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TÓM TẮT
Bài báo đề xuất mở rộng hai thuật toán ước lượng kênh LS dựa trên mô hình tín hiệu tensor cho các hệ thống MIMO được hỗ trợ bởi bề mặt phản xạ thông minh (IRS). Hai thuật toán này khai thác cấu trúc tensor của tín hiệu hoa tiêu để thiết lập bài toán ước lượng kênh ghép tầng. Thuật toán thứ nhất mở rộng ước lượng LS dựa trên việc khai thác cấu trúc Khatri-Rao Factorization (KRF) của kênh MIMO ghép tầng, bằng cách giải các bài toán con xấp xỉ ma trận hạng 1. Bài toán ước lượng thứ hai dựa trên thuật toán BALS (Bilinear Alternating Least Squares), đây là phiên bản đơn giản hóa của thuật toán TALS (Trilinear Alternating Least Squares). Ngoài ra, bài báo này cũng trình bày mối quan hệ giữa các tham số kênh MIMO để các thuật toán ước lượng trên có tính khả thi. Kết quả mô phỏng cho thấy các phương pháp ước lượng LS mở rộng dựa trên mô hình tín hiệu tensor đã cải thiện hiệu suất so với ước lượng LS truyền thống.
Từ khóa: Ước lượng kênh, bề mặt phản xạ thông minh, thuật toán dựa trên tensor, Khatri-Rao factorization. 
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ABSTRACT 
This paper proposes to extend two Least Squares (LS) channel estimation algorithms based on tensor signal model to MIMO systems supported by Intelligent Reflective Surfaces (IRS). These two algorithms exploit the tensor structure of the pilot signal to establish the cascaded channel estimation problem. The first algorithm extends the LS estimation based on exploiting the Khatri-Rao Factorization (KRF) structure of the cascaded MIMO channel, by solving subproblems approximating the 1-rank matrix. The second estimator is based on the Bilinear Alternating Least Squares (BALS) algorithm, which is a simplified version of the Trilinear Alternating Least Squares (TALS) algorithm. In addition, this paper also presents the relationship between the MIMO channel parameters for the above estimation algorithms to be feasible. The simulation results show that the extended LS estimation methods based on the tensor signal model have improved performance compared with the conventional LS estimation.
Keyword: Channel estimation, intelligent reﬂecting surfaces, tensor-based algorithm, Khatri-Rao factorization. 
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1. INTRODUCTION 	
Over the past decade, Multiple Input Multiple Output (MIMO) communication systems have been extensively studied and considered a key technology for enhanced mobile broadband communications in fifth generation networks (5G), the future beyond -5G (B5G) and sixth generation (6G). The works1,2,3,4, have solidly studied both theory and practical solutions on spectrum efficiency analysis, data rate increase, reliability improvement and noise reduction, etc. MIMO systems can be classified into different types, such as Single-User MIMO (SU-MIMO), Multi-User MIMO (MU-MIMO), massive MIMO and millimeter wave MIMO, depending on the number of user, the number of antennas and the operating frequency bands. MIMO systems can be applied in wireless communication systems, such as cellular networks, wireless Local Area Networks (WLANs), vehicle networks, satellite communications, and radar systems. Some trends in the application of MIMO systems include: Internet of Things (IoT) device systems, MIMO for Unmanned Aerial Vehicles (UAVs) and MIMO for cognitive radio networks.
The above mentioned advantages of MIMO systems are achieved by the outstanding characteristic of channel hardening, i.e. the characteristic of user channels that do not fading over time and the favorable propagation over  multipath channel. However, for MIMO systems, including massive MIMO, there is an open problem to ensure the performance of users in service dead zones, for example, indoor users with thick walls between them and the Base Station (BS) or outdoor users surrounded by many tall buildings, where gain is difficult to compensate for severe channel loss.
In the last few years, a number of studies have discussed the potentials and challenges of wireless communications assisted  by Intelligent Reflective Surfaces (IRS)5,6,7. Much research has been done on both the theory and implementation of IRS application in MIMO communication systems to maintain performance and increase user coverage in service dead zones. With the assistance of the IRS, MIMO systems can suppress Co-Channel Interference (CCI) when the user is at the edge of the cell8,9, or to improve physical layer security10,11. Besides, IRS can be used for information and power transfer  in a IoT networks8. IRS also known as reconfigurable smart surface or software controlled hypersurface5,6,7,8,9 consisting of a 2D array with a large number of passive or semi-passive elements can control the electromagnetic characteristics of radio frequency waves so that the reflected signal adds coherently at the receiver or cancels it out to reduce CCI. Each element can operate independently and can be reconfigured in a software-defined manner using an external controller. The IRS does not require dedicated Radio Frequency (RF) strings and is powered wirelessly by an external RF source. This is in contrast to relay systems that need amplify-and-forward or decode-and-forward, and require specialized power sources6.
In MIMO systems, the availability of Channel State Information (CSI)  is a topic of intense research. Accurate and timely CSI knowledge plays an important role in wireless communication systems. For IRS-assisted MIMO systems, there are often a large number of IRS elements, which poses a significant challenge to solving the channel estimation problem in collecting CSI. In these systems, there are two basic methods for performing channel estimation. First, use the IRS with a semi-passive structure in which several active elements connected to receive the RF string. In this case, the parts that actively perform baseband processing at the IRS facilitate the collection of  CSI12. 
In the second method, the IRS has a full passive structure, where the IRS works by reflecting the impinging  waves according  some phase shift pattern. This is a more difficult case, where at the receiver based on the pilot signals sent by the transmitter and reflected by the IRS performs a cascade estimation between the transmitter to the IRS and the IRS to the receiver. In this case, the IRS uses a phase shift model in which the training phases play an important role. This is the method used in this paper.
A number of published works refer to different solutions to the channel estimation problem for the case of passive IRS. In13, a unbiased estimation method with minimal variance and an optimal calculation of the IRS phase shift matrix is proposed. The authors in14 propose a two-stage algorithm by exploiting the sparse code characteristics of multipath channels with low rank channel matrices. In15, the cooperative channel estimation through the training beam of IRS-assisted massive MIMO systems on the terahertz channel is presented. In16, IRS was proposed as a solution to reduce the congestion problem and also presented the method of channel estimation on millimeter wave channel. In17, the IRS-assisted MIMO system is considered and channel estimation is performed by the two-stage method and the IRS-supported transmission route is estimated by the approximate message transmission method. In the study18 established the channel estimation based on sparse matrix factorization  of the  Internet of Things  (IoT) system supported by the IRS. The latest research works19,20,21, successfully applied tensor models in many signal processing problems, especially for wireless communication systems. In22,23  considered semi-blind receivers for MIMO systems, channel estimation methods for cooperative communication24,25 and, more recently, estimation methods  compressed channel in massive MIMO systems26,27. 
In most of these works, signal processing is very efficient thanks to the uniqueness of tensor decomposition to exploit the multidimensional nature of transmitted/received signals and communication channels. The parallel factor (PARAFAC) structure of the tensor model28 is very convenient for the estimation problem of time varying multipath channel parameters. By using pilot signal pattern  and  IRS phase shift signals in time domain. In this paper, we study to extend the tensor model by exploiting the PARAFAC structure to solve the cascaded MIMO channel estimation problem through the separation of MIMO channels  between the transmitter at the BS to the IRS (BS-IRS) and between IRS to User Terminal (IRS-UT). Accordingly, we set up two algorithms. The first algorithm is a closed-form solution based on the Khatri-Rao factorization (KRF) of  the combination of BS-IRS and IRS-UT channels. The second algorithm performs an iterative Bilinear Alternating Least Squares (BALS).  The first algorithm is a closed-form algebraic and less complex solution, the second one can operate under less restrictive conditions on the system parameters. 
The contributions of this article are summarized as follows.
· Using tensor model to set up two LS channel estimation algorithms based on Khatri-Rao Factorization (KRF) and the Bilinear Alternating Least Squares (BALS). 
· Consider the relationship between the IRS-assisted MIMO system parameters for the estimated matrix rank to make the problem feasible.





