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TÓM TẮT

Vào năm 2003, Faggionato A. và Martinelli F. đã chứng minh được rằng giới hạn thủy động

lực học của một quá trình loại trừ đơn giản dưới tác động của một trường hỗn độn bị chặn có

thể được mô tả bởi một bài toán Cauchy. Trong bài báo này, ta chỉ ra rằng một kết luận tương

tự cũng đúng nếu trường hỗn độn không bị chặn và phân phối của nó thoả mãn một điều kiện

nào đó.
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ABSTRACT

In 2003, Faggionato A. and Martinelli F. proved that the hydrodynamic behavior of a simple

exclusion process under the influence of a bounded disorder field can be described by a Cauchy

problem. In this paper, we show that a similar conclusion also holds true if the disorder field is

unbounded and satisfies a certain condition on its distribution.
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1. INTRODUCTION AND MAIN

RESULT

A lot of techniques have been developed

so far in order to investigate the hydrody-

namic limit of an interacting particle system

in which each particle moves on an integer lat-

tice. An interacting particle system is said to

have a hydrodynamic limit if for which there

exists a time and space rescaling in which

the conserved quantities evolve according to

a certain partial differential equation. This

partial differential equation is called the hy-

drodynamic equation corresponding with the

system. The simplest and most widely studied

interacting particle system is the simple ex-

clusion process, where a particle sitting on a

site x of the d-dimensional torus Td = Rd/Zd

with unit volume, waits an exponential time

and attempts to jump to the nearest neigh-

bor site y together with the exclusion rule

that forbids the jumps to occupied sites. Fur-

thermore, it is assumed that the total num-

ber of particles is the unique quantity con-

served by the time evolution. We denote by

Td
N := Zd/NZd the corresponding micro-

scopic space and by πN
t the empirical measure

on Td obtained by assigning to each particle
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a mass N−d,

πN
t (dθ) = πN

t (η, dθ) = Av
x∈Td

N

ηx(tN
2)δx/N(dθ)

where Av
x∈Td

N

stands for the spatial average and

ηx is the number of particles at site x. Then

the dynamics is determined by the diffusively

rescaled Markov generator N2LN ,

LNf(η) =
∑
e∈E

∑
x∈Td

N

cx,x+e(η)[f(η
x,x+e)−f(η)],

where E is the canonical basis of the d-

dimensional lattice Zd.

In the above expression, the configuration

ηx,y is obtained from η by exchanging the

values ηx and ηy, the positive and bounded

transition rate cx,y(η) is not only transla-

tion invariant in the sense that cx+z,y+z(η) =

cz,y(τzη), where τzη is the particle configu-

ration translated by z, but also satisfies the

identity cx,y(η) = cy,x(η).

Given a symmetric, finite range and trans-

lation invariant transition probability p(x, y)

on Zd, i.e. p(x, y) = p(0, y−x) =: p(y−x), the

set {x : p(x) > 0} is finite and p(x) = p(−x).

If cx,x+e(η) :=
∑
y∈Zd

p(e+yN),∀x ∈ Td
N ,∀e ∈

E then such a system is called a symmet-

ric simple exclusion process. We denote by

M2 the set of probability measures on Td,

which are absolutely continuous with respect

to Lebesgue measure with density bounded

by 1. Now, let a sequence of probability mea-

sures {µN}N≥1 on ΩN = {0, 1}Td
N be associ-

ated to a function ρ0 on Td in the sense that

under µN , the sequence of empirical mea-

sures πN
0 on Td converges in probability to

ρ0(θ)dθ ∈ M2. Then, it is shown that after

a suitable space and time rescaling, the cor-

responding sequence {PµN

t }N≥1 of the distri-

butions at time t of a symmetric simple ex-

clusion process with the initial measures µN ,

is associated to the density of particles ρ(t, ·)
which is the unique weak solution of the heat

equation

∂tρ(t, θ) =
1

2
∆ρ(t, θ), ρ(0, θ) = ρ0(θ). (1)

More generally, the hydrodynamic behav-

ior of the gradient exclusion process and the

nongradient exclusion process are also ob-

tained. For a more comprehensive view, we

recommend2 Section 7.

