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ABSTRACT

This paper proposes interval weight vector and applies it to feature ranking problem. This is an extension
and follow-up to the paper1 in FEDCIS 2022. We would like to compare two methods of using real weight
vector and interval weight vector. Then, we indicate the advantages of the new method and give examples
to illustrate the application of the methods.
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1. Introduction

To express the opinions of a decision maker (DM)
about each pair of alternatives, fuzzy set theory
(Zadeh, 1965)2 or intuitionistic fuzzy set theory
(Atanassov, 1986)3 is recommended. With fuzzy set
theory, decision makers can only express the satis-
faction degree and the dissatisfaction degree. Intu-
itionistic fuzzy values reflect the decision maker’s
opinion more comprehensively, express not only the
satisfaction degree and the dissatisfaction degree but
also the hesitation degree of DM’s opinion. An intu-
itionistic fuzzy preference relation (IFPR) is a ma-
trix of which every element represents the opinions
of the decision makers about each pair of alterna-
tives. There are IFPRs satisfying the additive con-
sistency or multiplicative consistency. With every
IFPR, let’s find out an interval Intuitionistic fuzzy
(IF) weighted vector representing the rank of the
DM’s opinion to the alternatives.

In1, the authors propose the RAFAR method to
rank alternatives in multi-choices decision making
problems. The main idea of RAFAR is building an
IFPR matrix from datas, establishing a linear opti-
mal model and ranking alternatives from this prob-
lem. The algorithm uses the decision making method
in Intuitionistic Fuzzy Theory. The work1 also sup-
plies an experiment and compares with some other
methods. The experimental results are very positive.

However, it reveals cetain shortcomings.
In this paper, we mention about additive consis-

tent IFPR and multiplicative consistent IFPR, pro-
pose features ranking methods based on interval IFV
weighted vectors. We then give an example to illus-
trate and verify the results.

The paper is organized as follows: The second
part is the basic notions, recalling basic definitions
and results available of Fuzzy theory and Intuition-
istic Fuzzy theory. Next, we present Intuitionistic
Fuzzy Preference relation and ranking algorithms.
In section four, the paper shows an example and ap-
plications of the interval weight vector method and
indicates the advantage of this method compared to
the RAFAR in1.

2. Basic notions

2.1. Intuitionistic fuzzy sets and Intuitionis-
tic fuzzy matrices

Fuzzy set (FS) theory which was introduced by
Zadeh2 in 1965 just considers the problems with the
degree of membership and non-membership without
mentioning the degree of hesitation of no decision-
making. The Atanassov’s intuitionistic fuzzy set
(IFS) theory3 considers fully expressing affirmation,
negation and hesitation of decision-makers. There-
fore, with real-life situations, IFS theory solves the
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problems more successfully than FS theory. In this
part, some basic notions related to IFS are recalled.

Definition 1 (IFS3). Let X = {x1, x2, ..., xm} be a
finite universal set. An intuitionistic fuzzy set in X
is a set A = {(xi, µA(xi), νA(xi)) : xi ∈ X}, where
µA(xi), νA(xi) ∈ [0, 1] and 0 ≤ µA(xi) + νA(xi) ≤ 1
for any xi ∈ X. The functions µA : X → [0, 1] and
νA : X → [0, 1] are called the membership and non-
membership functions, respectively.

The value πA(xi) = 1−µA(xi)−νA(xi) is called
the intuitionistic index of the element xi in the set A.
It describes a degree of hesitation (or uncertainty)
whether xi is in A or not. For any xi ∈ X, we have
0 ≤ πA(xi) ≤ 1.

The class of IFS in a universe X is denoted by
IFS(X).

Relations (between two sets X and Y ) in tradi-
tional set theory are defined as subsets of the Carte-
sian product X × Y . It is quite natural to define
intuitionistic fuzzy relations as IFSs in X × Y . If
X = {x1, · · · , xm} and Y = {y1, · · · , yn}, then any
intuitionistic fuzzy relation in X × Y can be repre-
sented by an m × n matrix R = (ρij)m×n, where
ρij = (µij , νij) ∈ F is the IFV describing the mem-
bership and non-membership of (xi, yj) to this rela-
tion.

