T6i wu héa cac uéc luong trang thai mii cho
hé rdi rac duong vdéi tré thoi gian va nhiéu

TOM TAT

Trong bai bao nay, chiing t6i xem xét dén bai toan uéc luong trang thai mii cho hé duong rdi rac
v6i tré thoi gian vi nhiéu. Bing viéc st dung mot phép déi trang thai, ching toi chuyén hé duong roi
rac véi tré thoi gian va nhiéu vé mot hé tuong ting khong con nhiéu. Biang cach sit dung céc ki thuat
tdi wu hoéa, chiing toi dua ra cic udc lugng trang thai cho hé nhan duge (khong c6 nhiéu), tir d6 ching
toi ciing thu dude chin trang thai mii cho hé ban dau. Mot s6 vi du s6 dua ra dé minh hoa cho cac két

qua ly thuyét dat dugc.

T khoéa: hé ri rac duong, tré thoi gian, nhiéu, wdc ligng trang thdi ma, toi wu héa.



Optimization of exponential state estimates

for positive discrete-time systems with

delays and disturbances

ABSTRACT

In this paper, we consider the problem of exponential state estimate for positive discrete-time system

with time delays and disturbances. By using a state transformation, we reformulate a positive discrete-

time system with time delays and disturbances to system without disturbances. By using optimization

techniques, we derive the optimal exponential state estimate for the obatined systems (no noise), from

which we also obtain the exponential state estimate for the original system. Some numerical examples

are given to illlustate the obtained theoretical results.

Keywords: positive discrete-time system, time delays, disturbances, exponential state estimate, opti-

mization.

1. INTRODUCTION

Positive systems are dynamical systems in which
the state vectors are always belong to the non-
negative orthant providing that the initial value
functions are nonnegative. This kind of systems
has attracted a lot of attention in the mathe-
matics community. Due to the positivity require-

ment, it is much more complicated and difficult
to study on positive systems than on general
systems. On one hand, similar to general sys-
tems, the time delay appears in the positive sys-
tem and it can affect the stability of the sys-
tem. On the other hand, different from general
systems with time delays in which the quadratic
Lyapunov-Krasovskii functional is used, the co-



positive Lyapunov-Krasovskii functional is ap-
plied to study the stability and the performance
of positive time-delay systems. In,! for the first
time, the stability of linear positive systems with
constant delays was considered via using the co-
positive Lyapunov-Krasovskii functional. This
result is extended to linear positive systems with
time-varying delay in?. The Lj-gain and L
gain are first mentioned by Briat® where the
input-output gain is represented by linear in-
equalities. The Lyapunov-Krasovskii functional
method is also a useful tool to study the prob-
lem of a-exponential stability for positive sys-
tems with bounded time-varying delays.*® An-
other approach to study positive systems is based
on the comparison principle. There are many
developments of this approach have been intro-
duced in the literature, see, e.g:%"

In practical time-delay systems, disturbance
is a factor which appears very often and cannot
be avoided. State estimate for time-delay sys-
tems with bounded disturbances is one of the
key problems in control theory. For positive sys-
tems, the main approach for solving this prob-
lem is based on the property of Metzler/Hur-
witz/Schur matrices.>® 1! For discrete-time sys-

412 consider the problem of state estimate

tems,
for positive discrete-time systems with delays
without disturbances. The state estimating prob-
lem for positive discrete-time systems with de-
lays and bounded disturbances has been studied
in. 13 However, it should be noted that these

state estimates have not been optimized.

Motivated by the above observation, in this
paper, we consider the optimization problem of
state estimates for positive discrete-time sys-
tems with delays and bounded disturbances.
This work can be considered as a counterpart
of™ in which the continuous case was studied.
Firstly, a state transformation is used to reformu-
late the problem of finding the optimized expo-
nential state estimate for a positive discrete time-

delay system with bounded disturbances into
the problem of finding the optimized exponen-
tial state estimate for the positive discrete time-
delay system without disturbance. Then, we ap-
ply an optimization scheme to the method pro-
posed in'! to obtain a better exponential com-
ponentwise estimate for the state vector of the
transformed positive time-delay system (without
disturbance). Consequently, we receive a more
accurate exponential componentwise state esti-
mate for the considered perturbed positive time-
delay system.