Notation and operator: Matrices are represented with boldface capital letters (A; B; …), and vectors are denoted by boldface lowercase letters (a; b; …). Tensors are symbolized by calligraphic letters. Transpose and pseudo-inverse of a matrix A are denoted as AT and A†. denote the Frobenius norm of A. The operator diag(a) forms a diagonal matrix out of its vector argument, while  denote the conjugate, outer product, Khatri Rao, Hadamard and Kronecker products, respectively. IN denotes the N × N identity matrix. The operator vec(·) vectorizes an I×J matrix argument, while unvecI×J(·) does the opposite operation. Moreover, vecd(·) forms a vector out of the diagonal of  its matrix argument. The n-mode product between a tensorand a matrix  is denoted , for 1 ≤ n ≤ N.  The operator Di(A) forms a diagonal matrix from the i-th row of its matrix argument A. Moreover, Ai denotes the ith row of the matrix A. 
2. SIGNAL MODEL AND SYSTEM
In this article review the MIMO communication system assisted by an IRS. The transmitter side is a Base Station (BS) equipped with an array of MB antennas and the receiver side is a User Terminal (UT) with MU antennas. The IRS consists of L passive elements, capable of individually adjusting their reflectances (i.e. phase shift control). The system model is illustrated in Figure 1. 
The signal at the device input can be represented by [15]