Definition 2 (Intuitionistic fuzzy matrices - IFM).
Any matrix P of order m × n with values from
F = {(a1, a2) ∈ [0, 1]2 : a1 + a2 ≤ 1} is called
Intuitionistic Fuzzy Matrices. An IFM is said to
be square intuitionistic fuzzy matrix (SIFM) if the
number of rows is equal to the number of columns.
Moreover:

1. An identity IFM I of order n is the square intu-
itionistic fuzzy matrix (SIFM) of order n with
all diagonal entries (1, 0) and non-diagonal en-
tries (0, 1).

2. A null intuitionistic fuzzy matrix (IFM) O of
order n is the square intuitionistic fuzzy ma-
trix (SIFM) of order n with all entries (0, 1).

The concepts of intuitionistic fuzzy relation and
intuitionistic fuzzy matrix (IFM) have been stud-
ied by many authors4,5,6. IFM is a generalization
of Fuzzy Matrix and has been useful in dealing
with decision-making, clustering analysis, relational
equations, etc.

2.2. Fuzzy Preference Relation

Let X = {x1, · · · , xn}, n ≥ 3 be a finite set of
objects or alternatives. Decision makers (DMs) com-
pare each pair of alternatives so as to express their
opinions or preferences on such a set.

Recall that any set R ⊂ X × X is called a re-
lation on X. The relation R ⊂ X × X is called an

(partial) order on X if it is reflexive, antisymmet-
ric and transitive. In addition, R is a linear order
if for any x, y ∈ X, either (x, y) ∈ R or (y, x) ∈ R.
We can extend the concept of linear order into fuzzy
prefenerence relation and intuitionistic fuzzy prefer-
ence relation as follows:

Definition 3 (fuzzy preference relation - FPR). A
fuzzy preference relation on X is a fuzzy set on
X × X, which is characterized by a membership
function µP : X × X → [0, 1]. If we denote pij =
µP (xi, xj), then the fuzzy preference relation can
be represented by the n×n matrix P = (pij)i,j=1;n,
satisfying the additive reciprocal conditions, i.e.:

pij + pji = 1 and pii = 1/2.

for all i, j = 1, · · · , n.

The value pij = µP (xi, xj) ∈ [0, 1] is interpreted
as the preference degree of xi over xj . If pij = 1/2,
then we say that there is no difference between xi

and xj , pij = 1 indicates that xi is absolutely better
than xj (traditional preference relation), pij > 1/2

indicates that xi is preferable to xj . Moreover, the
transitive property of a FPR can be expressed by
either additive or multiplicative consistency:

Definition 4 (Additive and multiplicative consitent
FPR (Tanino, 1984)7). Let P = (pij) be a fuzzy
preference relation.

• P is called additively consistent if

pij + pjk + pki =
3

2

for all i, j, k = 1, · · · , n.

• P is called multiplicatively consistent if

pij · pjk · pki = pji · pik · pkj

for all i, j, k = 1, · · · , n.

Notice that if a fuzzy preference relation P =

(pij) is additively consistent and if both pij > 1/2

(xi is preferable to xj) and pjk > 1/2 (xj is prefer-
able to xk) then pki < 1/2, which implies that
pik > 1/2 (xi is preferable to xk). This means the
additively consistent FPRs are also transitive. This
fact is also true for multiplicative consistency.

3. Intuitionistics Fuzzy Preference

Relation and Ranking Algorithms

Usually, the intuitionistic fuzzy preference rela-
tion expresses the opinions of the decision makers
about each pair of choices (alternatives), but we
would like to convert this relation into a linear order
(a ranking list).
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Definition 5 (Intuitionistic Fuzzy Preference Re-
lation - IFPR). An intuitionistic fuzzy preference
relation B on X = {x1, · · · , xn} is defined as a
matrix B = (bij)n×n, where bij = (µij , νij) for
all i, j = 1, 2, · · · , n is an intuitionistic fuzzy value,
composed by the certainty degree µij to which xi is
preferred to xj and the certainty degree νij to which
xi is non-preferred to xj , and πij = 1− µij − νij is
interpreted as the hesitation degree to which xi is
preferred to xj . Moreover, µij and νij satisfy the
following conditions:

µij + νij ≤ 1, µij = νji, µii = νii = 0.5

for all i, j = 1, 2, · · · , n.

For any IFPR B = (bij)n×n, where bij =

(µij , νij) for all i, j = 1, 2, · · · , n, we can define two
FPRs LB = (λij)n×n and UB = (υij)n×n as follows:

λij =


µij if i < j

1
2 if i = j

1− µji if i > j

υij =


1− νij if i < j

1
2 if i = j

νji if i > j

(1)
We call these matrices the lower bound and upper

bound of B. Both LB and UB satisfy the conditions
about FPR and the IFPR B can be interpreted as
a collection of FPR R bounded by LB and UB , i.e.

