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TOM TAT

Trong bai bao nay, chiing t6i 4p dung nguyeén 1y cuc dai cho ham diéu hoa dudi trén mit phing phitc
dé chtimng minh mot sb két qua lien quan t6i cadc ham chinh hinh vd ham didu hoa duéi xac dinh trong dia
don vi trén mat phéng phiec.
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ABSTRACT

In this note, we apply the maximum principle of subharmonic functions on the complex plane to prove

some results related to the holomorphic functions and the subharmonic functions on unit disc in complex

plane.
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1. INTRODUCTION

In potential theory, the subharmonic functions are
usually defined on the open set in R (see'l). This is
an advantage to use analytic tools of many variable
functions. However, it does not take advantages of
the complex number and complex variable function
theory. On the other hand, it is hard to extend to
the pluripotential theory (see? ). The Theorem
gives the relation between the holomorphic functins
and subharmonic functions. This allows using the
complex analytic tools when we study the subhar-
monic functions on the complex plane.

The maximum principle of subharmonic func-
tions is an interesting topic in potential theory. This
principle is established by Phragmén and Lindelof
in®. The potential theory is a branch of complex
analysis that is concentrated to study in the near
decades and quite new in Viet Nam. The maximum
principle is established and proved depend on the
topology on the extended complex plane (Theo-
rem . Because the extended complex plane C,,
is homeomorphic with the Riemann sphere in the
metric space R?, so the extended complex plane Cu,
is a compact set. This has made the proof of the

maximum principle quite simply.

The main aim of this paper is to use the maxi-
mum principle to prove some results of the holomor-
phic function and subharmonic functions on the unit
disc in the complex plane (Theorem |§| and Theorem

2. PRELIMINARIES

We denote C to be the set of all complex numbers
(or the complex plane). And C. is the extended
complex plane that is homeomorphic with the Rie-
mann sphere in the metric space R? (see®). Because
the Riemann sphere is a compact set in R3, Co is a
compact set.

In this note, we call the domain to be an open
and connected set in C or C4,. Let D be a domain
then the closure D always takes in Cu. So if D is
an unbonded domain in C then co € D and in C,
D is a compact set. We also denote A(w, p) to be a
disc in C, that is

Aw,p) :={2€C: |z —w| < p}.

Definition 1 (see’?¥). Let U be an open set in

C. The function u : U — [—00,00) is called subhar-
monic if it is an upper semicontinuous function and
satisfies the local submean inequality, that is for all
w € U there exists p > 0 such that

o

u(w) < i/ u(w +re®)ds, (0<r<p). (1)
2m Jo

The function v : U — (—00, o] is superharmonic if

the function —v is subharmonic.

We denote SH(U) be the set of all subharmonic
functions on U. The submean inequality is local,
i.e the number p depends on w. So the subharmonic-
ity also has local property, that is if (Uy)acr is a
open cover of U then the function u is subharmonic
function on U iff it is a subharmonic function on
every U,.

The following result is the relation between the
holomorphic function and the subharmonic func-
tion.
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Theorem 2. Let f be a holomorphic function on
open set U in C. Thenlog|f| be a subharmonic func-
tion on U.

Proof. See Proposition 1.2.23 in“. O

Theorem 3 (The maximum principle). Let u
be a subharmonic function on the domain D in C.
Then we have

a. If u has global extremum on D then u is constant
on D.

b. If limsup, . u(2) <0 for all § € D then u <0
on D.

Proof. a. Suppose that u has global extremum value
M on D, i.e there exist zg € D such that

u(z) < M,Vz € D va u(zg) = M.