          (1)
or in a different way,

    (2)







where,  is a vector whose elements are  transmitted pilot signals at time t,  is the vector that models the phase shifts and activation pattern of the IRS, where  is phase shift and  is the magnitude that controls the on-off state of the IRS elements at time t, respectively. is the MIMO channel matrix from base station BS to IRS and   denote the MIMO channel between the IRS and the user terminal UT, và  is the Additive White Gaussian Noise (AWGN) vector. 
The training signal is modeled as shown in Figure 2.

The training signal length Ts is divided into Q blocks, where each block is called a time slot of length T, i.e. Ts = QT. In expression (2),  as the received signal at the t-th time slot of the q-th block, t = 1,…, T, q = 1, …, Q. Suppose, the time slot transmission, IRS adjusts its phase shifts as a function of time t = 1,...., T and a block-fading channel, which means that the BS-IRS and IRS-UT channels are constant during T time slots. 


According to the signal frame structure in Figure 2, the IRS phase shift vector  is constant during the T time slots of the q-th block and varies from block to block and the pilot signals  are repeated over the Q blocks. Mathematical representation in

                               (3)

                                (4)
Accordingly, the signal in expression (2) is rewritten as

 (5)

All signals received in the time slot T of the qth block, represented by the vector, so we can perform,

               (6)
where, 
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Figure 1. Model of the IRS-assisted MIMO system
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Figure 2. The time frame structure of the pilot signal pattern
3. LEAST SQUARES (LS) CHANNEL ESTIMATION WITH TENSOR SIGNAL MODELING 
Least Squares (LS) channel estimation is the most commonly used basic linear estimation method for channel estimation. LS channel estimation performs the minimum squared distance between the received signal and the transmitted signal. 

To derive the LS estimate in the case in question, apply the property and transform the expressions from (1) to (6), we have:

 	
                                                                      (7)


where,   and we have used property . 


Defining  and we have

      	      (8)




where,  and is the noise matrix set up in the same way as Y. Finally, defined   and apply the property  to expression (8), we have

          (9)

or simply write in  		        (10)


where,  and  is the composite  channel parameter, combining the BS-IRS and IRS-UT channels. Estimating the LS channel applied to the composite channel in our case is the minimum of the problem 

            	 	    (11)


the solution (11) results found  Applying the Kronecker product of U, this solution can be simply rewritten 
In the conventional LS estimation problems just presented, the composite channel linear parameter vector θ does not use the Katri-Rao structure. This is unfortunate, because the signal expression (6), or its equivalent (8) can be written as a parallel factor (PARAFAC) tensor model. The application of tensor model allows to improve the accuracy of channel estimation compared to traditional LS methods. This can compute a separate estimate for the HBS-IRS và GIRS-UT channels instead of the composite channel estimate θ.
To simplify the signal modeling by tensor operation, we first ignore the noise component in expression (6), leaving only the signal component, so we can rewrite as

 		                                                    (12)



where,  denotes diagonal matrix of  the q-th row of the IRS phase shift matrix S on its main diagonal. The matrix  can be viewed as the q-th front matrix slice of the 3-dimensional tensor according to the PARAFAC decomposition. This operation is also the Canonical Polyadic Decomposition (CPD)28,29,30,31. Each (m, t, q)-th element of the received signal tensor, regardless of noise, is written in