LB ≤ B ≤ UB

where the relation A ≤ B between matrices A =

(aij) and B = (bij) means aij ≤ bij for all possible
indexes i and j.

3.1. Model for deriving weight vector

The first idea is to assign a weight wi to the i-
th alternative so that the higher weight means the
more preferred choice. Without lost of generality,
we can assume that the weight vector can be de-
termined in form of a probability vector, i.e. a vec-
tor w = (w1, w2, . . . , wn)

T such that wi ∈ [0, 1] for
i = 1, · · · , n and

∑n
i=1 wi = 1.

Lemma 6. For any probability vector w =

(w1, w2, . . . , wn)
T ,

• the matrix A(w) = (aij), where

aij =
wi − wj + 1

2

is an additively consistent FPR

• the matrix P(w) = (pij), where

pij =
wi

wi + wj

is a multiplicative consistent FPR

Definition 7 (Additive consistent preference rela-
tion). Let B be an IFPR and LB , UB be the lower
and upper bounds of B,

• B is called the additive consistent IFPR if
there exists a probability vector w such that

LB ≤ A(w) ≤ UB

• B is called the multiplicative consistent IFPR
if there exists a probability vector w such that

LB ≤ P(w) ≤ UB

Theorem 8. A matrix B = ((µij , νij))n×n is
an additive consistent preference relation on X =
{x1, · · · , xn} if and only if there exists a probability
vector w = (w1, w2, . . . , wn)

T satisfying the condi-
tions:

µij ≤ 0.5(wi − wj + 1) ≤ 1− νij (2)

for all 1 ≤ i < j ≤ n.

Theorem 9. A matrix B = ((µij , νij))n×n is an
multiplicative consistent preference relation on X =
{x1, · · · , xn} if and only if there exists a probability
vector w = (w1, w2, . . . , wn)

T satisfying the condi-
tions:

µij ≤
wi

wi + wj
≤ 1− νij for all 1 ≤ i < j ≤ n. (3)

The concept of additive consistency and mul-
tiplicative consistency for the IFPR can be repre-
sented as follows:

In this case the condition in Eq. (2) can be
relaxed by introducing the non-negative deviation
variables lij and rij for 1 ≤ i < j ≤ n such that

µij − lij ≤ 0.5(wi − wj + 1) ≤ 1− νij + rij (4)

for all 1 ≤ i < j ≤ n. As the deviation variables
lij and rij become smaller, B becomes closer to an
additive consistent intuitionistic fuzzy preference re-
lation. Therefore, in order to find the smallest de-
viation variables the linear optimization model can
be developed as follows8,9:

Model (A1):

δ = min

n−1∑
i=1

n∑
j=i+1

(lij + rij)

s.t.



0.5(wi − wj + 1) + lij ≥ µij

0.5(wi − wj + 1)− rij ≤ 1− νij

lij , rij ≥ 0

 (*)

wi ≥ 0 for i = 1, · · · , n,∑n
i=1 wi = 1

where conditions (*) hold for all 1 ≤ i < j ≤ n.

Checking for the multiplicative consistency is
quite similar to the additive consistency. In this case,
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we can establish the optimization model (M1). In
contrast to model (A1), this model is nonlinear.

Model (M1):

δ = min

n−1∑
i=1

n∑
j=i+1

(lij + rij)

s.t.



wi

wi + wj
+ lij ≥ µij

wi

wi + wj
− rij ≤ 1− νij

lij , rij ≥ 0


(*)

wi ≥ 0 for i = 1, · · · , n,∑n
i=1 wi = 1

where (*) hold for all 1 ≤ i < j ≤ n.

3.2. Model for deriving interval weight vec-
tor

The drawback of the real weight vector method
presented in the previous section is based on the fact
that sometimes the optimization problems (models
A1 andM1) return similar or even exactly the same
values to different weights wi. In such case, the cor-
responding alternatives will be ranked in a random
order. This is often the case when the optimization
problems (A1 and M1) have no unique solutions.

