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ABSTRACT

In 2003, Faggionato A. and Martinelli F. proved that the hydrodynamic behavior of a simple

exclusion process under the influence of a bounded disorder field can be described by a Cauchy

problem. In this paper, we show that a similar conclusion also holds true if the disorder field is

unbounded and satisfies a certain condition on its distribution.
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1. INTRODUCTION AND MAIN
RESULT

A lot of techniques have been developed
so far in order to investigate the hydrody-
namic limit of an interacting particle system
in which each particle moves on an integer lat-
tice. An interacting particle system is said to
have a hydrodynamic limit if for which there
exists a time and space rescaling in which
the conserved quantities evolve according to
a certain partial differential equation. This
partial differential equation is called the hy-
drodynamic equation corresponding with the
system. The simplest and most widely studied

interacting particle system is the simple ex-
clusion process, where a particle sitting on a
site = of the d-dimensional torus T¢ = R4 /74
with unit volume, waits an exponential time
and attempts to jump to the nearest neigh-
bor site y together with the exclusion rule
that forbids the jumps to occupied sites. Fur-
thermore, it is assumed that the total num-
ber of particles is the unique quantity con-
served by the time evolution. We denote by
T4 = Z?/NZ¢ the corresponding micro-
scopic space and by 7" the empirical measure
on T? obtained by assigning to each particle
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a mass N ¢,

i (dO) = 7" (n,d0) = Av 0, (EN?)d, /v (dO)

d
zeTq,

where Awv stands for the spatial average and
z€TY,

N is the number of particles at site z. Then
the dynamics is determined by the diffusively
rescaled Markov generator N2Ly,

Lafm) =" ComremF@™)—Fn)],

ecf ajeT‘]i\]

where £ is the canonical basis of the d-
dimensional lattice Z¢.

In the above expression, the configuration
n™Y is obtained from 7 by exchanging the
values 7, and n,, the positive and bounded
transition rate c;,(n) is not only transla-
tion invariant in the sense that ¢4, 4.(n) =
. y(7:m), where 7.n is the particle configu-
ration translated by z, but also satisfies the
identity ¢, (n) = ¢y2(n).

Given a symmetric, finite range and trans-
lation invariant transition probability p(z,y)
onZ% ie.p(z,y) = p(0,y—z) =: p(y—x), the
set {x : p(z) > 0} is finite and p(z) = p(—x).
If ¢y pte(n) == Z ple+yN),Vz € TS, Ve €

yeZ4
& then such a system is called a symmet-

ric simple exclusion process. We denote by
My the set of probability measures on T,
which are absolutely continuous with respect
to Lebesgue measure with density bounded
by 1. Now, let a sequence of probability mea-
sures {uN } =1 on Qy = {0,1}TH be associ-
ated to a function py on T¢ in the sense that
under pV, the sequence of empirical mea-
sures ' on T¢ converges in probability to
po(0)d0 € Msy. Then, it is shown that after

a suitable space and time rescaling, the cor-

responding sequence {P}’ N} ~n>1 of the distri-
butions at time t of a symmetric simple ex-
clusion process with the initial measures p?,
is associated to the density of particles p(t,-)
which is the unique weak solution of the heat
equation

2ip(t,0) = 58p(t,0), p(0,0) = po(6). (1)

More generally, the hydrodynamic behav-
ior of the gradient exclusion process and the
nongradient exclusion process are also ob-
tained. For a more comprehensive view, we

recommend? Section 7.

Int

, Faggionato A. and Martinelli F.
study the hydrodynamic behavior of a simple
exclusion process under the influence of an
external random field. The disorder field « is
given by independent identically distributed
random variables with |a,| < B,Vx € Z4. Let
us describe the dynamics. Given a disorder
configuration o and a subset A of Z?, they de-
fine the grand canonical Gibbs measure ,uX’A
on {0,1}" associated with the chemical po-

tential A € R as the product measure

e(az +A)Nz

a7A pu—
zEA
and the corresponding canonical measure vg |
with density p as

a,\
Vi (1) = py " (lma = p),

where the particle density my = 1 Z M-
|A|xEA
The positive and bounded transition rate
¢z ,(n) depending on the disorder configura-

tion (ay, ay) is not only translation invariant,
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where 7,a,7,m is the disorder and particle
configuration translated by z, but also satis-
fies the identity cg,(n) = ¢ .(n). Moreover,
it satisfies the detailed balance condition with

respect to the Gibbs measure MK’A , i.e.

