subharmonic functions on unit disc in complex
plane.
Key words: maximum principle, subharmonic function, holomorphic function, potential theory, complex
analysis.

1. Introduction

In potential theory, the subharmonic functions are
usually defined on the open set in Rn (see1). This is
an advantage to use analytic tools of many variable
functions. However, it does not take advantages of
the complex number and complex variable function
theory. On the other hand, it is hard to extend to
the pluripotential theory (see2,3). The Theorem 2
gives the relation between the holomorphic functins
and subharmonic functions. This allows using the
complex analytic tools when we study the subhar-
monic functions on the complex plane.

The maximum principle of subharmonic func-
tions is an interesting topic in potential theory. This
principle is established by Phragmén and Lindelöf
in4. The potential theory is a branch of complex
analysis that is concentrated to study in the near
decades and quite new in Viet Nam. The maximum
principle is established and proved depend on the
topology on the extended complex plane (Theo-
rem 3). Because the extended complex plane C∞

is homeomorphic with the Riemann sphere in the
metric space R3, so the extended complex plane C∞

is a compact set. This has made the proof of the
maximum principle quite simply.

The main aim of this paper is to use the maxi-
mum principle to prove some results of the holomor-
phic function and subharmonic functions on the unit
disc in the complex plane (Theorem 6 and Theorem
8).

2. Preliminaries

We denote C to be the set of all complex numbers
(or the complex plane). And C∞ is the extended
complex plane that is homeomorphic with the Rie-
mann sphere in the metric space R3 (see5). Because
the Riemann sphere is a compact set in R3, C∞ is a
compact set.

In this note, we call the domain to be an open
and connected set in C or C∞. Let D be a domain
then the closure D always takes in C∞. So if D is
an unbonded domain in C then ∞ ∈ D and in C∞,
D is a compact set. We also denote ∆(ω, ρ) to be a
disc in C, that is

∆(ω, ρ) := {z ∈ C : |z − ω| < ρ}.
Definition 1 (see1,2,3). Let U be an open set in
C. The function u : U → [−∞,∞) is called subhar-
monic if it is an upper semicontinuous function and
satisfies the local submean inequality, that is for all
w ∈ U there exists ρ > 0 such that

u(w) ≤ 1

2π

∫ 2π

0

u(w + reiθ)dθ, (0 ≤ r < ρ). (1)

The function v : U → (−∞,∞] is superharmonic if
the function −v is subharmonic.

We denote SH(U) be the set of all subharmonic
functions on U . The submean inequality (1) is local,
i.e the number ρ depends on w. So the subharmonic-
ity also has local property, that is if (Uα)α∈I is a
open cover of U then the function u is subharmonic
function on U iff it is a subharmonic function on
every Uα.

The following result is the relation between the
holomorphic function and the subharmonic func-
tion.
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Theorem 2. Let f be a holomorphic function on
open set U in C. Then log |f | be a subharmonic func-
tion on U .

Proof. See Proposition 1.2.23 in2.

Theorem 3 (The maximum principle). Let u
be a subharmonic function on the domain D in C.
Then we have
a. If u has global extremum on D then u is constant
on D.
b. If lim supz→ξ u(z) ≤ 0 for all ξ ∈ ∂D then u ≤ 0
on D.

Proof. a. Suppose that u has global extremum value
M on D, i.e there exist z0 ∈ D such that

u(z) ≤ M,∀z ∈ D và u(z0) = M.

Set
A = {z ∈ D : u(z) < M}

and
B = {z ∈ D : u(z) = M}.

Then by the semicontinuous of u, we infer that A
is open. We prove that B also is open. Indeed, take
ω ∈ B, by Definition 1 there exist ρ > 0 such that

M = u(ω) ≤ 1

2π

∫ 2π

0

u(ω + reit)dt ≤ M

foll all 0 ≤ r < ρ. Infer that

1

2π

∫ 2π

0

u(ω + reit)dt = M, ∀0 ≤ r < ρ.

Since u(ω + reit) ≤ M for all r ∈ [0, ρ) and for all
t ∈ [0, 2π) so we have u(ω + reit) = M,∀0 ≤ r < ρ
and ∀0 ≤ t < 2π. So ∆(ω, ρ) ⊂ B and so B is open.
So we have A and B be an open partition of D.
Since D is a connected set, we infer either A = D
or B = D. Because B ̸= ∅ (z0 ∈ B) so B = D. So
we conclude that u = M on D.
b. We extend the function u to the boundary ∂D by
set

u(ξ) := lim sup
z→ξ

u(z) (ξ ∈ ∂D).