Another idea for ranking problem is based on
fuzzification of the real weights w1, ..., wn which are
assigned to the alternatives x1, ..., xn. Thus, instead
of probability vector, we are looking for interval
weight vector :

w = ([l1, r1], · · · , [ln, rn])T ,

where 0 ≤ li ≤ ri ≤ 1 for i = 1, · · · , n. The interval
[li, ri] can be interpreted as the set of all possible
values that can be assigned to the alternative xi for
i ∈ {1, 2, · · · , n}. It is easy to notice that in this
case, the pair (li, 1 − ri) can be interpreted as an
intuitionistic fuzzy value corresponding to the real
weight wi in the model described in Section 3.1.

In this section, we recall two methods for deriv-
ing interval weight vector for a given IFPR:

The first method9 is a continuation of the mod-
els A1 and M1. Let δo be the optimal value and let
loij and roij for 1 ≤ i < j ≤ n be optimal deviation
values of the optimization model (A1). One can see
that if δo = 0 then B is an additive consistent in-
tuitionistic fuzzy preference relation. Otherwise, we
can improve the additive consistency of B by defin-
ing the new intuitionistic fuzzy preference relation

B̊ = ((µ̊ij , ν̊ij))n×n, where

µ̊ij =


µij − loij if i < j

0.5 if i = j

ν̊ij if i > j

ν̊ij =


νij − roij if i < j

νij = 0.5 if i = j

µ̊ij if i > j

Based on matrix B̊ we can calculate the priority
weight vectorw = (w1, . . . , wn)

T by establishing the
weight intervals [w−

k , w
+
k ] for each k = 1, · · · , n. In

order to do that, we solve the following optimization
models:

Model (A2): for each k = 1, 2, · · · , n:
(lk, rk) = (minwk,maxwk)

s.t.


0.5(wi − wj + 1) ≥ µ̊ij

0.5(wi − wj + 1) ≤ 1− ν̊ij

}
(∗)

wi ≥ 0 for i = 1, · · · , n,∑n
j=1 wj = 1.

where (*) hold for all 1 ≤ i < j ≤ n.

It has been shown8 that if B̊ is additive consis-
tent then Model (A2) will return a unique solution
for the considered optimization problem.

Let δ∗ be the optimal value and let l∗ij and r∗ij
for 1 ≤ i < j ≤ n be optimal deviation values of
the optimization model (M1). One can see that if
δ∗ = 0 then B is an multiplicative consistent in-
tuitionistic fuzzy preference relation. Otherwise, we
can improve the multiplicative consistency of B by
defining the new intuitionistic fuzzy preference rela-
tion B∗ = ((µ∗

ij , ν
∗
ij))n×n, where

µ∗
ij =


µij − l∗ij if i < j

0.5 if i = j

ν∗ij if i > j

ν∗ij =


νij − r∗ij if i < j

0.5 if i = j

µ∗
ij if i > j

Based on matrix B∗ we can calculate the priority
weight vectorw = (w1, . . . , wn)

T by establishing the
weight intervals [w−

k , w
+
k ] for each k = 1, · · · , n. In

order to do that, we solve the following optimization
models:

Model (M2): for each k = 1, 2, · · · , n:
(lk, rk) = (minwk,maxwk)

s.t.



wi

wi + wj
≥ µ∗

ij

wi

wi + wj
≤ 1− ν∗ij

 (∗)

wi ≥ 0 for i = 1, · · · , n,∑n
j=1 wj = 1.

where (*) hold for all 1 ≤ i < j ≤ n..
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The second method is based on the modification
of the concepts in Section 3.1. In order to trans-
form from probability weight vector into the inter-
val weight vector model, we should modify the nor-
malization condition

∑n
i=1 wi = 1 for probability

vectors, the additive and multiplicative consistency
conditions of IFPR and the corresponding optimiza-
tion problems. In10 and11, these conditions were re-
defined as follows:

• Normalization: If an interval weight vector
w = ([l1, r1], · · · , [ln, rn])T satisfies the condi-
tions

n∑
j=1,j ̸=i

lj + ri ≤ 1 ≤ li +

n∑
j=1,j ̸=i

rj (5)

then it is called the normalized interval weight
vector.

