

Growth of Cu₂O/TiO₂ heterojunction and its photoelectrochemical properties

Dengyu Yu, Dengji Yu, Jun Dai, Yunfang Zhang, Fang Wang ^{*}

Department of Physics, School of Science, Jiangsu University of Science and Technology, Zhenjiang 212003, China

ARTICLE INFO

Article history:

Received 2 November 2019

Received in revised form 2 December 2019

Accepted 21 December 2019

Available online 23 December 2019

Keywords:

TiO₂ nanoring/nanotube

Cu₂O

Thermal decomposition

Heterojunction

Photoelectrochemical

ABSTRACT

In this paper, the Cu₂O/TiO₂ heterostructure is composed of Cu₂O particles and TiO₂ nanoring/nanotube (R/T). The high order TiO₂(R/T) were prepared by two-step anodization. With small diameter Cu₂O particles deposited on the TiO₂(R/T) by a simple thermal decomposition process, the photoelectrochemical properties of the TiO₂(R/T) has been enhanced. As-prepared samples were characterized by scanning electron microscopy, X-ray diffraction and energy dispersive spectrometer. The photoelectrochemical behavior of the samples was studied through electrochemical impedance spectroscopy and photo-to-current conversion efficiency measurement. It was found that the combination of Cu₂O with TiO₂(R/T) could not only improve the carrier separation efficiency, but also extend the optical response range of TiO₂(R/T) to the visible light region. Finally, the mechanism that Cu₂O can enhance the photoelectrochemical properties of TiO₂(R/T) is discussed.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

TiO₂ has great potential to solve energy and environmental problems. However, due to its narrow light absorption band and high carrier recombination rate, the use of TiO₂ has been limited [1]. Researchers usually improve its photoelectrochemical properties by modifying or adding captors. Metal doping or noble metal surface modification was usually used for the performance improvement of TiO₂ [2,3]. Recently, experiments have shown that the charge separation efficiency can be improved by heterojunctions formed between TiO₂ NTs and narrow bandgap semiconductors like CdSe, CdS, Bi₂S₃ and so on [4–6].

The structure of TiO₂ nanotube combined with TiO₂ nanoring has been founded to have better photoelectrochemical properties [7]. It has better light collection cross section and contact area with solution. With the bandwidth of 1.9–2.2 eV and the characteristics of non-toxicity, abundant reserves, low price, Cu₂O has great potential in the development and utilization of sunlight. However, Cu₂O photocarriers are unstable and its carriers are very easy to be recombined, which limits its application [8].

Theoretically, Cu₂O can broaden the absorption spectrum of TiO₂ from the ultraviolet region to the visible region, and the band positions can effectively transfer electrons [9]. However, the size of Cu₂O particles made by traditional method is so large that it blocks

the pores of TiO₂ NTs, which restrict TiO₂ NTs to exerting its advantages. Recently, a new method of preparing Cu₂O particles by thermal decomposition can solve it [10].

2. Experimental section

2.1. Preparation of TiO₂(R/T) combined structure

TiO₂(R/T) is obtained from Ti foil by two-step anodic oxidation (see Scheme 1 in [Supporting Information](#)). Anodic oxidation was carried out in a glycol system containing 0.25 wt% NH₄F and 1.5 vol% deionized water with a two-electrode system. After the anodizing, the film formed by the primary oxidation was removed and then the second anodic oxidation was carried out. After 2 h, the samples were cleaned by ultrasonic with ethanol and deionized water respectively. Finally, the synthetic TiO₂(R/T) arrays can be achieved by heating to 450 °C for crystallization.

2.2. Synthesis of Cu₂O-TiO₂ heterojunction

The Cu₂O-decorated TiO₂(R/T) arrays can be obtained by thermal decomposition of Cu(Ac)₂(see Scheme 2 in [Supporting Information](#)) [10]. First, the previously prepared TiO₂(R/T) was immersed in solution of 1 mmol/L of Cu(Ac)₂ for 1 h, and then the samples were rinsed with deionized water at 45 °C and dried at 70 °C. The next step is to decompose the Cu(Ac)₂ molecules into Cu₂O with a temperature of 400 °C for 2.5 h.