In1, Faggionato A. and Martinelli F.

study the hydrodynamic behavior of a simple

exclusion process under the influence of an

external random field. The disorder field α is

given by independent identically distributed

random variables with |αx| ≤ B, ∀x ∈ Zd. Let

us describe the dynamics. Given a disorder

configuration α and a subset Λ of Zd, they de-

fine the grand canonical Gibbs measure µα,λ
Λ

on {0, 1}Λ associated with the chemical po-

tential λ ∈ R as the product measure

µα,λ
Λ (η) =

∏
x∈Λ

e(αx+λ)ηx

1 + eαx+λ

and the corresponding canonical measure ναΛ,ρ
with density ρ as

ναΛ,ρ(·) = µα,λ
Λ (·|mΛ = ρ),

where the particle density mΛ =
1

|Λ|
∑
x∈Λ

ηx.

The positive and bounded transition rate

cαx,y(η) depending on the disorder configura-

tion (αx, αy) is not only translation invariant,

i.e.

cτzαx,y (τzη) = cαx+z,y+z(η),∀z ∈ Zd,

3



where τzα, τzη is the disorder and particle

configuration translated by z, but also satis-

fies the identity cαx,y(η) = cαy,x(η). Moreover,

it satisfies the detailed balance condition with

respect to the Gibbs measure µα,λ
Λ , i.e.

cαx,y(η) = cαx,y(η
x,y)e−(αx−αy)(ηx−ηy).

Then, the lattice gas with Kawasaki dy-

namics is a continuous time Markov chain de-

termined by the diffusively rescaled Markov

generator N2Lα
N , where Lα

N := Lα
Td

N
and for

all Λ ⊂ Zd,

Lα
Λf(η) =

∑
e∈E

∑
x∈Λ

cαx,x+e(η)[f(η
x,x+e)−f(η)].

Since the present system does not satisfy

the gradient condition, except the trivial case

when the disorder field is constant, they apply

the classical approach, i.e. looking for a gen-

eralized Fick’s law to establish the hydrody-

namic limit of a disordered nongradient sys-

tem but with a slight modification. Namely,

they are interested in the limit

lim
l↑∞

(2l)−dE[µα,λ0(ρ)

(
∑

|x|≤l−
√
l

τxf, (−Lα
Λl
)−1

∑
|x|≤l−

√
l

τxg)],

where E stands for the corresponding expec-

tation with respect to the product measure

defined on the disorder configuration space

and λ0(ρ) is the annealed chemical potential

such that E[µα,λ0(ρ)(η0)] = ρ.

By the theory of closed and exact forms

generalized from the ones for the nondis-

ordered and nongradient system, it can be

proved that the above limit exists and de-

fines the semi-inner product Vρ(f, g). On the

other hand, the subspace {
∑
e∈E

aej
α
0,e +Lα

Zdg :

a ∈ Rd, g ∈ G} is dense in G endowed

with the semi-inner product Vρ, c.f.1 Sec-

tion 7.1, where the instantaneous current

jαx,y(η) = cαx,y(η)(ηx − ηy) defined as the dif-

ference between the rate at which a particle

jumps from x to y and the rate at which

a particle jumps from y to x, G stands for

the space of local and bounded functions on

[−B,B]Z
d × {0, 1}Zd

, and G is the space of

mean-zero functions g ∈ G with respect to

all canonical measures on some cube. Never-

theless, ηe − η0 /∈ G because of the disorder

field, hence {ηe−η0}e∈E no longer forms a ba-

sis of LαG⊥. Therefore, they try to consider

the difference

ηe − η0 − ναΛn,mn(η)
(ηe − η0).

Similar to the one considered in4, it can

be proved that for each e ∈ E , the sequence

of these differences is Cauchy in G with the

semi-norm V
1/2
ρ and that the limit points of

these sequences with e varying in E form a

basis of LαG⊥. Then the current jαx,x+e can

be written as the sum of some negligible fluc-

tuation τxLαg and

−
∑
e′∈E

De,e′(ρ)τx(ηe′−η0−ναΛn,mn(η)
(ηe′−η0))

for some d× d matrix D(ρ).