• Additive consistency: An IFPR B is addi-
tive consistent if there exists a normalized in-
terval weight vector w such that

LB = A−(w) and UB = A+(w)

where A−(w) = (a−ij) and A+(w) = (a+ij) are
the additive consistent FPR defined by

(a−ij , a
+
ij) =

(0.5, 0.5) if i = j(
1+li−rj

2 ,
1+ri−lj

2

)
if i ̸= j

• Multiplicative consistency: An IFPR B is
multiplicative consistent if there exists a nor-
malized interval weight vector w such that

LB = P−(w) and UB = P+(w)

where P−(w) = (p−ij) and P+(w) = (p+ij) are
the multiplicative consistent FPR defined by

(p−ij , p
+
ij) =

(0.5, 0.5) if i = j(
li

li+rj
,

rj
ri+lj

)
if i ̸= j

where LB , UB are the lower and upper bounds
of B.

Similar to the case of probability weight vector,
not every intuitionistic fuzzy preference relation is
either additive or multiplicative consistent. The re-
laxation is based on the minimization of the differ-
ences ∥LB −A−(w)∥p and ∥UB −A+(w)∥p, where

∥M∥p =

 m∑
i=1

n∑
j=1

|mi,j |p
1/p

is the p−norm of a m×n matrix M for some p ≥ 1.
In case p = 1, the optimal interval weight vector
problem can be formulated as follows:

min
n−1∑
i=1

n∑
j=i+1

(| li−rj+1
2 − λij |+ | ri−lj+1

2 − υij |)

s.t.


n∑

j=1,j ̸=i

lj + ri ≤ 1 ≤ li +
n∑

j=1,j ̸=i

rj

0 ≤ li ≤ ri ≤ 1, for i = 1, ..., n

This problem can be transformed into a linear pro-
gramming problem by the fact:

Lemma 10. For any x ∈ R, if ξ+ = |x|+x
2 and

ξ− = |x|−x
2 then ξ+, ξ− ≥ 0 and |x| = ξ+ + ξ−,

x = ξ+ − ξ−.

Applying the above lemma, the modified addi-
tive consistent model for interval weight vector11

has been redefined as follows:

Model (A3):

minJ =
n−1∑
i=1

n∑
j=i+1

(ξ+ij + ξ−ij + η+ij + η−ij)

s.t.



li−rj+1
2 − λij − ξ+ij + ξ−ij = 0

ri−lj+1
2 − υij − η+ij + η−ij = 0

ξ+ij , ξ
−
ij , η

+
ij , η

−
ij ≥ 0

 (*)

n∑
j=1,j ̸=i

lj + ri ≤ 1 ≤ li +
n∑

j=1,j ̸=i

rj

0 ≤ li ≤ ri ≤ 1, for i = 1, ..., n

where (*) hold for all 1 ≤ i < j ≤ n.

Similarly, the multiplicative consistent model11

has been modified as follows:

Model (M3):

minK =
n−1∑
i=1

n∑
j=i+1

(ξ+ij + ξ−ij + η+ij + η−ij)

s.t.



li − λij(li + rj)− ξ+ij + ξ−ij = 0

ri − υij(ri + lj)− η+ij + η−ij = 0

ξ+ij , ξ
−
ij , η

+
ij , η

−
ij ≥ 0

 (*)

n∑
j=1,j ̸=i

lj + ri ≤ 1 ≤ li +
n∑

j=1,j ̸=i

rj

0 ≤ li ≤ ri ≤ 1, for i = 1, ..., n

where (*) hold for all 1 ≤ i < j ≤ n.

From the model (A3) or (M3), we find out the
interval weight vectors wi = (li, ri) which is assigned
to the ith alternatives, respectively.

3.3. Ranking methods for interval weight
vectors

Many useful methods have been developed to
compare two interval weights as well as to arrange
a set of interval weights in a linear order. Given
two intervals a = [a1, a2] and b = [b1, b2], where
0 < a1 ≤ a2 and 0 < b1 ≤ b2, the following methods
can be applied in order to compare a and b:
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Score function: The first idea is to evaluate each
interval [l, r], where 0 ≤ l ≤ r ≤ 1 by a real value
S([l, r]) called score function or briefly score. Most
of score functions were originally defined for IFV,
and for the use of this paper, they will be reformu-
lated for interval weights. In real life applications,
the following score functions can be applied:

• The simplest score function is defined by:

S1([l, r]) =
l + r

2
∈ [0, 1]

• In12, a parameterized score function was de-
fined by:

Sλ([l, r]) = (l + r − 1)(l + 1− r) + λ · (r − l)2

where λ ∈ [−1, 1] is the risk parameter given
by the DM’s in consensus, reflecting a DM’s
attitude towards risk.