                                 (13)

where, 

 The abbreviation for PARAFAC decomposition (13) is written as  Using n-mode product notation, the PARAFAC decomposition of the zero-noise received signal tensor can be represented by

                             (14)

Exploiting the linear triple of the PARAFAC decomposition, we can expand the received signal tensor  in the form of three matrices as follows28,29 

                      (15)

         	     (16)

                     (17)



where,  
Next, the algebraic structure of the PARAFAC (13) model is exploited to establish two methods of channel estimation. The PARAFAC model is very usable thanks to its essential factor identification uniqueness property, which is derived from the concept of Kruskal rank (k-rank). 
4.  EXTEND LS CHANNEL ESTIMATION ACCORDING TO TENSOR SIGNAL MODELING




In this section, we extend the estimating HBS-IRS and và GIRS-UT channel matrices from the Tensor signal modeling is presented as shown in (13). First, we define,  as the noise-corrupted received signal tensor, where  is the additive noise tensor. Similarly,  are the 1-mode, 2-mode, and 3-mode  extended matrix noise versions respectively in the tensor expressions of the received signal (15-17), và  corresponds to the extended matrices of the noise tensor.

In this study, the pilot signal matrix X calculated using semi-unitary matrices satisfying  same for the phase shifts matrix IRS S là SHS = QIL. A best option for computing X and S matrices is to use truncated Discrete Fourier transform (DFT) matrices. 
4.1. LS channel estimation based on Khatri-Rao Factorization
We can first rewrite the noise expansion matrix (17) as

   
                                                                 (18)

in the transformations of the above expression, we used the property,.
Applying a bilinear filter on the time domain at the receiver by exploiting the knowledge of the IRS matrix and the pilot signal matrix,
as follows 


                                                     	       (19)


where, is the noise component after filtering. Chú ý,  is the Khatri-Rao structured noise version of the virtual MIMO channel in an IRS-assisted MIMO systems. Based on the semi-unitary structure of the S and X matrices, the correlation properties of the additive noise are not affected by the bilinear filter step.
From expression (19), we deduce the estimation of the HBS-IRS and GIRS-UT matrices by the Khatri-Rao least squares approximation problem,

    	       (20)
The efficiency of this problem is thanks to the application of the KRF (Khatri-Rao  factorization) algorithm28,32,33. Expression (20) can be understood as finding the HBS-IRS and GIRS-UT matrix estimators to minimize the set rank 1 matrix approximations, i.e.,

       (21)






where,    are the n-th column of  GIRS-UT matrix, and n-th row of  HBS-IRS matrix, respectively.  The estimates of gn and hn in (21) can be obtained from the left and right dominant singular vectors  respectively, with 1 ≤ n ≤ L, respectively. Thus, the estimation problem under consideration is transformed into L approximation submatrix problems of rank 1. Once we find  and  from (21), we can set up a composite channel θ. 
4.2  BALS channel estimation 
From the noise versions of the expansion matrix in expressions (15) and (16), we can derive an iterative solution based on the Bilinear Alternating Least Squares algorithm. This algorithm is a simplified version of the Trilinear Alternating Least Squares algorithm for estimating the factor matrices of the PARAFAC model34. In this case, since the matrix S is known at the receiver, the GIRS-UT and HBS-IRS matrices are estimated by the method of interleaving by optimizing in the iterative process of the following two cost functions:

   (22)

 	
	                                                           (23)
the results of the solutions are:

         	     (24)

       	     (25)





The convergence is declared when , with  is the the reconstruction erro calculated at the i-th iteration, δ a threshold parameter, và is the reconstructed PARAFAC model (c.f (6), (13)) from the estimated channel matrices  and at the end of the i-th iteration.  
If the matrices X and S have orthogonal columns (requires  Q ≥ L and T ≥ MU are required), the right pseudo-inverse in (24) and (25) can be repeated by matrix products. This results in a low complexity BALS algorithm with simple estimation steps.
The common feature of the two algorithms is that the cascaded channel estimation is achieved by separating the estimates of the two GIRS-UT and HBS-IRS  channel matrices, which improves the performance compared to the direct estimation of the cascaded channel using the conventiona least squares algorithm. By focusing on pilot-assisted channel estimation methods, we improve the algorithm in39 to have a more comprehensive formulation of IRS-assisted channel estimation methods. based on the tensor model, thereby giving necessary notes useful for the design of training parameters.
4.3. Feasibility conditions of extended estimation algorithms
The KRF method with a bilinear filter step as in (19) requires an IRS phase shift matrix S and the pilot symbol matrix X have full column rank, subject to the following conditions:
                     Q ≥ L và T ≥ MB	  	     (26)
As mentioned earlier, it is best to choose the X and S matrices as semi-unitary (or column-orthogonal) matrices. It is explained that instead of inverting the matrices in24, we use semi-unitary single matrix products to simplify processing at the receiver. In addition, the correlation properties of the noise component after filtering in (19) are preserved.	