Then u is the semicontinous function on D. Since D
is a compact set so u has maximum at some ω ∈ D.
If ω ∈ ∂D then by assumption we have u(ω) ≤ 0
and so u ≤ 0 on D. If ω ∈ D then by the part a., u
is constant on D and so on D. This infers that u ≤ 0
on D.

Remark 4. In Theorem 3(a), if u has the local ex-
tremum or the global minimum on D then the con-
clusion is failed. Example: Let u(z) = max(Rez, 0)
on C. Then u is the subharmonic function on C.
Moreover, u has the local extremum and the global
minimum on C, but u is not a constant on C.

3. Main results

In this section, we apply the maximum principle to
prove some results for the functions on the unit disc.
First, we have the lemma.

Lemma 5. Let u be a subharmonic function on
∆(0, 1) such that u < 0. Then for all ξ ∈ ∂∆(0, 1)
we have

lim sup
r→1−

u(rξ)

1− r
< 0.

Proof. Set v(z) = u(z)+c log |z| (here c is a positive
constant) on A = { 1

2 < |z| < 1}. Then we have
• The function v is a subharmonic function on A (by
Theorem 2).
• For all |ξ| = 1 we have lim supz→ξ v(z) ≤ 0.
To applying the maximum principle (Theorem 3) to
the function v on A, we need to find c such that for
all |ξ| = 1

2 we have

lim sup
z∈A,z→ξ

v(z) ≤ 0.

Set λ = sup{u(ξ) : |ξ| = 1
2}. We infer that λ < 0.

We have

lim sup
z∈A,z→ξ

v(z) ≤ λ+ c log
1

2
≤ 0.

From this inequality we have c ≥ λ
log 2 .

Now, with c ≥ λ
log 2 , applying Theorem 3 to the

function v we infer

v(z) ≤ 0 ⇔ u(z) ≤ −c log |z|, ∀ 1

2
< |z| < 1.

Then for all |ξ| = 1 we have

lim sup
r→1−

u(rξ)

1− r
≤ lim sup

r→1−
(−c)

log r

1− r
= c.

From the estimations above, if we choose the con-
stant c such that λ

log 2 ≤ c < 0 then we have the
conclude in the theorem.

Theorem 6. Set ∆ = ∆(0, 1). Let f : ∆ −→ ∆ be
a holomorphic function such that

f(z) = z + o(|1− z|3) when z → 1.

a. Let ϕ(z) = 1+z
1−z and u(z) = Re(ϕ(z) − ϕ(f(z))).

Prove that

lim sup
z→ξ

u(z) ≤ 0 ∀ξ ∈ ∂∆ \ {1},

and u(z) = o(|1− z|) when z → 1.
b. Prove that u ≤ 0 on ∆.
c. Prove that u ≡ 0 on ∆.
d. Prove that f(z) ≡ z on ∆.

Proof. a. We have

Reϕ(z) =
1

2

(
1 + z

1− z
+

1 + z̄

1− z̄

)
=

1− |z|2

|1− z|2
.
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This infers that for every ξ ∈ ∂∆ \ {1} we have
• lim supz→ξ Reϕ(z) = 0.
• For all z ∈ ∆ then Reϕ(z) > 0. So we infer
Reϕ(f(z)) > 0.
Now, for all ξ ∈ ∂∆ \ {1} we have

lim sup
z→ξ

u(z) ≤ lim sup
z→ξ

ϕ(z) = 0.

In case z → 1 we have

ϕ(z)− ϕ(f(z)) =
1 + z

1− z
− 1 + z + o(|1− z|3)

1− z − o(|1− z|3)

=
−(1 + z)o(|1− z|3)− (1− z)o(|1− z|3)

(1− z)(1− z − o(|1− z|3))

=
−2.o(|1− z|3)

(1− z)(1− z − o(|1− z|3))
= o(|1− z|).

From this we infer

u(z) = Re(ϕ(z)−ϕ(f(z))) = o(|1−z|) when z → 1.

b. From the above formula, we infer that u is a sub-
harmonic function on ∆. By (a.) we infer that

lim sup
z→ξ

u(z) ≤ 0 for all ξ ∈ ∂∆.