• Another double score function S([l, r]) =

(H(l, r), L(l, r)) has been proposed in13:

H([l, r]) = l + 1− r; L([l, r]) =
r

1 + r − l

where H and L are called the Accuracy and
the Similarity functions. Using those func-
tions, two intervals α = [l1, r1] and β = [l2, r2]

can be compared as follows:

if L(α) > L(β) then α > β

if L(α) = L(β) and

if H(α) > H(β) then α > β

if H(α) = H(β) then α = β

Likelihood function: Wang, Zhang and Xu
(2005)14 introduced comparisons and rankings of
interval weights based on calculating the degree of
preference of a = [la, ra] over b = [lb, rb], where
0 ≤ la ≤ ra ≤ 1 and 0 ≤ lb ≤ rb ≤ 1.

p(a ≥ b) =
max(0, ra − lb)−max(0, la − rb)

ra − la + rb − lb

The value p(a ≥ b) ∈ [0, 1] can be interpreted as a
likelihood of the event that x ∈ a, y ∈ b and x > y.
This function satisfies the condition:

p(a ≥ b) + p(b ≥ a) = 1

therefore if p(a ≥ b) > 0.5, a is said to be superior
to b to the degree of p(a ≥ b), and it is denoted by

a
p(a≥b)

≥ b.

4. Example and Applications

In1, we proposed a new method for feature rank-
ing called RAFAR (Rough-fuzzy Algorithm For At-
tribute Ranking). This is a hybrid method that com-
bines discernibility relation of the rough set theory
and the ranking method described in the previous
section. The RAFAR method consists of two main
steps: (1) construction of Intuitionistic Fuzzy Pref-
erence Relation (IFPR) for the set of features and
(2) searching for the optimal features ranking that
is consistent with this IFPR. The general framework
of our proposition is presented in the Fig. 1:

Decision table

Discernibility relations

Intuitionistic Fuzzy

Preference Relation

Feature Ranking

Discernibility matrix generalization

Local feature comparison

Applying (A1), (A2), (A3)
or (M1), (M2), (M3)

Fig. 1: The general framework RAFAR.

In1, only model (A1) and (M1) were applied to
generate the probability weight vector for features of
different data sets. In this paper, we will show that
the interval weight vector approach can be more ef-
ficient.

Firstly, let’s consider the Example given in1. The
following 5 × 5 matrix B is the IFPR representing
the preference relation between 5 features named
by a1, a2, a3, a4, a5. Recall that this matrix has been
generated by our RAFAR method.

B =


(0.50, 0.50) (0.55, 0.22) (0.36, 0.24) (0.51, 0.25) (0.65, 0.06)

(0.22, 0.55) (0.50, 0.50) (0.16, 0.41) (0.44, 0.43) (0.64, 0.28)

(0.24, 0.36) (0.16, 0.41) (0.50, 0.50) (0.47, 0.29) (0.66, 0.20)

(0.25, 0.51) (0.43, 0.44) (0.29, 0.47) (0.50, 0.50) (0.56, 0.25)

(0.06, 0.65) (0.28, 0.64) (0.20, 0.66) (0.25, 0.56) (0.50, 0.50)


Based on the RAFAR method, the optimal coef-

ficients for this matrix are

(w1, w2, w3, w4, w5) = (0.327, 0.227, 0.322, 0.124, 0.000)

and the order of the features is

a1 > a3 > a2 > a4 > a5.

Applying the property of additive consistent IFPR
and the interval IFPR method, based on the Model
(A3) and Model (M3), the optimal intuitionistic
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fuzzy weight vectors wi = (li, ri) assigned to alter-
native ai are defined as in the following table:

Model (A3) Model (M3)
li ri li ri

a1 0.2600 0.6400 0.1976 0.4304
a2 0.0800 0.3400 0.1214 0.1902
a3 0.1600 0.5400 0.1359 0.3513
a4 0.1200 0.2400 0.1435 0.1545
a5 0.0000 0.0000 0.0515 0.1064

Tab. 1: Results from model (A3) and (M3)

Let’s choose two simple ranking methods for in-
terval weight vectors presented in 3.3 and get the
results below:

S1([l, r]) S([l, r]) = (H([l, r]), L([l, r]))

w1 0.45 (0.62,0.46)
w2 0.21 (0.74,0.27)
w3 0.35 (0.62,0.39)
w4 0.18 (0.88,0.21)
w5 0.00 (1.00,0.00)