Cg,y(n) = Cﬁ,y (nx’y)ei(ax*o‘y)(%*ny)‘

Then, the lattice gas with Kawasaki dy-
namics is a continuous time Markov chain de-
termined by the diffusively rescaled Markov
generator N2L%, where LS := E%% and for
all A C 74,

P =D eI ™ ) = f(n)).

ee€f xeA

Since the present system does not satisfy
the gradient condition, except the trivial case
when the disorder field is constant, they apply
the classical approach, i.e. looking for a gen-
eralized Fick’s law to establish the hydrody-
namic limit of a disordered nongradient sys-
tem but with a slight modification. Namely,
they are interested in the limit

%%m(?l)_dE[Ma’)‘U(p)

( Z Txf)(_[%l)_l Z 729)];

|z[<I-V1 |z|<i—V1

where E stands for the corresponding expec-
tation with respect to the product measure
defined on the disorder configuration space
and Ao(p) is the annealed chemical potential
such that E[u®* ) (ny)] = p.

By the theory of closed and exact forms
generalized from the ones for the nondis-
ordered and nongradient system, it can be
proved that the above limit exists and de-
fines the semi-inner product V,(f, g). On the
other hand, the subspace {Z aejoe + L7549

ec&

a € Rlg € G} is dense in G endowed
with the semi-inner product V,, c.f.! Sec-
tion 7.1, where the instantaneous current
Joy(m) = g, (n)(nz — ny) defined as the dif-
ference between the rate at which a particle
jumps from z to y and the rate at which
a particle jumps from y to z, G stands for
the space of local and bounded functions on
[—B, BJ%" x {0,1}%", and G is the space of
mean-zero functions g € G with respect to
all canonical measures on some cube. Never-
theless, n. — no ¢ G because of the disorder
field, hence {n. — 1o }ecs N0 longer forms a ba-
sis of L2G*. Therefore, they try to consider
the difference

Ne — Mo — V/o\tn,mn(n)(ne - 770)'

Similar to the one considered in?, it can
be proved that for each e € £, the sequence
of these differences is Cauchy in G with the

/% and that the limit points of

semi-norm Vp1
these sequences with e varying in £ form a
basis of L*G*. Then the current Jeate CAN
be written as the sum of some negligible fluc-

tuation 7,£%g and

- Z De,e’(ﬂ)ﬂv(ﬁe’ _UO_VKn,mn(n) (776/ _?70))
e'eg

for some d x d matrix D(p).

In order to get a generalized Fick’s law,
it remains to show the negligibility of the
term 7o (Vg . () (e —10)), Vo € T4, Unfor-
tunately, in the presence of the disorder field,
VR, oy (e = 10) |00 = O(1), V. Therefore,
Faggionato and Martinelli considered the gra-
dient of the density in two large adjacent
cubes in the hope that the fluctuations are
small. This problem has already solved by
Faggionato and Martinelli as long as d > 3

1n1.



They finally arrive at the main conclusion
on the hydrodynamic limit of a system with
the bounded disorder. Namely, in dimension
larger than 2, for almost every disorder con-
figuration, by rescaling space and time diffu-
sively, the hydrodynamic equation is the non-
linear parabolic equation

Oip(t, 0) = V(D(p(t,0))Vp(t,0)),

p(ov 9) = pO(e)a

where the deterministic diffusion matrix D
can be described by the following variational
characterization, for any a € R,

(@ D)) = 5t SB[
ec&
(cg,e (a6<776 — 1) + V07e< Z Txg))Qﬂ

z€Z4

where x(p) = E[u*®)(ng) — p*®) ()]
and Vg ,9(a,n) = g(a,n™Y) — g(a,n). Fur-
thermore, Faggionato and Martinelli also
prove that D(+) is positive, bounded and con-
tinuous in (0,1). That hydrodynamic equa-
tion is obtained under the assumption that
D(p) has a continuous extension in the closed
interval [0, 1]. A few years later on, in3, Quas-
tel proved that this diffusion matrix D is ac-
tually continuous in the closed interval [0, 1].

The above conclusion on the hydrody-
namic behavior of a disordered system has
been obtained as long as the disorder field
is bounded. A natural question posed here
is that whether that conclusion holds true if
the random field is unbounded. In this pa-
per, we will indicate that a similar conclu-
sion also holds true if the disorder field is
unbounded and satisfies a certain condition

on its distribution. Let us consider the disor-
der field given by independent identically dis-
tributed random variables satisfying the tech-
nical condition that there exists some u > 0
such that for all z € Z E[e*l*l] < +oo.
Then, under the assumption that the diffu-
sion matrix D has a continuous extension in
the closed interval [0, 1], in dimension larger
than 2, for almost every disorder configura-
tion, by rescaling space and time diffusively,
the macroscopic evolution of the system with
this new disorder field is described by the
nonlinear parabolic equation as above.