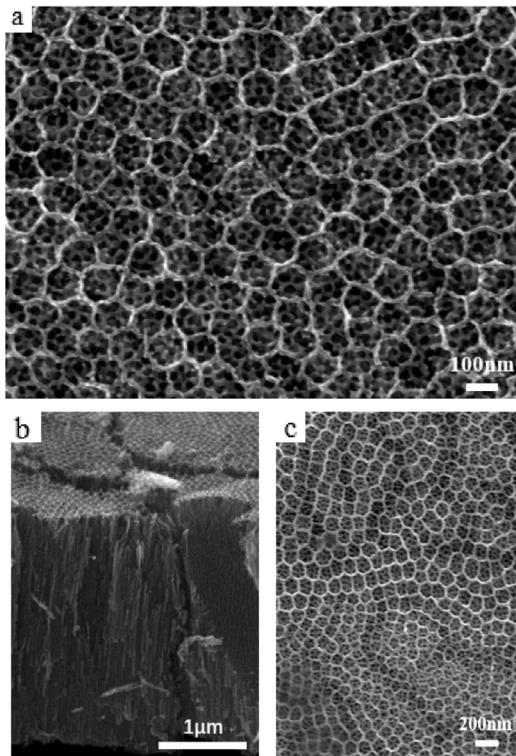
* Corresponding author.

E-mail address: wangfang@just.edu.cn (F. Wang).

2.3. Photoelectrochemical measurements

Photoelectrochemical measurements were performed using the typical three-electrode system of an CHI660E electrochemical workstation (see Scheme 3 in [Supporting Information](#)).

2.4. Characterization


The morphology and structure of the $\text{Cu}_2\text{O}-\text{TiO}_2(\text{R/T})$ were observed by SEM (ZEISS, the acceleration voltage was 15 kV). An energy dispersive spectrometer (EDX) fitter to the SEM and the mapping corresponding SEM image areas were applied for elemental analysis. The samples are also characterized by XRD (X-ray diffraction) patterns.