In order to get a generalized Fick’s law,

it remains to show the negligibility of the

term τx(ν
α
Λn,mn(η)

(ηe − η0)),∀x ∈ Td
N . Unfor-

tunately, in the presence of the disorder field,

||ναΛn,mn(η)
(ηe − η0)||∞ = O(1),∀n.Therefore,

Faggionato and Martinelli considered the gra-

dient of the density in two large adjacent

cubes in the hope that the fluctuations are

small. This problem has already solved by

Faggionato and Martinelli as long as d ≥ 3

in1.
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They finally arrive at the main conclusion

on the hydrodynamic limit of a system with

the bounded disorder. Namely, in dimension

larger than 2, for almost every disorder con-

figuration, by rescaling space and time diffu-

sively, the hydrodynamic equation is the non-

linear parabolic equation

∂tρ(t, θ) = ∇(D(ρ(t, θ))∇ρ(t, θ)),

ρ(0, θ) = ρ0(θ),

where the deterministic diffusion matrix D

can be described by the following variational

characterization, for any a ∈ Rd,

(a,D(ρ)a) =
1

2χ(ρ)
inf
g∈G

∑
e∈E

E
[
µα,λ0(ρ)

(
cα0,e

(
ae(ηe − η0) +∇0,e

( ∑
x∈Zd

τxg
))2)]

where χ(ρ) = E[µα,λ0(ρ)(η0) − µα,λ0(ρ)(η0)
2]

and ∇x,yg(α, η) = g(α, ηx,y) − g(α, η). Fur-

thermore, Faggionato and Martinelli also

prove that D(·) is positive, bounded and con-

tinuous in (0, 1). That hydrodynamic equa-

tion is obtained under the assumption that

D(ρ) has a continuous extension in the closed

interval [0, 1]. A few years later on, in3, Quas-

tel proved that this diffusion matrix D is ac-

tually continuous in the closed interval [0, 1].

The above conclusion on the hydrody-

namic behavior of a disordered system has

been obtained as long as the disorder field

is bounded. A natural question posed here

is that whether that conclusion holds true if

the random field is unbounded. In this pa-

per, we will indicate that a similar conclu-

sion also holds true if the disorder field is

unbounded and satisfies a certain condition

on its distribution. Let us consider the disor-

der field given by independent identically dis-

tributed random variables satisfying the tech-

nical condition that there exists some u > 0

such that for all x ∈ Zd,E[eu|αx|] < +∞.

Then, under the assumption that the diffu-

sion matrix D has a continuous extension in

the closed interval [0, 1], in dimension larger

than 2, for almost every disorder configura-

tion, by rescaling space and time diffusively,

the macroscopic evolution of the system with

this new disorder field is described by the

nonlinear parabolic equation as above.

More precisely, let us present the main re-

sult as follows.

Theorem 1.1. Let d ≥ 3, T > 0. Let the dis-

order field be given by iid random variables

satisfying the technical condition

∃u > 0 such that ∀x ∈ Zd,E[eu|αx|] < +∞.

(2)

Assume that the diffusion matrix D de-

fined as in1 Theorem 2.1 for ρ ∈ (0, 1) has

a continuous extension in the closed inter-

val [0, 1]. Consider a sequence of probability

measures {µN}N≥1 on ΩN associated to the

macroscopic profile ρ0(θ)dθ ∈ M2. Then for

almost every disorder configuration α, any

t ∈ [0, T ], the sequence of probability mea-

sures {Pα,µN

t }N≥1 is associated to the macro-

scopic profile ρ(t, θ)dθ ∈ M2 whose density is

the unique weak solution ρ ∈ C([0, T ],M2) of

the Cauchy problem{
∂tρ(t, θ) = ∇(D(ρ(t, θ))∇ρ(t, θ))

ρ(0, θ) = ρ0(θ).
(3)

and satisfying the energy estimate∫ T

0

∫
Td

|∇ρ(t, θ)|2dθdt < ∞.
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This result follows from repeating the

proof for the case of bounded random field

and replacing the arguments where the

boundedness is used by the different ones.

For this purpose, it is enough to deal with

all the estimates involved in the boundedness

of the random field we have considered above.

Namely, they are the estimate on the entropy

H(PµN |PµN ), the equilibrium bounds and the

results applying them as well as the descrip-

tion of (a,D(0)a), (a,D(1)a) as the limit of

(a,D(ρ)a) when ρ ↓ 0 and ρ ↑ 1, respectively.