More precisely, let us present the main re-
sult as follows.

Theorem 1.1. Letd > 3,T > 0. Let the dis-
order field be given by iid random variables
satisfying the technical condition

Ju > 0 such that Vo € 24, E[e"*] < +00.
(2)
Assume that the diffusion matriz D de-
fined as in' Theorem 2.1 for p € (0,1) has
a continuous extension in the closed inter-
val [0,1]. Consider a sequence of probability
measures {u™}ny>1 on Qn associated to the
macroscopic profile po(0)dd € Ms. Then for
almost every disorder configuration «, any
t € [0,T], the sequence of probability mea-
sures {P?"“N}Nzl is associated to the macro-
scopic profile p(t, 0)d0 € My whose density is
the unique weak solution p € C([0,T], Ms) of
the Cauchy problem

{atp@, 0) =V(D(p(t,0))Vp(t,0))
p(0,0) = po(6).

and satisfying the energy estimate

T
/‘/|mmﬁWwﬁ<m.
0 Td

(3)



This result follows from repeating the
proof for the case of bounded random field
and replacing the arguments where the
boundedness is used by the different ones.

For this purpose, it is enough to deal with
all the estimates involved in the boundedness
of the random field we have considered above.
Namely, they are the estimate on the entropy
H (P*" |P#N), the equilibrium bounds and the
results applying them as well as the descrip-
tion of (a, D(0)a), (a, D(1)a) as the limit of
(a, D(p)a) when p | 0 and p T 1, respectively.
We will carry them out with more details in
the following three sections.

2. ESTIMATE ON THE ENTROPY

As mentioned in! Section 4, if |, | < B,V €
Z% then there exists some constant C(B) > 0
such that for every disorder configuration o
and any N > 1,

eazﬁz

ORI e 2

xeTf\l,

e CBINY e QN

and the estimate on the entropy H (P*" [P#~)
will thus follow, i.e. 4C' > 0 such that
H(P+Y|PHv) < CNY,

Let us now show that for the present
model, i.e. the system with unbounded ran-
dom field satisfying the technical condition
(2), we also obtain the above bound on iy (n)
for almost any disorder configuration and any
N large enough.

Lemma 2.1. There exists a constant C > 0

such that for almost any disorder configura-

tion o and any N large enough,

6061771 _CN¢
MN(U):H 1—|—eam26 ’

IGT]%,

Vn € Qn.

(4)

Proof. By the technical condition (2), there
exists ug > 0 such that E[etolo=l] < 7. We
set

e_‘O‘Z|

Oy =< a: H rppr Ze_CNd

z€TE

2InC’
where C' := K + 1n2 for some K > nC.
Uo

Then, we have

1
P(QN) <P H W > e—C’Nd

:EETJ‘\i,

<P | [T ol > oV

zeTg

vl

. _u d
< inf e 2KN°E H e2law]
u>0

IA
/N
ml

NS
=
=
[
<
=
Q
&
N

< InC'—%2K)N?

Hence,

Y P(Qy) < Y eMITEIONT < oo

N>1 N>1

Then by Borel-Cantelli lemma, for almost ev-
ery disorder configuration «, for all N >
No(a),a ¢ Qn. Moreover, due to the fact
that —|a,| < azn., Vn € Qn, the assertion of
the lemma follows. O



3. GENERALIZED EQUILIBRIUM
BOUNDS

In the proof of! Lemma A.2, all the es-
timates originate from bounding p*(n,) at a
single point x, i.e.

6_2B A eaz—k)\ eZBe/\

1+ e* < () = 1+ extr = 1 4 ¢t
()
if |a,| < B,Vax € Z4. It thus implies the esti-
mate

O™t (ma) < p(ma) < Cpt(ma) — (6)

for all A C A and every disorder configura-
tion.

Now, if the disorder field is unbounded
then we no longer obtain an estimate as (5).
However, the bound (6) still holds true but
for almost all disorder configurations and all
finite subsets A C Z? large enough by apply-
ing the Large deviation estimate (! Lemma
A.1). More precisely,! Lemma A.2 is substi-
tuted by a more generalized one as follows.

Lemma 3.1. Given a nonempty finite sub-
set A C Z¢ of cardinality L and A € R.
We set A :=E (%) ,p = pr(myp) and
a, :=min(p, 1 — p). Then, there exists a con-
stant C' > 0 such that for almost any disorder
configuration o, any L large enough, any sub-
set A C A satisfying KL < |A] < L, where
161n 2 1
w-aa <K <3,
a) C7HAlp < pM(Na) < C|Ap,
b) CYAIL = p) < AIA] - Na) <
ClA‘(l - :0)7
¢c) C7YAla, < p*(Na; Na) < C|Ala,
d) |u(f; Na, )l
< O f lloo min(|Aylaz, /|Aflaz),

for any function f with Ay large
enough, where p := uA(mAf).