2. NOTATION AND PRELIMINAR-
1IES

Notation: N, R™ and R{ | are respectively the
set of nonnegative integers, the n-dimensional
vector space and the nonnegative orthant in R"”;
e=1[11
(w129 - 2o y=1[v1 92 -
nxn-matrices A = [a;;], B = [bi;], z <y (z < y)

1]T € R™; for two vectors z =
T in R", two

means that z; < y; (v; < y;),Vi = 1,---,n
and A < B (A = B) means that a;; < b
(aij < bij),Yi,j =1,---,n; Ais a nonnegative

matrix if 0 < A; x = y (A = B) means that
y = (B2 A) p(A) = max{|\| : A € o(4)} is
the spectral radius of A; I,, is the identity matrix
of size n. The maximum, minimum of a finite set
of vectors (of matrices) are understood compo-
nentwise.

Consider the following positive discrete-time
system with time-varying delays and bounded
disturbances

z(t+1) = Apz(t) + Aiz(t — h(t)) + w(t), t €N,
(1)
z(s) =¢(s), se {—=h,—h+1,...,0}, (2)

where x(t) is the state vector; hi(t) € [0,h] is
the time-varying delay; h is a known positive
scalar; Ap and A; are two known nonnegative



matrices; w(t) € R, is the vector of distur-
bance; p(s) € Ry, s € {~h,—h+1,...,0}, is
the initial value function. Both w(-) and ¢(-) are
unknown but assumed to be bounded by some
time-varying functions, i.e.

0<w(t) 2w(), seN, (3)
0=<p(s) 2p(s), se {-h,—h+1,...,0}, (4)

where @(t), @(s) are two known time-varying
functions. Let denote by z(t,¢,w) the unique
solution of (1) with respect to the initial value
function ¢(s) and the vector of disturbance w(t).

The aim of this paper is to find the smallest
possible exponential estimate with a predefined
decay rate A > 1 of the solution z(t, ¢, w). More
specifically, we tend to find the two smallest pos-
sible vectors 8; and [, such that

z(t,p,w) 2 B+ BA T VEEN. (5)

Remark 2.1. Since w(t) is a known function,
with a predefined decay rate ), it can be found
two nonnegative constant vectors w; and w, such
that

o) 2@+ oA i=a(), te N, (6)

In this paper, we will assume the existence of @,
and w, satisfying (6).

Remark 2.2. For each positive scalar A > 0, let
us define the matrix

M)y = Mg + \'LA,. (7)

As in,4’11 to guarantee the existence of exponen-
tial state estimate for system (5), it must be as-
sumed that M) is a nonnegative and a Schur
matrix, i.e. p(M)) < 1.

An exponential state estimate under the
form (5) for system (1) is obtained via a solu-
tion comparison with the following system

y(t+1) = Aoy(t) + Ary(t — ha(t)) + d(t),t €N,
(8)

where d(t) is a vector of disturbance which will
be defined later.

The next lemma give us some useful facts re-
lated to systems (1) and (8) which will be needed
in next parts of the paper.

Lemma 2.3. (i) Systems (1) and (8) are

nonnegative;

(ii) With two initial value functions 0 =
vi(s) = pr(s), s € {—h,...,0}, and
two vectors of disturbance 0 =< wi(t) =
wr(t), t € N, we then have

z(t, 1, wi) 2 (L, o, wi),
(t, or,wi) = x(t, or, wr),
z(t, or,wr) 2 y(t, o, wr),
y(t, o1, wi) = y(t, o, wr)

Proof. The proof of this lemma can be con-
ducted similarly as in.® O

3. EXPONENTIAL STATE ESTI-
MATE FOR POSITIVE DISCRETE-
TIME SYSTEMS WITH DELAYS
(WITHOUT DISTURBANCE)

Let us consider the following positive discrete-
time system (without disturbance)

z(t+1) = A()Z(t) + Ajz(t — hl(t)), teN, (9)
(s) = 6(s),5 € {—h,—h+1,...,0}, (10)

where the initial value function ¢(-) is unknown
but assumed to be upper bounded by a known
time-varying function ¢(-), i.e.,

0= ¢(s) 2 o(s), s€ {~h,—h+1,...,0}.
(11)
In this section, under the assumption that
p(M)) < 1, we present a method to obtain an A-
exponential state estimate for the solution z(t, ¢)
of the system (1). By Lemma 2.3, one has

z(t,¢) <X z(t,¢),t € N. (12)



As in, ! if there exist a vector p = 0, a number
d € (0,1) such that

(Ag+ Ay)p < ép (13)

and a nonnegative scalar v such that

B(s) < Ap\~S, s € {—h,—h+1,...,0}, \=dm1,

(14)
we then have
2(t,¢) < ypA~teN. (15)