The BALS method requires two Khatri-Rao products  and  have  full column rank, such that (24) and (25), respectively, have unique solutions. This means that the conditions QT ≥ L and QMU ≥ L must be satisfied. Combining these two inequalities results in min(QT, QMU) ≥ L, or equivalently, Qmin(T, MU) ≥ L. Also notice that the condition T ≥ MB in (23) is required, since X must have the full column rank to be left inverse. Therefore, the following conditions are necessary
     Qmin(T,  MU) ≥ L  và T ≥ MB.         (27)
Comparing conditions (26) and (27), we can see that the BALS estimation method has less constraints on the minimum number of time blocks K for the training channel than the KRF method. In the special case MU = 1 (MISO or SISO systems, respectively), the inequalities (26) and (27) equal signs occur, meaning that BALS and KRF are subject to the same training requirements. Obviously BALS algorithm has advantages over KRF when applied in MIMO system, because BALS can work with Q < L, while KRF requires Q ≥ L. Note that, if Q = 1, KRF estimation method is equivalent to conventional LS estimator. However, in this case we cannot solve/separate  the estimation problem of two channel matrices through solving problem (20). On the other hand, the KRF algorithm has lower computational complexity than BALS, which will be presented later in the results section and discussed in the following section.


In addition, it should be noted that (27) is a necessary but not guaranteed condition for the uniqueness of BALS estimates. The sufficient condition can be derived from the rank characteristics of the matrices  and  To ensure the uniqueness of the channel estimates in solving problems (22) and (23) for matrices in Khatri-Rao form, applying the lemmas in35,36, the result is

               (28)

                   (29)
We are considering the channel training parameters, specifically calculating such that the IRS phase shift matrix S and the pilot symbols matrix X have full rank. These conditions are useful for system design when using the BALS estimation method.
4.3.1. Full rank of channel matrix HBS-IRS and GIRS-UT
Assuming that both HBS-IRS and GIRS-UT channel matrices have full rank (in case of Rayleigh fading channel), the condition (28)-(29) can be rewritten as
         min(Q, L) + min(MB, L)  ≥ L + 1	       (30)
         min(Q, L) + min(MU, L)  ≥ L + 1	       (31)
We can distinguish two cases as follows.
· L ≥ T ≥ MB and L ≥ MU: In this case, the base station BS and user equipment UT have small antenna array size, the number of BS and UT antennas is smaller than the number of IRS elements. Condition (28)-(29) becomes
· MB + min(Q, L) ≥ L + 1 	                     (32)
          MU + min(Q, L) ≥ L + 1 	       (33)
· T ≥ MB ≥ L: In this case, the base station BS is assumed to be equipped with a large antenna array. The minimum number of BS antennas is equal to the number of IRS elements (massive MIMO system setup). Since condition (28) is always satisfied for all values of Q, the uniqueness of the channel estimate depends only on (29), that is
        min(Q, L) + min(MU, L) ≥ L + 1	       (34)
Conditions (32) and (33) establish a trade-off between the time dimension (the number of IRS training blocks Q) and the two spatial dimensions (the number of transmitting antennas MB and the number of receiving antennas MU) for the case channel restore. For example, if Q < L, this condition implies MB + Q ≥ L + 1 and MU + Q ≥ L +1, which is equivalent to min(MB + Q, MU + Q) ≥ L + 1. That is, the number of transmitting (or receiving) antennas can be reduced while ensuring that the unique characteristic of the BALS channel estimation method is compensated by increasing the number of time blocks Q.
4.3.2. The HBS-IRS  and GIRS-UT channel matrices lack rank
In millimeter wave MIMO systems, a large number of transmit/receive antennas coupled with a poorly scattered propagation medium can result in low-rank HBS-IRS and GIRS-UT channel matrices. Assume that the signal propagating between the BS base station and the IRS via C1 clusters, while the signal propagating  between the IRS and the  user terminal UT through the C2 cluster. Also, suppose that each cluster contributes a ray of complex amplitude and forms the angle of incidence or angle of departure. We can represent the HBS-IRS and GIRS-UT channel matrices as follows37 