Set
A={zeD:u(z) < M}

and
B={ze€D:u(z) =M}

Then by the semicontinuous of u, we infer that A
is open. We prove that B also is open. Indeed, take
w € B, by Definition [l there exist p > 0 such that

1 2m .
M = u(w) < —/ u(w +ret)dt < M
2 0

foll all 0 < r < p. Infer that

2T

— u(w + Te“)dt =M, YO<r<np.
2'/T 0

Since u(w + re') < M for all r € [0, p) and for all
t € [0,27) so we have u(w + rett) = M,V0 < r < p
and V0 <t < 27. So A(w, p) C B and so B is open.
So we have A and B be an open partition of D.
Since D is a connected set, we infer either A = D
or B = D. Because B # () (20 € B) so B = D. So
we conclude that w = M on D.

b. We extend the function u to the boundary 9D by
set

uw(€) :=limsupu(z) (£ € D).

z—E&

Then u is the semicontinous function on D. Since D
is a compact set so u has maximum at some w € D.
If w € 9D then by assumption we have u(w) < 0
and so u < 0on D. If w € D then by the part a., u
is constant on D and so on D. This infers that u < 0
on D. O

Remark 4. In Theorem a), if u has the local ex-
tremum or the global minimum on D then the con-
clusion is failed. Example: Let u(z) = max(Rez,0)
on C. Then w is the subharmonic function on C.
Moreover, u has the local extremum and the global
minimum on C, but « is not a constant on C.

3. MAIN RESULTS

In this section, we apply the maximum principle to
prove some results for the functions on the unit disc.
First, we have the lemma.

Lemma 5. Let u be a subharmonic function on
A(0,1) such that uw < 0. Then for all £ € 0A(0,1)

we have
lim sup u(re)

r—1- -r

< 0.

Proof. Set v(z) = u(z)+clog|z| (here ¢ is a positive
constant) on A = {3 < |z| < 1}. Then we have

e The function v is a subharmonic function on A (by
Theorem .

e For all [{] = 1 we have limsup,_,, v(z) < 0.

To applying the maximum principle (Theorem [3]) to
the function v on A, we need to find ¢ such that for
all [¢] = £ we have

lim sup v(z) < 0.
z€A,z—E

Set A = sup{u() : |¢| = 1}. We infer that A < 0.
We have

1
limsup v(z) < A+ clog= <0.
z€A,z—¢ 2

A
log2*

applying Theorem [3| to the

From this inequality we have ¢ >
: A

Now, with ¢ > Toe3

function v we infer

1
v(z) <0< u(z) < —cloglz|, V 3 < |z] < 1.
Then for all |£] =1 we have

lim sup @

r—1- =T

log r
< limsup(—c) =c.
R ( 1—r

From the estimations above, if we choose the con-

stant ¢ such that 10;2 < ¢ < 0 then we have the

conclude in the theorem. O

Theorem 6. Set A = A(0,1). Let f: A — A be
a holomorphic function such that
f(z)=z+o0(1—2*) when z— 1.

a. Let ¢(z) = {22 and u(z) = Re(¢(2) — 6(f(2)))-
Prove that

limsupu(z) <0 V€€ IA\ {1},

z—E

and u(z) = o(|1 — z|) when z — 1.
b. Prove that v <0 on A.

c. Prove that u =0 on A.

d. Prove that f(z) = z on A.

Proof. a. We have

114z 142\ 1-—|z?
Re¢(z)_2(1—z+1—z>_|1—z|2'




This infers that for every £ € 9A \ {1} we have
e limsup,_, Reg(z) = 0.
e For all z € A then Re¢(z) > 0. So we infer

Re¢(f(z)) > 0.
Now, for all £ € 9A \ {1} we have

limsup u(z) < limsup ¢(z) = 0.

z—E€ z—&
In case z — 1 we have

z z o —Zz 3
o) = () = [~ T
_ (4 2ofl1 = 2P) = (1 = 2)o(|1 - 2P
(1= 21— 2= o1 - )
—2.0(|1 — 2|?)