By the maximum principle (Theorem 3), we derive
u ≤ 0 on ∆.
c. By (b.) we have u ≤ o on ∆.
If u < 0 on ∆ then by Lemma 5, for all ξ ∈ ∂∆ we
have

lim sup
r→1−

u(rξ)

1− r
< 0. (∗)

When ξ = 1, by (a.) we have

u(r) = o(|1− r|) when r → 1−.

This infer that

lim sup
r→1−

u(r)

1− r
= lim sup

r→1−

o(|1− r|)
1− r

= 0.

This is an contradiction with (∗).
So u ≡ 0 on ∆.
d. By (c.) we have

Re
1 + z

1− z
= Re

1 + f(z)

1− f(z)
on ∆.

This derive the function g(z) := 1+z
1−z − 1+f(z)

1−f(z) is
holomorphic on ∆ that has real part equal zero. By
the Cauchy - Riemann condition (Theorem 2 in3),
the imaginary part of g(z) is constant. So we have
g(z) = ai here a be complex number.
On the other hand, by (a.), we have

g(z) = o(|1− z|) when z → 1.

This infer that limz→1 g(z) = 0 or ai = 0. So we
have a = 0, i.e g ≡ 0 on ∆.
So for all z ∈ ∆ we have

1 + z

1− z
=

1 + f(z)

1− f(z)
⇔ 2

1− z
=

2

1− f(z)
⇔ f(z) = z.

Remark 7. In Theorem 6, if we suppose that

f(z) = z +O(|1− z|3) when z → 1

then the conclude in (d.) is failed.
Indeed, considering f(z) = z+λ(1− z)3, here λ > 0
enough small. Then with |z| = 1 we have

|f(z)|2 = (z + λ(1− z)3)(z̄ + λ(1− z)3)

= 1− 2λRe(z̄.(1− z)3) + λ2(1− z)3(1− z)3

= 1 + 2λ[4Rez − 3− Rez2] + 8λ2(1− Rez)3.

Set z = cos t+ i sin t here 0 ≤ t ≤ 2π. Then to prove
that |f(z)|2 ≤ 1 we need the following

2λ[4Rez − 3− Rez2] + 8λ2(1− Rez)3 ≤ 0 ∀|z| = 1.

This is equivalent

4 cos t− 3− cos 2t+ 4λ(1− cos t)3 ≤ 0 ∀0 ≤ t ≤ 2π

⇔ (1− cos t)2(−2 + 4λ(1− cos t)) ≤ 0 ∀0 ≤ t ≤ 2π.

This is true if we choose 0 < λ < 1
4 .

So the function f : ∆ −→ ∆ is holomorphic and sat-
isfies f(z) = z + O(|1 − z|3). But f is not identical
function.

Theorem 8. Let u be a subharmonic function on
∆(0, 1) such that

u(z) ≤ − log |Imz| (|z| < 1).

Then prove that

u(z) ≤ − log

∣∣∣∣1− z2

2

∣∣∣∣ (|z| < 1).

Proof. With 0 < r < 1 we consider the function
following

v(z) = u(z) + log

∣∣∣∣r2 − z2

2r

∣∣∣∣ , z ∈ ∆(0, r).

Then by Theorem 2, v is a subharmonic function on
∆(0, r). Take ξ ∈ ∂∆(0, r). We consider two cases
as follow.
• If ξ ̸= r and ξ = r(cos t+ i sin t) then we have

lim sup
z→ξ

v(z) = lim sup
z→ξ

(
u(z) + log

∣∣∣∣r2 − z2

2r

∣∣∣∣)
≤ lim sup

z→ξ
log

∣∣∣∣ r2 − z2

2r|Imz|

∣∣∣∣
= lim sup

z→ξ
log

|r2 − ξ2|
2r|Imξ|

= 0.

• If ξ = r then we have

lim sup
z→r

v(z) = lim sup
z→r

(
u(z) + log

∣∣∣∣r2 − z2

2r

∣∣∣∣) = −∞.

(this because u is bounded on ∆(0, r)). By applying
the maximum principle (Theorem 3) to function v
on ∆(0, r) we infer

u(z) ≤ − log

∣∣∣∣r2 − z2

2r

∣∣∣∣ , ∀z ∈ ∆(0, r).

Let r → 1− we get

u(z) ≤ − log

∣∣∣∣1− z2

2

∣∣∣∣ ∀z ∈ ∆(0, 1).
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