It should be noted that condition (13) is equiv-
alent to p(M)) < 1 where M) is defined in (7).
Combining two inequalities (12) and (15), we get

2(t,¢) <A~ teN. (16)

A vector (p,7) € R x Rg 4 satisfying the con-
dition (My — I)p < 0 and (14) can be found as
below

= (12 —xAD) e )
l#(s)lloo Moo

vy =max max
s=—h,...,0 P1

1)l 3 )

Si—h,..., pn

It can be seen that the factor vector (p,7) of
the exponential state estimate (16) has not been
optimized. From this inequality, for each i €
{1,...,n}, the exponential estimate of the i-th
element of the state vector z(t,¢) can be ob-
tained as below

zi(t, ) 2 ypA T teN (19)

For each i € {1,...
tor (p,7v) € Rl x Ry 4 such that the coefficient
yp; in (19) is minimized.

,n}, our aim is to find a vec-

For simplicity, let us consider the case i = 1.
Since the function ¢(s) is given, for each i €
{1,...,n}, we can define the number

a; = max || 1(8)8”00

20
se{—h,—h+1,..,0} A (20)

ap]. Then, condition (14) is
equivalent to yp >~ a.
Let

Let a = [a1,aq, ...,

Q:={(p,7) €RL xRy y|(Myx—1T)p <0,7p > a}

and f(p,7) := yp1-
The smallest factor vp; of the exponential esti-

mate of the first element in (19) is the optimal
value of the following optimization problem:

min f(p,7) = yp1 such that (p,y) € Q. (OP)

It should be noted that (OP; ) is a noncon-
vex optimization problem. Hence, this problem
is quite difficult to be solved. However, (OP; )
can be reformulated under the form of the fol-
lowing linear programming;:

min g(u) = u; such that u € A, (LPq)
where

A={ueR}|(My—Du=<0u=a}. (21)

It can be seen that the two problems (OP; )
and (LP; ) have the same optimal value.

Similarly, for each ¢ € {2,3,...,n}, by solv-
ing linear programming problems
min g(u) = u; such that u € A, (LP;)

where A is defined in (21), we find the smallest
factor u;, of the i-th element of the exponen-
tial state estimate z;(¢,¢) under the form (19).
Combine the above procedures, we receive the
minimized vector u, = [u¥,u},...,u*]" of the
following exponential state estimate of the sys-
tem (9)

2(t,¢) < u A"t t €N, (22)

From the above development, the main result of
this section is summarized in the following theo-
rem.



Theorem 3.1. Assume that p(M)) < 1 and
0 < é(s) = ¢(s). The solution z(t, ¢) of the sys-
tem (9) has an exponential state estimate under

the form

2(t,¢) Ru Nt tEN (23)
where u, = [uj,uj, ... ,u:‘JT is the optimal fac-
tor vector and w;,i = 1,...,n, is the optimal

value of the problem (LP; ).

4. EXPONENTIAL STATE ESTI-
MATE FOR POSITIVE DISCRETE-
TIME SYSTEMS WITH DELAYS
AND BOUNDED DISTURBANCES

In this section, we will establish an exponential
state estimate for the positive discrete-time sys-
tem with time-varying delays and bounded dis-
turbances system (1). Choose A > 1 such that
p(M)y) < 1. Let us define two nonnegative vec-

tors
q = (I — M) '@, (24)
¢ = (I — M) '@,. (25)
Let
W(s) == max {g(s), @ +a¢-A"""}, (26)
¢(s) = h(s) — @ — ¢ A", (27)
d(t) := @ + o AT AT AL — AOF 4,
(28)

Then, by comparing with conditions (3), (4),
(6), and noting that hi(t) < h, Ay > 0, it can
be verified that ¢(s) = @(s) = ¥(s), 0 =
¢(s) vaw(t) =2 w(t) < d(t). From Lemma 2.3,
one has

x(t7 807 U.)) j l‘(t’ w?w) j y(t,¢,w) j y(t7¢’ d)'
(29)

From the above inequalites, we just need to find
an exponential state estimate for the solution
y(t, 1, d) of the system (8).