             	                 (35)

               	                 (36)



where,  are array response matrices, and the vectors α, β are the complex amplitude coefficients of the BS-IRS and IRS-UT channels. In case of lack of rank, then rank(HBS-IRS) = C1 và rank(GIRS-UT) = C2, với C1 ≤ min(MB,  L) and C2 ≤ min(MU, L). 
Considering condition (26), the lack of rank of the channel matrix does not affect the solution of the channel estimation problem for the KRF algorithm. However, for the case of BALS estimation, since the uniqueness of the LS estimate of the GIRS-UT and HBS-IRS matrices depends on the rank of these matrices, as shown in conditions (28) and (29). For the BALS estimate, we can derive the following useful results.
• Case T ≥ MB: Conditions (28) and (29) become
    min(Q, L) + C1 ≥ L + 1     	     (37)
    min(Q, L) + C2 ≥ L + 1 	                  (38)
The following scenarios are possible. If Q ≥ L, we conclude that these conditions are always satisfied, for every ranks of the channel matrices. If Q < L, these conditions become Q + C1 ≥ L + 1 and Q + C2 ≥ L + 1, which is useful for choosing a block number Q that ensures the uniqueness of the channel estimates in the case lack of  rank.
• Case Q ≥ L: In this case, conditions (28) and (29) are always satisfied, for all ranks of the GIRS-UT and HBS-IRS matrices.
5. SIMULATION RESULTS AND DISCUSSION
In this section, some simulation results are presented to evaluate the performance of the channel estimation methods in this article and compare them with similar methods. The channel estimates are evaluated in terms of  the  Normalized Mean Square Error NMSE given by

 		                                                        (39)


where,  is the estimated BS-IRS channel at the l-th run, C represents the number of Monte Carlo runs. Similar definitions apply to the channel estimation. 
The SNR(dB) ratio is defined as

             	      (40)


where,  is the generated noiseless received signal tensor corresponding to the expression (13),  is the additive noise tensor. 



In the simulation calculations, assuming the elements of the channel matrices HBS-IRS và GIRS-UT are independent and identically distributed (i,i.d) zero-mean circularly-symmetric complex Gaussian random variables. Note that the estimated channel matrix elements   và  in expression (21) of the KRF algorithm found using the SVD (Singular Value Decomposition) tensor operation 32,33. In order to facilitate the evaluation of the quality of the algorithms, we choose the same system parameters as the reference articles, depending on each case.
Figure 3 depicts the NMSE performance curves in terms of SNR (dB) for the KRF and BALS algorithms. This is the result of system parameters T = 4, MB = 4, MU = 2, Q = 50 and the number of IRS elements with different values L = 10, 50. In this article, the BALS estimation calculations, we choose e = 10-5.  Although the number of iterations of the BALS algorithm is natural, only a few iterations can be converged (usually less than 10 iterations) thanks to the information that the IRS matrix S remains constant across the iterations.
Observing the results of Figure 3, we see that both algorithms give the desired performance. With the same number of IRS elements L, the estimated performance of the two algorithms KPF and BALS is similar. In terms of complexity, the KRF algorithm has a lower complexity but more restrictive requirements for the training parameter Q. While the iterative BALS method, although computationally more complex, can operate under more flexible choices of system parameters and with lower training costs. The system parameter constraints we discussed in section 4.3. On the other hand, the NMSE performance decreases as the number of IRS elements increases L, which is the expected result since the number of channel coefficients in the matries GIRS-UT và HBS-IRS to be estimated also increases with L. This means that it is possible to increase the system estimation performance while reducing the structural complexity of the IRS.
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Figure 3. NMSE performance of channel estimates  and  
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Figure 4. NMSE performance of composite channel parameter estimation 
Figure 4 is the result of calculating the NMSE performance of estimating the composite parameter vector θ according to the parameters Q = 100, T = 4, MB = 3, MU = 20, and L has the values 10, 50, 100. This result is consistent with the results of Figure 3, the estimated efficiency decreases as the number of IRS elements L increases. Another method to overcome the performance degradation presented in40 is to divide the IRS elements into groups of activation/deactivation in a time-domain sequential manner. However, this method will increase the total training time by a factor proportional to the number of element groups.