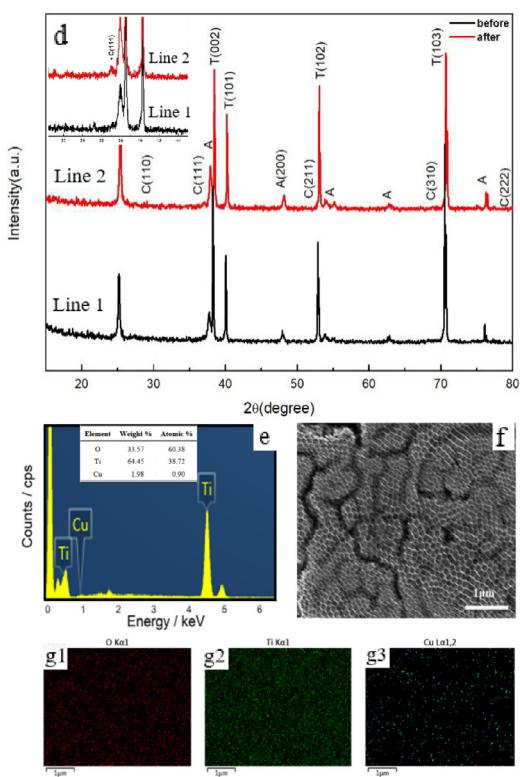
3. Results and discussion

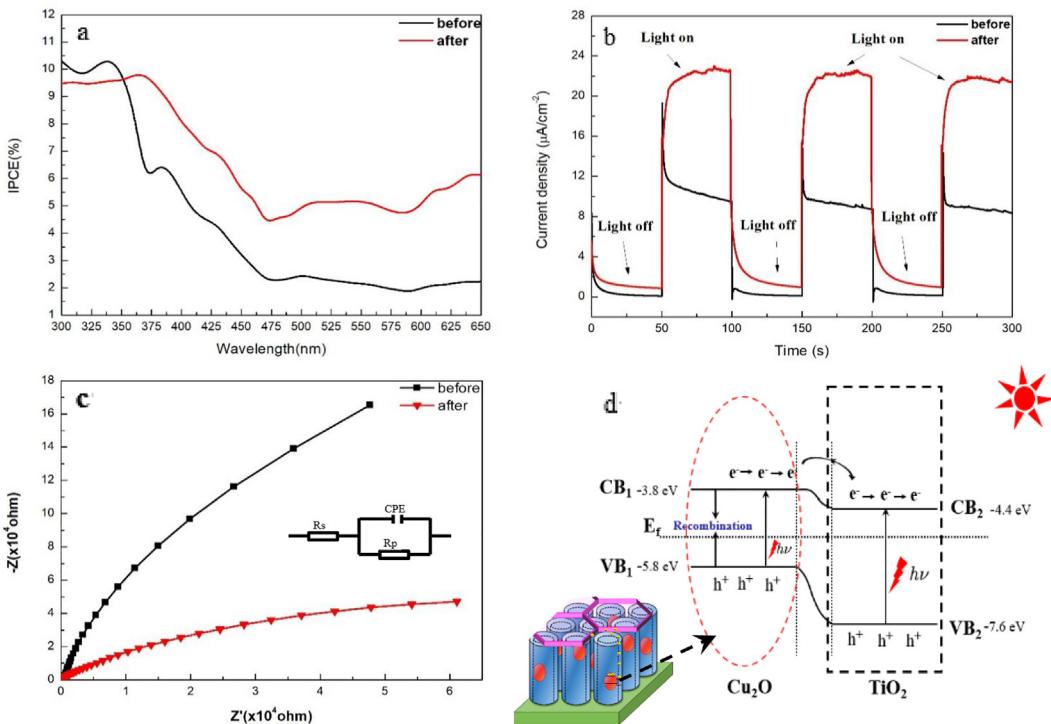
3.1. General characterization

Fig. 1a presents an array of tubular structure under the nanoring. The nanoring thickness is smaller than that of nanotubes (**Fig. 1b**). Each nanoring has a diameter of about 100 nm and a wall thickness of 10 nm. TiO_2 nanotube diameter was about 40 nm and the length was about 3.2 μm . Since the concentration of $\text{Cu}(\text{Ac})_2$ solution is relatively low, and most of them were attached to the inner wall of NTs, it is not easy to find Cu_2O particles in **Fig. 1c**. EDX and XRD was used to further characterize the samples [11].

Fig. 1d shows the XRD pattern (see Scheme 4 in [Supporting Information](#)). Compared with the pure $\text{TiO}_2(\text{R/T})$ structure, a small diffraction peak appeared in the $\text{Cu}_2\text{O}-\text{TiO}_2(\text{R/T})$ at the position of 36.54 diffraction Angle (**Fig. 1d**. Inset image), which indicates that the sample contains Cu_2O .

Fig. 1. a SEM for $\text{TiO}_2(\text{R/T})$. b Cross section view of a. c SEM for $\text{Cu}_2\text{O}-\text{TiO}_2(\text{R/T})$. d XRD of $\text{TiO}_2(\text{R/T})$ (Line 1 A, anatase; T, titanium; C, cuprous oxide) and $\text{Cu}_2\text{O}-\text{TiO}_2(\text{R/T})$ (Line 2). Insert plot refers to a larger view of the area around C(1 1). e Corresponding EDX spectrum of f. f Top-view SEM of $\text{Cu}_2\text{O}-\text{TiO}_2(\text{R/T})$. g Corresponding area element mapping of f (g1 O, g2 Ti, and g3 Cu).


EDX results shows the result after thermal decomposition of 1 mmol/L $\text{Cu}(\text{Ac})_2$ (**Fig. 1e**). This data further indicates the existence of Cu and it is in agreement with the XRD results. Figure g1, g2 and g3 are mapping of O, Ti and Cu elements respectively, which is consistent with the results in **Fig. 1e**.


3.2. Optical property

The IPCE of $\text{TiO}_2(\text{R/T})$ has two obvious peaks in the wavelength of about 340 nm and 385 nm (**Fig. 2a**). The peak around 385 nm belongs to the TiO_2 in TiO_2 nanotube, and the peak around 340 nm belongs to the TiO_2 nanoring in $\text{TiO}_2(\text{R/T})$ [12]. After the loading of Cu_2O , The IPCE of the sample is enhanced not only in the range of 300–400 nm, but also in the range of visible light above 400 nm. The peak at wavelength of 375 nm (red line) is still caused by $\text{TiO}_2(\text{R/T})$ while the enhancement around 300–400 nm is caused by PN junction between Cu_2O and $\text{TiO}_2(\text{R/T})$ (see [Supporting Information](#)), which can reduce charge recombination. In the visible wavelength part, the enhancement of IPCE mainly comes from the absorption of visible light by Cu_2O .