We will carry them out with more details in

the following three sections.

2. ESTIMATE ON THE ENTROPY

As mentioned in1 Section 4, if |αx| ≤ B, ∀x ∈
Zd then there exists some constant C(B) > 0

such that for every disorder configuration α

and any N ≥ 1,

µN (η) =
∏

x∈Td
N

eαxηx

1 + eαx
⩾ e−C(B)Nd

, ∀η ∈ ΩN

and the estimate on the entropy H(PµN |PµN )

will thus follow, i.e. ∃C > 0 such that

H(PµN |PµN ) ≤ CNd.

Let us now show that for the present

model, i.e. the system with unbounded ran-

dom field satisfying the technical condition

(2), we also obtain the above bound on µN (η)

for almost any disorder configuration and any

N large enough.

Lemma 2.1. There exists a constant C > 0

such that for almost any disorder configura-

tion α and any N large enough,

µN (η) =
∏

x∈Td
N

eαxηx

1 + eαx
≥ e−CNd

, ∀η ∈ ΩN .

(4)

Proof. By the technical condition (2), there

exists u0 > 0 such that E[eu0|αx|] ≤ C ′. We

set

QN :=

α :
∏

x∈Td
N

e−|αx|

1 + eαx
≥ e−CNd


where C := K + ln 2 for some K >

2 lnC ′

u0
.

Then, we have

P(QN ) ≤ P

 ∏
x∈Td

N

1

2e2|αx|
≥ e−CNd


≤ P

 ∏
x∈Td

N

e2|αx| ≥ eKNd


≤ inf

u≥0
e−

u
2
KNdE


 ∏

x∈Td
N

e2|αx|

u
2


= inf

u≥0

(
e−

u
2
KE[eu|αx|]

)Nd

≤
(
e−

u0
2
KE[eu0|αx|]

)Nd

≤ e(lnC′−u0
2
K)Nd

.

Hence,∑
N≥1

P(QN ) ≤
∑
N≥1

e(lnC′−u0
2
K)Nd

< +∞.

Then by Borel-Cantelli lemma, for almost ev-

ery disorder configuration α, for all N ≥
N0(α), α /∈ QN . Moreover, due to the fact

that −|αx| ≤ αxηx,∀η ∈ ΩN , the assertion of

the lemma follows.
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3. GENERALIZED EQUILIBRIUM

BOUNDS

In the proof of1 Lemma A.2, all the es-

timates originate from bounding µλ(ηx) at a

single point x, i.e.

e−2Beλ

1 + eλ
≤ µλ(ηx) =

eαx+λ

1 + eαx+λ
≤ e2Beλ

1 + eλ
(5)

if |αx| ≤ B, ∀x ∈ Zd. It thus implies the esti-

mate

C−1µλ(mΛ) ≤ µλ(m∆) ≤ Cµλ(mΛ) (6)

for all ∆ ⊂ Λ and every disorder configura-

tion.

Now, if the disorder field is unbounded

then we no longer obtain an estimate as (5).

However, the bound (6) still holds true but

for almost all disorder configurations and all

finite subsets Λ ⊂ Zd large enough by apply-

ing the Large deviation estimate (1 Lemma

A.1). More precisely,1 Lemma A.2 is substi-

tuted by a more generalized one as follows.

Lemma 3.1. Given a nonempty finite sub-

set Λ ⊂ Zd of cardinality L and λ ∈ R.
We set A := E

(
eα0+λ

1+eα0+λ

)
, ρ := µλ(mΛ) and

aρ := min(ρ, 1− ρ). Then, there exists a con-

stant C > 0 such that for almost any disorder

configuration α, any L large enough, any sub-

set ∆ ⊂ Λ satisfying KL ≤ |∆| ≤ L, where
16 ln 2

(C−2)2A2 < K < 1
2 ,

a) C−1|∆|ρ ≤ µλ(N∆) ≤ C|∆|ρ,

b) C−1|∆|(1 − ρ) ≤ µλ(|∆| − N∆) ≤
C|∆|(1− ρ),

c) C−1|∆|aρ ≤ µλ(N∆;N∆) ≤ C|∆|aρ,

d) |µλ(f ;N∆f
)|

≤ C∥f∥∞min(|∆f |aρ,
√
|∆f |aρ),

for any function f with ∆f large

enough, where ρ := µλ(m∆f
).