Set
2(t) = y(t) —a — AT > ~ho (30)
From (8), we then have
At+1) =yt +1) —q— g™
= Aoy(t) + Ary (t — ha(t)) + d(¢)
—q— g\
= Ao (2(t) + @ + ¢-A)
A1 (2 (0= ha(0) + @+ g ATHO)

+ d(t) —q — QT)\_t

= Aoz(t) + A1z (t — hi(t)) + (Ao + Ay — I)g

AT (NAg + M AL — g,

o\t (/\h+1A1 _ )\hl(t)+1A1) g + d(t)
= Apz(t) + A1z (t — ha (1))

+ (My — I)(I — M)t

AT My = (I = My) ™',

o\t <>\h+1A1 _ )\hl(t)+1A1) g + d(t)
= Agz(t) + A1z (t — hi(t)) — w0 — W A"

o\t <>\h+1Al _ )\hl(t)+1A1) g + d(t)
= Aoz(t) + A1z (t — ha (1)) .

This means that we obtain the positive discrete-
time system with delay and without disturbance.
We then deduce from (30) that

y(t.y,d) = z(t,0) + @ + A", (31)

where, ¢(-) is defined in (27). Combine in-
equalites (29) and (31), one gets

z(t,p,w) < 2(t, @)+ q + A (32)
From (22) and (32), we have
z(t,p,w) 2w A +q+ g AT
= q + (ur + Ag-)A "

From this, we obtain an exponential state esti-
mate (5) for system (1) with factor vectors de-
fined by

Bl =4q, 67’ = Up + Aqr, (33)



where the vector u, is found as in Theorem 3.1.
The main result of this section is summarized in

the following theorem.

Theorem 4.1. Assume that p(My) < 1, (3) and
(4) hold. The solution x(t,p,w) is estimated via

the formula (5) where the vectors By, B, are found
by (33).

5. NUMERICAL EXAMPLES

In this section, we present two numerical exam-
ples to illustrate the results obtained in Theo-
rems 3.1 and 4.1.

Example 5.1. Consider the following time-
delay system

z(t+1) = Aox(t) + Arz(t — hi(t))
z(s) = ¢(s), s=-2,-1,0,

teN,

(34)
where, z(t) € R3 hy(t) € {0,1,2}, Ap and A;
are two nonnegative matrices with coefficients
0.21 0.21 0.12 0.32 0.01 0.18

0.04 0.12 0.14|,A; = |0.03 0.12 0.02
0.12 0.05 0.26 0.04 0.01 0.21

Ay =

the initial value function ¢(-) is unknown and
satisfies [¢(s)| < ¢(s) where

¢(—2):[2 3 0.5}T,

_ T
¢(—1):[3.1 2.4 3.2} :
5(0):[0.3 0.5 0.1}T.

By using Remark 4 in,* we deduce that the range
of the decay rate A is [1,1.1375].

Let us consider the case A = 1.1. By apply-
ing Theorem 3.1, we receive the following table.

A=1.10
(75} u9 us
4.9163 2.4793 2.9091
9.6567 3.2000 5.6305

Methods

Our new method
Method in'!

The above table shows that with the decay rate
A = 1.10, the elements of the factor vectors ob-
tained by our new method is smaller than the
ones obtained by .!!

Example 5.2. Consider the following positive
discrete-time system with delays and distur-

bances
x(t+1) = Apx(t) + Arz(t — hi(t)) + w(t) teN,
‘T(S) = SO(S)’ § = 72, 71’07
(35)

where, z(t) € R3 hi(t) € {0,1,2}, Ay are Ay
nonnegative matrices with

0.21 0.21 0.12
0.04 0.12 0.14| ,A; =
0.12 0.05 0.26

0.32 0.01 0.18
0.03 0.12 0.02
0.04 0.01 0.21

Ag =

w(t) € Rf, is the vector of disturbance satis-
fying 0 < w(t) = w(t),t € N; the initial value
function ¢(s), s = —2,—1,0, satisfying condi-

tion |p(s)| < @(s) with

13 0.6 0.2
p(s)=1 8 |,ot)=|1|+[03]| 17"
10.2 0.7 0.5

By using Remark 4 in,* we find that the range
of decay rate is [1,1.1375].

Let us consider the case A = 1.1. By applying
the development in Section 4, we find that

.
ﬁl:[4.1627 2.2965 2.8374] ,

.
By = [13.0887 5.7035 7.7428] .

This gives us the exponential state estimate for
the positive discrete-time system with delays and
disturbances (35).

i



6. Conclusions

In this paper, we have considered the prob-
lem of exponential state estimate for positive
discrete-time systems with delays and distur-
bances. A state transformation is used to trans-
form positive discrete-time systems with de-
lays and disturbances to systems without dis-
turbance. By applying an optimization techique,
we have found the smallest possible exponential
state estimate for the transfromed systems from
which the estimates for the considered systems
are derived. The approach in this paper can be
used to study some other classes of positive sys-
tems comprising disturbances.
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