3.3. Photoelectrochemical properties

Fig. 2b presents the photocurrent density–time characteristics of $\text{TiO}_2(\text{R/T})$ and $\text{Cu}_2\text{O}-\text{TiO}_2(\text{R/T})$. When turn on the light, the photocurrent of $\text{TiO}_2(\text{R/T})$ shows a tendency of rapid attenuation from a high current to a low current, while that of $\text{Cu}_2\text{O}-\text{TiO}_2(\text{R/T})$ shows an upward trend. With the accumulation of time, both of them tend to be stable, and the photocurrent of $\text{TiO}_2(\text{R/T})$ before and after loading Cu_2O is about 9 $\mu\text{A}/\text{cm}^2$ and 23 $\mu\text{A}/\text{cm}^2$ respectively, which indicates that Cu_2O can effectively improve the photoelectrochemical properties of $\text{TiO}_2(\text{R/T})$ by reducing the electron-hole recombination. When turn off the light, the dark current of

Fig. 2. a The IPCE of TiO₂(R/T) (black) and Cu₂O-TiO₂(R/T) (red) respectively. b The photocurrent of TiO₂(R/T) before and after loading Cu₂O respectively. c EIS spectra of TiO₂(R/T) and Cu₂O-TiO₂(R/T) respectively. d The photoelectric schematic diagram of Cu₂O-TiO₂(R/T).

TiO₂(R/T) decreases rapidly, while that of Cu₂O-TiO₂(R/T) decreases exponentially. This is because, Cu₂O-TiO₂(R/T) heterojunction still acts as an obstacle to the electron-hole recombination. In addition, Cu₂O has a wide band gap which leads to a good response to visible light, so the photocurrent of Cu₂O-TiO₂(R/T) can be greatly improved, which is consistent with the result of IPCE.

Fig. 2c is a typical Nyquist plot of TiO₂(R/T) and Cu₂O-TiO₂(R/T). The arc radius of Cu₂O-TiO₂(R/T) is significantly less than that of TiO₂(R/T) and a smaller half arc means faster moving interface charge to electron donors-receptor or photoproduction electron-hole. The inset in Fig. 2c is the equivalent circuit diagram of Cu₂O-TiO₂(R/T). R_s represents the resistance of solution, R_p represents the resistance of transferring charge from the surface of Cu₂O-TiO₂(R/T) to the surface of solution, and CPE represents the constant phase element. Both photocurrent images and EIS spectra reveal that the loading of Cu₂O can give TiO₂(R/T) a better photoelectrochemical properties (see Supporting Information).

Fig. 2d shows the charge separation mechanism diagram of Cu₂O-TiO₂(R/T) photoanode. The improvement of photochemical properties is attributed not only to visible light, but also to charge separation efficiency. Firstly, Cu₂O has a good response to visible light because it is a narrow band gap semiconductor and no requirement for momentum condition. Secondly, with the formation of PN junction between Cu₂O and TiO₂, a potential barrier is formed between Cu₂O and TiO₂. In addition, both the bottom of conduction band and the top of valence band of Cu₂O is higher than that of TiO₂. Therefore, photoexcited electrons will directly transfer from the conduction band of Cu₂O to the conduction band of TiO₂. Meanwhile, the heterojunction can help these photoexcited electrons to transfer quickly, thus inhibiting carrier recombination [13].

4. Conclusions

In general, we successfully prepared the Cu₂O-TiO₂(R/T) heterostructure by means of two-step anodization and thermal

decomposition of Cu(Ac)₂. XRD, SEM and EDX showed the distribution of Cu₂O. Photocurrent images showed that the deposition of Cu₂O can increase the photocurrent of TiO₂(R/T) effectively. The EIS spectrum reflected the electron action between photoanode and dielectric. IPCE spectrum indicated that Cu₂O can broaden the optical response range of TiO₂(R/T) to the visible light region. However, it remains to be studied how much Cu₂O should be combined on TiO₂(R/T) and how the length ratio of TiO₂(R/T) affects the overall heterostructure performance.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This work is supported by Jiangsu Province Science Foundation (BK20160561), Foundation of Jiangsu Educational Committee (Grant No.14KJB140004) and National Natural Science Foundation of China (11874185).

Author contribution statements

Dengyu Yu and Dengji Yu carried out the experiment. Yunfang Zhang helped supervise the project. Fang Wang and Jun Dai conceived of the original idea. All authors discussed the results and contributed to the final manuscript.

Appendix A. Supplementary data

Supplementary data to this article can be found online at <https://doi.org/10.1016/j.matlet.2019.127225>.