Proof. Due to1 Lemma A.1 applied to f(α) =
eα0+λ

1 + eα0+λ
− A, for any δ > 0 and any

nonempty finite subset Λ ⊂ Zd, we obtain

P(|µλ(mΛ)−A| ≥ δ) ≤ 2e−
1
4
δ2|Λ|. (7)

We set

S := {∆ : ∆ ⊂ Λ with KL ≤ |∆| ≤ L} ,

QL :=
{
∃∆ ∈ S : µλ(m∆) > Cµλ(mΛ)

}
,

for a constant C > 2 +
4
√
2 ln 2

A
and any

16 ln 2

(C − 2)2A2
< K <

1

2
. Therefore, by (7), we

get∑
L≥0

P(QL) ≤
∑
L≥0

∑
∆∈S

P(µλ(m∆) > Cµλ(mΛ))

≤
∑
L≥0

2L[P(µλ(m∆) ≥
C

2
A) + P(µλ(mΛ) ≤

A

2
)]

≤
∑
L≥0

2L[P(µλ(m∆)−A ≥ (
C

2
− 1)A)

+ P(µλ(mΛ)−A ≤ −A

2
)]

≤
∑
L≥0

2L(e−
1
16

(C−a)2A2KL + e−
1
16

A2L) < +∞.

Then, by Borel-Cantelli lemma, for al-

most all disorder configurations α, there ex-

ists L0(α) such that for all L ≥ L0(α), α /∈
QL. It implies the upper bound of a). For the

lower bound of a), we do the same argument.

Then, the estimate b) easily follows from a).

Let us now verify the estimate c). We ob-

tain the upper bound from using the fact that

µλ(N∆;N∆) ≤ µλ(N∆) and applying a). For

the lower bound, we assume ρ ∈ [0, 12 ] and

consider the set W :=
{
x ∈ Λ : µλ(ηx) ≤ 1

2

}
.
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⋆ If |W | ≥ 1
2 |Λ| then W ∈ S. Hence, we

have

µλ(NΛ;NΛ) =
∑
x∈Λ

µλ(ηx; ηx) ≥
∑
x∈W

µλ(ηx; ηx)

=
∑
x∈W

µλ(ηx)(1− µλ(ηx))

≥ 1

2

∑
x∈W

µλ(ηx) =
1

2
µλ(NW )

≥ 1

2
C−1|W |ρ ≥ C−1|Λ|ρ.

⋆ If |W | < 1
2 |Λ| then |W c| ≥ 1

2 |Λ|, i.e.
W c ∈ S. Hence, we have

µλ(NΛ;NΛ) =
∑
x∈Λ

µλ(ηx; ηx) ≥
∑
x∈W c

µλ(ηx; ηx)

=
∑
x∈W c

µλ(ηx)(1− µλ(ηx))

≥ 1

2

∑
x∈W c

µλ(1− ηx)

=
1

2
µλ(|W c| −NW c)

≥ 1

2
C−1|W c|(1− ρ) ≥ C−1|Λ|ρ.

From two cases above, we get

µλ(NΛ;NΛ) ≥ C−1|Λ|aρ. (8)

Now, given ∆ ∈ S, applying (8) gives us

µλ(N∆;N∆) ≥ C−1|∆|min(ρ′, 1− ρ′), where

ρ′ := µλ(m∆). This estimate together with

a), b) then imply the lower bound of c).

The estimate d) then follows from a) and

c) similar to the one as presented in1 Lemma

A.2.

Lemma 3.2. There exists a constant C > 0

such that for almost any disorder configura-

tion α, any function f with support ∆f large

enough and any subset Λ ⊂ Zd large enough,

for all λ, λ′ ∈ R,

|µλ′
(f)− µλ(f)|
≤ C∥f∥∞|∆f ||µλ′

(m∆f
)− µλ(m∆f

)|,
(9)

|µλ′
(mΛ;NΛ)− µλ(mΛ;NΛ)|

≤ 2|Λ′|
|Λ|

|µλ′
(mΛ′)− µλ(mΛ′)|,∀Λ′ ⊂ Λ.