Sz —o(i—amy A

From this we infer

u(z) = Re(¢(2)—o(f(2))) = o(|1-2])

b. From the above formula, we infer that u is a sub-
harmonic function on A. By (a.) we infer that

limsupu(z) <0 for all £ € OA.

z—E€
By the maximum principle (Theorem , we derive
uw <0 on A.
c. By (b.) we have v < 0 on A.
If u < 0 on A then by Lemma[5] for all £ € A we

have
lim sup @ < 0.
r—1- -r

When £ =1, by (a.) we have

(%)

u(r)=o(]1 —7r]) whenr—1".
This infer that
11—
lim sup M = limsup M =0.
r—1- - r—1- 1—-r

This is an contradiction with (x).
So v =0on A.
d. By (c.) we have

1+2
e
1—=2

e1 + f(2)
1—f(z)
142 1+f(2)

This derive the function g(z) = % — =70 s
holomorphic on A that has real part equal zero. By
the Cauchy - Riemann condition (Theorem 2 in*),
the imaginary part of g(z) is constant. So we have
g(z) = ai here a be complex number.
On the other hand, by (a.), we have

9(z) = o(|1 - 2|)

This infer that lim,_,; g(2) = 0 or ai = 0. So we
have a =0, ie g =0 on A.
So for all z € A we have

1+z_1+f(z)® 2 2

A (O T B (O

R =R on A.

when z — 1.

O

when z — 1.

Remark 7. In Theorem [6] if we suppose that
f(z)=2+0(1 -2

then the conclude in (d.) is failed.
Indeed, considering f(z) = z+ A(1 —2)3, here A > 0
enough small. Then with |z| = 1 we have

[F(2)]F = (2 + A1 = 2)°)(Z + A1 = 2)*)
=12 Re(2.(1 — 2)%) + A2(1 — 2)*(1 — 2)3
=1+ 2\[4Rez — 3 — Rez?] + 8)\?(1 — Rez)?.

Set z = cost+isint here 0 < ¢ < 27. Then to prove
that | f(2)]? <1 we need the following

2A[4Rez — 3 — Rez?] + 8A%(1 — Rez)® < 0V|z| = 1.
This is equivalent

4dcost —3 —cos2t +4N\(1 — cost)3 <0 VO<t<orm
& (1 —cost)?(=244A(1 —cost)) <0 V0 <t <2m.

when z — 1

This is true if we choose 0 < A < %.

So the function f : A — A is holomorphic and sat-
isfies f(z) = 2 + O(|1 — 2|?). But f is not identical
function.

Theorem 8. Let u be a subharmonic function on
A(0,1) such that

u(z) < =log|Imz| (2] <1).
Then prove that
1— 2
u(z) < —log 2Z (Iz] < 1).

Proof. With 0 < r < 1 we consider the function
following

7’2—22

2r

Then by Theorem [2} v is a subharmonic function on
A(0,r). Take & € OA(0,r). We consider two cases
as follow.

o If £ A7 and & = r(cost +isint) then we have

v(z) = u(z) + log

, 2z € A0,r).

r? — 22
lim sup v(z) = lim sup (u(z) + log >
z—€ z—E€ 2r

r2 2
<li log | ————
= P8 2Tz |
: r? — &

= limsuplog ——— =0
z—E 2T‘Im£‘

e If £ = r then we have
r? — 22

)=

(this because u is bounded on A(0,7)). By applying
the maximum principle (Theorem [3]) to function v
on A(0,r) we infer

limsup v(z) = lim sup <u(z) + log

Z—T zZ—T

2r

P2 2
u(z) < —log , Vze A(0,r).
Let r — 17 we get
2
u(z) < —log Vz € A(0,1).




ACKNOWLEDGMENT

REFERENCES

1.

David H. Armitage, Stephen J. Gardiner. Clas-
sical Potential Theory, Springer, 2001.

. Pham Hoang Hiep. Singularities of plurisubhar-

monic functions, Pub. Hou. Sci. and Tec. 2016.

. Klimek M.. Pluripotential Theory, Clarendon

Press, Oxford, 1991.

Phragmén E., Lindel6f E.. Sur une exten-
sion d’un principe classique de ’analyse et sur
quelques propriétés des fonctions monogenes
dans le voisinage d’un point singulier, Acta
Math, 1908 31(1), 381 — 406.

. Nguyen Van Khue, Le Mau Hai. Ham bien phuc,

Nxb DH QG Ha Noi, 1997.



	Introduction
	Preliminaries
	Main results