Proof. Dueto! Lemma A.1 applied to f(a) =
ea0+)\

Fpnprrss A, for any § > 0 and any
e(x

nonempty finite subset A C Z?, we obtain
P(|u(ma) — A 2 8) < 277N (7)
We set
S:={A:ACAwith KL<|A| <L},
Qr = {3A € §: p(ma) > Cu(ma)},

for a constant C > 2 + 1 and any
161n2 1
(C’ﬁﬁ <K < 3 Therefore, by (7), we
get
> R0 < 3 3 PGP ms) > Cilonn)
L>0 L>0 AeS
C A
<) 2ip ) > FA)+P <=
LZ% ) + P(p(ma) < 5

< Y2 BN ma) ~ A2 (5~ 1)4)
L>0

A

+B((ma) = A< — )

< Z2L(6—ﬁ(0—a)2A2KL_{_e—%A?L) < +00.
L>0

Then, by Borel-Cantelli lemma, for al-
most all disorder configurations «, there ex-
ists Lo(a) such that for all L > Lo(a),a ¢
Qy,. It implies the upper bound of a). For the
lower bound of a), we do the same argument.
Then, the estimate b) easily follows from a).

Let us now verify the estimate c¢). We ob-
tain the upper bound from using the fact that
p*(Na; Na) < p*(Na) and applying a). For
the lower bound, we assume p € [0 ,;] and
consider the set W := {z € A: p*(n,) < 1}



* If [W| > 1|A| then W € S. Hence, we

have

MNANA) =D p i) > Y 1 (03 )
TzEA zeW
= > 1 ) (1 = ()
mGW
Z = Z 2 7790 = (NW)
IEW

1
5C IWlp = CHAlp.

* If [W| < 3|A| then [W¢| > L[A[, ie.
We¢ e S. Hence, we have

MNASNA) =) i aine) =Y M (003 ma)
xeA zeWe
= Z MA(nx)(l _NA(%:))
IEWC
2 a Z 1 - 7736
xGWC
1 A c
= 5# (’W ’ - NWC)
1 c _
> 50 HWe(1 - p) > CAp.

From two cases above, we get
P (Na; Na) > C7YAa,. (8)
Now, given A € S, applying (8) gives us
p*(Na; Na) > CLHA|min(p/, 1 — p'), where

p= p(ma
a), b) then imply the lower bound of c).

). This estimate together with

The estimate d) then follows from a) and

c) similar to the one as presented in' Lemma
A2. O

Lemma 3.2. There exists a constant C' > 0
such that for almost any disorder configura-
tion o, any function f with support Ay large
enough and any subset A C Z¢ large enough,

for all \, N € R,

1 (f) = ()]
< O fllocl ApllY (ma,) — i (ma, )l
(9)
1 (mas Na) = p (ma; Na)|
2|‘A|/‘ |1 (mar) — p(mad)|, YA C A
(10)

For any p, p’ € (0,1),

) (o) — ) (no)| < Clp’ — pl,

(11)
12 (03 m0) — ) (03 m0)| < Clp’ — pl,
(12)
C A
_ < = |y o) )
[IAa(p) — Ao(p)| < o0 =) lp — ™ (my)]
(13)

Proof. Let us first prove (9). By setting p :=
pr(ma,), p' = p (ma,), we can write

, 7 d
(=i 1= [ g s

/Wf“ (f: Na,)A\a, ()lds.  (14)

By Lemma 3.1, for any function f with sup-
port large enough,

2O (5 Nay )|

< Cllfllool Ayl
X min(,u)\Af(s) (mag),1— NAAf(S) (ma,))
= O||llocl ¢ min(s, 1 — ).
Moreover,
1
/
A (8) = B
f M)\Af( )(mAf;NAf)
C
< . Aa,(s) Aa,(s)
mln(,u &7 (mAf)7 1- K & (mAf))
C

min(s,1 —s)



Therefore, for any function f with support

large enough,
21O (f; Nap)Na, ()] < Ol Fllool Agl.

Hence, we obtain (9).