References

- [1] S. Kim, J. Yeo, W. Choi, Simultaneous conversion of dye and hexavalent chromium in visible light-illuminated aqueous solution of polyoxometalate as an electron transfer catalyst, *Appl. Catal. B-Environ.* 84 (2008) 148–155, <https://doi.org/10.1016/j.apcatb.2008.03.012>.
- [2] L.L. Kelly, D.A. Rake, P. Schulz, H. Li, P. Winget, H. Kim, P. Ndione, A.K. Sigdel, J. Brédas, J. Berry, S. Graham, O.L.A. Monti, Spectroscopy and control of near-surface defects in conductive thin film ZnO, *J. Phys.-Condens. Mat.* 28 (2016), <https://doi.org/10.1088/0953-8984/28/9/094007>.
- [3] A. Fujishima, X.T. Zhang, D.A. Tryk., TiO₂ photocatalysis and related surface phenomena, *Surf. Sci. Rep.* 63 (2008) 515–582, <https://doi.org/10.1016/j.surfrep.2008.10.001>.
- [4] A.K. Ayal, Z. Zainal, H.N. Lim, et al., Fabrication of CdSe nanoparticles sensitized TiO₂ nanotube arrays via pulse electrodeposition for photoelectrochemical application, *Mater. Res. Bull.* 106 (2018) 257–262, <https://doi.org/10.1016/j.materresbull.2018.05.040>.
- [5] J. Xie, W. Hong, M. Meng, M. Tian, C. Kang, Z. Zhou, C. Chen, Y. Tang, G. Luo, Synthesis and photocatalytic activity of cerium-modified CdS-TiO₂ photocatalyst for the formaldehyde degradation at room temperature, *Z. Anorg. Allg. Chem.* 644 (2018) 1570–1575, <https://doi.org/10.1002/zaac.201800315>.
- [6] Z.C. Guan, X. Wang, P. Jin, Enhanced photoelectrochemical performances of ZnS-Bi₂S₃/TiO₂/WO₃ composite film for photocathodic protection, *Corros. Sci.* 143 (2018) 31–38, <https://doi.org/10.1016/j.corsci.2018.07.037>.
- [7] F. Wang, Y. Liu, W. Dong, M.R. Shen, Z.H. Kang, Tuning TiO₂ photoelectrochemical properties by nanoring/nanotube combined structure, *J. Phys. Chem. C* 115 (2011) 14635–14640, <https://doi.org/10.1021/jp203665j>.
- [8] P.E. de Jongh, D. Vanmaekelbergh, J.J. Kelly, Cu₂O: electrodeposition and characterization, *Chem. Mater.* 11 (1999) 3512–3517, <https://doi.org/10.1021/cm991054e>.
- [9] W. Zhu, B.H. Chong, K. Qin, L. Guan, X. Hou, G.Z. Chen, Cuprous oxide/titanium dioxide nanotube-array with coaxial heterogeneous structure synthesized by multiple-cycle chemical adsorption plus reduction method, *RSC Adv.* 6 (2016) 59160–59168, <https://doi.org/10.1039/C6RA06893F>.
- [10] Y. Liao, P. Deng, X. Wang, D. Zhang, F. Li, Q. Yang, H. Zhang, Z. Zhong, A facile method for preparation of Cu₂O-TiO₂ NTA heterojunction with visible-light photocatalytic activity, *NRL* 13 (2018) 221, <https://doi.org/10.1186/s11671-018-2637-8>.
- [11] Y. Li, Y. Wang, J. Kong, H. Jia, Z. Wang, Synthesis and characterization of carbon modified TiO₂ nanotube and photocatalytic activity on methylene blue under sunlight, *Appl. Surf. Sci.* 344 (2015) 176–180, <https://doi.org/10.1016/j.apsusc.2015.03.085>.
- [12] J. Xue, Q. Shen, W. Liang, X. Liu, B. Xu, Controlled synthesis of coaxial core-shell TiO₂ /Cu₂O heterostructures by electrochemical method and their photoelectrochemical properties, *Mater. Lett.* 92 (2013) 239–242, <https://doi.org/10.1016/j.matlet.2012.10.127>.
- [13] L.Y. Xiang, J. Ya, F.J. Hu, L.X. Li, Z.F. Liu, Fabrication of Cu₂O/TiO₂ nanotube arrays with enhanced visible-light photoelectron catalytic activity, *Appl. Phys. A* 123 (2017) 160, <https://doi.org/10.1007/s00339-017-0799-3>.