(10)

For any ρ, ρ′ ∈ (0, 1),

|µλ0(ρ′)(η0)− µλ0(ρ)(η0)| ≤ C|ρ′ − ρ|,
(11)

|µλ0(ρ′)(η0; η0)− µλ0(ρ)(η0; η0)| ≤ C|ρ′ − ρ|,
(12)

|λΛ(ρ)− λ0(ρ)| ≤
C

ρ(1− ρ)
|ρ− µλ0(ρ)(mΛ)|.

(13)

Proof. Let us first prove (9). By setting ρ :=

µλ(m∆f
), ρ′ := µλ′

(m∆f
), we can write

|µλ′
(f)− µλ(f)| =

∣∣∣∫ ρ′

ρ

d

ds
µλ∆f

(s)(f)ds
∣∣∣

≤
∫ ρ′

ρ

|µλ∆f
(s)(f ;N∆f

)λ′
∆f

(s)|ds. (14)

By Lemma 3.1, for any function f with sup-

port large enough,

|µλ∆f
(s)(f ;N∆f

)|
≤ C∥f∥∞|∆f |

×min(µλ∆f
(s)(m∆f

), 1− µλ∆f
(s)(m∆f

))

= C∥f∥∞|∆f |min(s, 1− s).

Moreover,

λ′
∆f

(s) =
1

µλ∆f
(s)(m∆f

;N∆f
)

≤ C

min(µλ∆f
(s)(m∆f

), 1− µλ∆f
(s)(m∆f

))

=
C

min(s, 1− s)
.

8



Therefore, for any function f with support

large enough,

|µλ∆f
(s)(f ;N∆f

)λ′
∆f

(s)| ≤ C∥f∥∞|∆f |.

Hence, we obtain (9).

Now we verify (10). Let us observe that

|µ(NΛ;NΛ;NΛ)| ≤ 2
∑
x∈Λ

|µ(ηx; ηx; ηx)|

≤ 2
∑
x∈Λ

µ(ηx)(1− µ(ηx))|2µ(ηx)− 1|

≤ 2
∑
x∈Λ

µ(ηx)(1− µ(ηx))

= 2
∑
x∈Λ

µ(ηx; ηx) = 2µ(NΛ;NΛ). (15)

We set ρ̃ := µλ(mΛ′), ρ̃′ := µλ′
(mΛ′). By

this setting, we have λΛ′(ρ̃) = λ, λΛ′(ρ̃′) = λ′

and we can write

|µλ′
(mΛ;NΛ)− µλ(mΛ;NΛ)|

=
∣∣∣∫ ρ̃′

ρ̃

d

ds
µλΛ′(s)(mΛ;NΛ)ds

∣∣∣
≤

∫ ρ̃′

ρ̃

|µλΛ′(s)(mΛ;NΛ;NΛ)λΛ′(s)|ds

≤
∫ ρ̃′

ρ̃

2

|Λ|
µλΛ′(s)(NΛ;NΛ)λΛ′(s)ds

≤
∫ ρ̃′

ρ̃

2

|Λ|
µλΛ′(s)(NΛ′ ;NΛ′)

µλΛ′(s)(mΛ′ ;mΛ′)
ds

≤ 2|Λ′|
|Λ|

|ρ̃′ − ρ̃|.

and we arrive at (10).

Let us next consider the estimate (11).

With no restriction, we assume that 0 <

ρ < ρ′ < 1. Since lim
B̃↑∞

P(|α0| ≤ B̃) = 1,

there exists some constant B̃ > 0 such that

P(|α0| ≤ B̃) ≥ 1
2 and we have

χ(ρ) = E
[
µλ0(ρ)(η0; η0)

]
= E

[
eα0+λ0(ρ)(

1 + eα0+λ0(ρ)
)2
]

= E

[
I{|α0|⩽B̃}

eα0+λ0(ρ)(
1 + eα0+λ0(ρ)

)2
]

+ E

[
I{|α0|>B̃}

eα0+λ0(ρ)(
1 + eα0+λ0(ρ)

)2
]

≥ P(|α0| ≤ B̃)min
(
h(−B̃), h(B̃)

)
,

where h(β) = eβ+λ0(ρ)

(1+eβ+λ0(ρ))
2 . Therefore,

|µλ0(ρ′)(η0)− µλ0(ρ)(η0)|

=
∣∣∣∫ ρ′

ρ

d

ds
µλ0(s)(η0)ds

∣∣∣ ≤ ∫ ρ′

ρ

µλ0(s)(η0)

χ(s)
ds

≤C(ρ′ − ρ),

and this implies (11).