Now we verify (10). Let us observe that

|,U(NA§ Ny NA>| <2 ZL“(UQ:; N 77a:)|

zEA
<2y () (1= p(na))20(n,) — 1]
z€EA
<2y pln)(1 = p(n))
z€EA
= 22#(”3&?”0&) = 2/~L<NA§ NA)' (15)
zeA

We set p := p*(mar),p = p* (myr). By
this setting, we have Ay/(p) = A\, A/ (p') = N
and we can write

[ (ma; Na) — i (ma; Ny)|

7" d \
— g ar(s) - NA)d
‘/ﬁ dsM (ma; Na)ds
ﬁ/
= / O (ma; Na; Na) A ()| ds
p
79
< / Z M O (Np; Ny A (s)ds
5 A
P Aar(s) - ,
S/ 2 B (NA’NA)dS

WHAA’(S) (mA’; mA/)

SN
< =17 —pl
A

and we arrive at (10).

Let us next consider the estimate (11).
With no restriction, we assume that 0 <
1

p < p < 1. Since lim P(Jay| < B) =
Btoo

there exists some constant B > 0 such that

Y

P(|ag| < B) > 1 and we have

x(p) = E MAO(’J)Wo;no)}
r e@0t+Xo(p)
e
e@otAo(p)
—F _]I{\aOKB’} (1+ ea0+AO(p))2]
e@otAo(p)

]I -
{‘0‘0|>B} (1 + eao+)\o(p))2

+E

> P(|ap| < B) min <h(—§), h(§)> :

eB+Xo(p)
(1+65+>\0(P))2

|20 (ng) — p*0®) ()]
d / ? ) (o)
= — s ds’ < ———7ds
‘/p dslu (770) ) X(S)
SC(PI - p)v

and this implies (11).

where h(fB) = . Therefore,

On the other hand, (12) is a simple con-
sequence of (11). In fact, we have

1120 (g3 o) — %) (g3 o)
< | (o) — ) (o)

+ |20 (1)
< Ol (ng) — 120 (o)
<Clp' = pl.

— ) ()]

]

4. ON THE CONTINUITY OF THE
DIFFUSION MATRIX AT THE END
POINTS 0 AND 1

As we can see in the proof of? Theorem
5, Section 11, the assumption on the bound-
edness of the disorder field is essential to de-
scribe (a, D(0)a) and (a, D(1)a) as the limit



of (a,D(p)a) when p | 0 and p T 0, re-
spectively. More concretely, let us go through
that proof. By the boundedness of the ran-
dom field, there exists some constant Cs > 0
such that

> Csp. (16)

Pz = —1 + eam+}\0(p) -

This assertion helps the author to verify
the following inequality

W(p) > CLPEfGR.)

Unfortunately, when the random field is
unbounded, that assertion does not hold true.
Indeed, if there were some constant C3 > 0
such that we have the estimate (16), then by
taking the limit a, | —oo in both sides of
(16), we would get a wrong bound Cs < 0.

Moreover, as we keep looking at that
proof, we can see that the assumption on the
boundedness of the disorder field is also used
to prove the equality (11.35) as follows

lim \y(p) inf E 2(0) (. — no)? 4+ Cp?
i o(p)U(a) [;(u (ne —m0)? + Cp?)

X (Bo 4+ T_oU — U)Q}

I B[ T cp(e™ + ) (B + U~ U)

BED

Namely, one has

, B 1 B 1
AO(p) - X(p) - e0+Xo(p) ’
]E |:(1 + ea0+)\0(p))2:|
and
ero(p) (a0 4 e
1) (n.—mo)* = ( )

(1 + e@oFAa(P))(1 4 exetrolp))”

If —-B <, < B then

e>\0(P)<€O<0 + 6%) \

(p) _ 2
(1+ By = " (e = 10)
e)\o(P)(eOto + eoée)
(1+ e—B+)\0(p))2'

<

Hence, the equality (11.35) follows from
checking that as p — 0,Ao(p) ~ Inp —Inz
and Ay(p) ~ p.

We now claim that it is not necessary to
require the boundedness of the disorder field
in order to obtain the equality (11.35). In fact,
due to the Monotone Convergence Theorem,
we have the following two estimates

1 1
lim =

AL_OOE{ e ] Efeo]’

(1 4 eaoth)2

) (€2 4 e ) (B + T_ U — U)?
)}LlfnooE [ (14 ex0FA)(1 4 ext2)

=E[(e* + e*)(Be + T-eU — U)?].

They immediately imply the equality
(11.35).

Therefore, based on the previous observa-
tions, in order to get the hydrodynamic be-
havior of our system with unbounded disor-
der as the Cauchy problem (3), we just add
another assumption that the diffusion matrix
D(p) has a continuous extension in the closed

interval [0, 1], i.e. we arrive at the assertion of
Theorem 1.1.
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