Tab. 2: Score values from Model A3

S1([l, r]) S([l, r]) = (H([l, r]), L([l, r]))

w1 0.3140 (0.7672,0.3491)
w2 0.1558 (0.9312,0.1779)
w3 0.2436 (0.7846,0.2890)
w4 0.1490 (0.9890,0.1528)
w5 0.0789 (0.9451,0.1009)

Tab. 3: Score values from Model M3

The good thing is that both methods applied in
model (A3) and (M3) give the same order of alter-
natives similar to the RAFAR method: a1 > a3 >

a2 > a4 > a5.
Applying likelihood function, we calculate the

degree of preference of wi over wj as follows:

p(a1 ≥ a3) 0.5217
p(a3 ≥ a2) 0.7187
p(a2 ≥ a4) 0.8461
p(a4 ≥ a5) 1.0000

The values of likelihood function in the above ta-
ble also give the alternatives ranking order which is
suitable to the order if we apply mentioned methods.
We can present this fact as follows:

a1
0.5217
≥ a3

0.7187
≥ a2

0.8461
≥ a4

1
≥ a5

In the next example, we present the result of
application of models (A1) and (A3) on the the
WDBC data set15. TheWDBC dataset contains fea-
tures extracted from digitized image of a fine nee-
dle aspirate of a breast mass which describes the
characteristics of the cell nuclei in the image. This
dataset consists of 569 instances with 30 attributes
and two decision classes. The features are encoded
by V 1, V 2, · · · , V 30. The result of model (A1) is
presented in column wi in Table4. We can notice
that it returns non-zero value to 6 features and 0
value to the other 24 features. This fact means these
24 features are not comparable by model A1.

i wi li ri S1 L p

V11 0 0 0 0 0
V12 0 0 0 0 0 0.5
V13 0 0 0 0 0 0.5
V14 0 0 0 0 0 0.5
V15 0 0 0 0 0 0.5
V16 0 0 0 0 0 0.5
V17 0 0 0 0 0 0.5
V18 0 0 0 0 0 0.5
V19 0 0 0 0 0 0.5
V20 0 0 0 0 0 0.5
V29 0 0 0 0 0 0.5
V30 0 0 0 0 0 0.5
V10 0 0 0.028 0.014 0.029 1.000
V9 0 0 0.052 0.026 0.055 0.648
V5 0 0 0.056 0.028 0.059 0.516
V2 0 0 0.282 0.141 0.393 0.835
V24 0 0 0.321 0.161 0.473 0.532
V25 0 0 0.328 0.164 0.488 0.505
V4 0 0 0.350 0.175 0.538 0.516
V26 0 0 0.355 0.178 0.551 0.504
V22 0 0 0.410 0.205 0.696 0.536
V6 0 0 0.450 0.225 0.817 0.523
V1 0.142 0 0.503 0.251 1.012 0.528
V3 0.006 0 0.528 0.264 1.118 0.512
V27 0 0 0.554 0.277 1.241 0.512
V23 0.146 0.004 0.558 0.281 1.250 0.504
V21 0.193 0.011 0.565 0.288 1.266 0.506
V7 0 0.028 0.581 0.305 1.303 0.515
V8 0.216 0.141 0.694 0.418 1.556 0.602
V28 0.296 0.262 0.816 0.539 1.829 0.610

Tab. 4: Example of RAFAR using 2 additive consis-

tence ranking methods for WDBC data set

The result of model (A3) is shown in columns
li and ri. One can notice that in this case, only 12
features are not comparable. The next 2 columns in
Table 4 present the values of two score: S1 and L
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and the features V 1, · · · , V 30 are ranked with re-
spect to score S1. The column p presents the values
of the likelihood function indicating the probability
that the given feature is better than the feature in
previous line. One can notice the fact that in this ex-
ample, all three score functions are consistent. More-
over, features V7 and V27 are quite highly ranked
by model (A3), while they are treated as not im-
portant by the model (A1).

5. Conclusion

In this paper, interval weight vector method is
proposed to features ranking problem. The paper
shows how an IFPR can be represented by a pair of
FPRs and how to apply other methods of additive or
multiplicative consistency to find out interval weight
vectors. In addition, the paper provides an example
illustrating the proposed method and indicates the
advantage over original RAFAR method presented
in1. The advantage is more visible especially when
the amount of alternatives is large and the interval
weight values are similar.
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