On the other hand, (12) is a simple con-

sequence of (11). In fact, we have

|µλ0(ρ′)(η0; η0)− µλ0(ρ)(η0; η0)|
≤ |µλ0(ρ′)(η0)− µλ0(ρ)(η0)|

+ |µλ0(ρ′)(η0)
2 − µλ0(ρ)(η0)

2|
≤ C|µλ0(ρ′)(η0)− µλ0(ρ)(η0)|
≤ C|ρ′ − ρ|.

4. ON THE CONTINUITY OF THE

DIFFUSION MATRIX AT THE END

POINTS 0 AND 1

As we can see in the proof of3 Theorem

5, Section 11, the assumption on the bound-

edness of the disorder field is essential to de-

scribe (a,D(0)a) and (a,D(1)a) as the limit

9



of (a,D(ρ)a) when ρ ↓ 0 and ρ ↑ 0, re-

spectively. More concretely, let us go through

that proof. By the boundedness of the ran-

dom field, there exists some constant C3 > 0

such that

px :=
eαx+λ0(ρ)

1 + eαx+λ0(ρ)
≥ C3ρ. (16)

This assertion helps the author to verify

the following inequality

Ψ(ρ) ≥ C1ρ
2E[ĝ20,e].

Unfortunately, when the random field is

unbounded, that assertion does not hold true.

Indeed, if there were some constant C3 > 0

such that we have the estimate (16), then by

taking the limit αx ↓ −∞ in both sides of

(16), we would get a wrong bound C3 ≤ 0.

Moreover, as we keep looking at that

proof, we can see that the assumption on the

boundedness of the disorder field is also used

to prove the equality (11.35) as follows

lim
ρ↓0

λ′
0(ρ) inf

U(α)
E
[∑

e∈E
(µλ0(ρ)(ηe − η0)

2 + Cρ2)

× (βe + τ−eU − U)2
]

=

inf
U(α)

E
[∑

e∈E(e
α0 + eαe)(βe + τ−eU − U)2

]
E[eα0 ]

.

Namely, one has

λ′
0(ρ) =

1

χ(ρ)
=

1

E
[

eα0+λ0(ρ)

(1 + eα0+λ0(ρ))2

] ,
and

µλ0(ρ)(ηe−η0)
2 =

eλ0(ρ)(eα0 + eαe)

(1 + eα0+λ0(ρ))(1 + eαe+λ0(ρ))
.

If −B ≤ αx ≤ B then

eλ0(ρ)(eα0 + eαe)

(1 + eB+λ0(ρ))2
≤ µλ0(ρ)(ηe − η0)

2

≤ eλ0(ρ)(eα0 + eαe)

(1 + e−B+λ0(ρ))2
.

Hence, the equality (11.35) follows from

checking that as ρ → 0, λ0(ρ) ∼ ln ρ − ln z

and λ′
0(ρ) ∼ ρ.

We now claim that it is not necessary to

require the boundedness of the disorder field

in order to obtain the equality (11.35). In fact,

due to the Monotone Convergence Theorem,

we have the following two estimates

lim
λ↓−∞

1

E
[

eα0

(1 + eα0+λ)2

] =
1

E[eα0 ]
,

lim
λ↓−∞

E
[
(eα0 + eαe)(βe + τ−eU − U)2

(1 + eα0+λ)(1 + eαe+λ)

]
= E[(eα0 + eαe)(βe + τ−eU − U)2].

They immediately imply the equality

(11.35).

Therefore, based on the previous observa-

tions, in order to get the hydrodynamic be-

havior of our system with unbounded disor-

der as the Cauchy problem (3), we just add

another assumption that the diffusion matrix

D(ρ) has a continuous extension in the closed

interval [0, 1], i.e. we arrive at the assertion of

Theorem 1.1.
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