In Figure 5, we compare the estimation results of the KRF algorithm with the conventional LS method. In this result, we choose Q = L = 50, T = MB = 20, MU = 8. The conventional LS method plotted on the graph is to estimate the composite channel parameter vector, ignoring the Khatri-Rao structure that is attenuated during the signal model vectorization. In contrast, the KRF algorithm in this paper exploits the Khatri-Rao channel structure and establishes  from  channel estimation matrices the  and  
[image: ]
Figure 5. Comparison of NMSE performance of KRF estimator and conventional LS estimator


In Figure 6 is the NMSE performance estimate of the lacking  rank and channel matrices. In this result, the channel matrices are created according to the model (35)-(36), the channel parameters are selected, Q = L = 64, MU = 4 and T = MB = 4; 20, where C1 = C2 = 1. For comparison, we use the NMSE results of the LS channel estimation method proposed in38.
Observing the results of Figure 6, we see that the KRF algorithm has superior performance compared to the conventional LS algorithm. The gain in terms of SNR is about 7dB. This result is explained by the fact that KRF effectively exploits the Khatri-Rao structure present in the equivalence channel model. Note that the KRF algorithm solves the problem by reshaping MB MU × L Khatri-Rao channels as L IRS subchannels of size MB × MU, increasing noise rejection by rank-1 approximation steps. As MB and MU increase in large numbers (corresponding to a masive MIMO systems), the larger the noise spread over the noise subspace and, therefore, the higher the level of noise rejection achieved. This is a special feature of the KRF channel estimation algorithm that the conventional LS channel estimation algorithm cannot exploit.
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Figure 6. NMSE estimation results of composite channel parameter vector  in the case of matrices  and  lacking rank.
In study38, the pilot signal time frame was the same as in this study, consisting of dividing the total training time into Q blocks and an IRS phase shift pattern that varied from block to block. In38, the LS estimation method is used by dividing the training signal frame T into blocks, referred to as the “block-LS” method for short. In this result, we compare the KRF estimation algorithm in this paper with the block-LS estimation method in38. We can see that the KRF estimation algorithm outperforms the block-LS estimation method in38. The authors in38 showed that the performance of the block-LS method was not affected as the number of MB transmitting antennas and the pilot sequence length T increased. This is in contrast to the KRF method which provides more accurate channel estimation as the antenna arrays are larger.  Specifically, the SNR gain of the KRF algorithm compared to the block-LS method is nearly 4.5 dB for MB = 4 and increased to 5.5 dB for MB = 20. This can be explained as follows. For the KRF algorithm, through exploiting the Khatri-Rao structure of the cascaded  channel, the level of noise cancellation is higher when the number of MB transmitting antennas or MU receiving antennas is increased. However, this advantage comes at the expense of increased computational complexity, as well as increased length of pilot sequences.
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6. CONCLUSION AND DEVELOPMENT DIRECTION
In this paper, we have extended the LS channel estimation algorithm for MIMO information system supported by IRS based on tensor model. The KRF and BALS channel estimation algorithms are established by efficiently exploiting the tensor structure of the received signal. Both algorithms perform separate estimation of the transmission channels between the BS to the IRS and from the IRS to the UT with the passive elements of the IRS. The closed-form KRF algorithm has lower complexity but more restrictive requirements for training parameter Q. While BALS iterative method, although computationally more complex, can operate on more flexible choices for training parameter Q with lower training cost. In this article, we also consider the relationship between the system parameters to ensure the uniqueness of the channel estimates. These constraints are useful when designing system channel estimates. Some simulation and discussion calculation results, we have demonstrated the superior performance of KRF and BALS compared with the conventional LS estimator, ignoring the Khatri-Rao structure of the combined channel matrix.
The KRF and BALS channel estimation algorithms mentioned in this paper can improve the performance by exploiting the knowledge of the rank of the estimation matrices, or, using compression sensing methods to take advantage of the sparse representation of the HBS-IRS and GIRS-UT channel matrices. This could be the next research direction of interest.
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