

Silver nano solution, manufacturing methods, characteristics and applicability

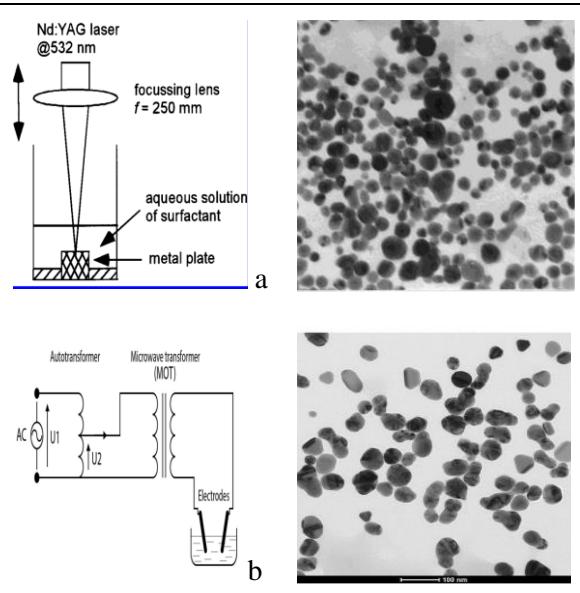
ABSTRACT

The development of human society is associated with the development of materials through the ages: stone, copper, iron, polymers and now nanomaterials. With extremely small sizes, very large surface areas and quantum effects of nanomaterials, it offers many outstanding properties and opens up many special applications. Silver nanomaterials (AgNPs) have both the properties of metallic silver while expanding and adding new properties, so the application scope is also more developed, especially in the fields of environment, medicine and health protection for humans. Nanosilver is also prepared according to the principle of "top-down" from metal or "bottom-up" from ion by physical, chemical, physicochemical or biological techniques or a mixture of combinations. The obtained nanosilver product is a true colloidal solution whose properties are very dependent on the preparation methods, but the basic properties are such as the nature of the plasmonic surface resonance of silver nanoparticles by UV-Vis, particle shape, size and structure by TEM, SEM, AFM, FTIR, XPS, XRD, nanoparticle and colloidal size distribution by Laser Scattering Particle Size Distribution Analyzer and Zeta Phoremeter Instrumentation. The concentration of nano silver is usually determined by methods AAS, ICP-MS, ICP-OES. Depending on the intended use in the fields of: catalysis, photovoltaic, microelectronics, environment, medicine, health, etc., methods to determine the corresponding properties are also applied. Because AgNPs has many special characteristics, the most prominent is the field of killing many bacteria and viruses to protect the environment and human health, the AgNPs development research strategy is specially noticed in many countries in the worlds. Research is very focused on precise control of concentration, particle size, purity, use of environmentally friendly materials and lower costs as well as increasing efficiency and safety in biological water treatment applications. activity, diagnosis and treatment in medicine.

Keywords: AgNPs, methods, characteristics, applicability.

1. INTRODUCTION

Metallic silver was discovered thousands of years BC and became a very precious metal used as currency in feudal society in many countries as well as jewelry and household items.¹ With properties good conductor of electricity, heat, light sensitivity and antiseptic, silver has been used in the fields of electricity, electronics, film and medicine since very early. Since the development of nanomaterials with effects on subatomic small size, large area and quantum,^{2,3} silver nanomaterials (AgPNs) have also been focused on researching innovations such as:^{4,5} electrical properties,⁶ electronic,⁷ catalytic,⁸ and especially antibacterial.⁹⁻¹¹ Because AgNPs have many applications in science, technology and life, especially with very good antibacterial ability,¹²⁻¹⁴ so many research and manufacturing methods such as physics,¹⁵⁻¹⁷ biology,¹⁸⁻²⁰

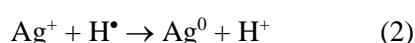
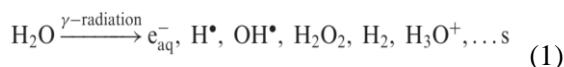

chemistry,²¹⁻²³ and electrochemistry²⁴⁻²⁷ have focused their research.

2. MANUFACTURING METHODS

2.1. Physical Methods

2.1.1. *The principle of "Top - down"*

Fabrication of AgNPs by physical method also follows the "top-down" principle with bulk metallic silver using a large amount of heat to separate the silver into vapor and then condense it like PVD,^{28,29} or granular and then dispersed, such as laser cutting^{30,31} or electric arc.^{32,33} Figure 1 shows the principle of laser method (a)³⁰ and arc discharge (b)³³ along with corresponding TEM images of the obtained AgNPs particle size and shape and size.



Figure 1. Schematic diagram and TEM image of AgNPs, a) Laser method, b) arc discharge method

The AgNPs solution obtained by the above methods has a time-dependent light to dark yellow color and has a characteristic UV-Vis spectrum from 400 to 404 nm. Figure 1 shows that the shape of the nanoparticles is not uniform, so the particle size distribution spectrum is wide from 10 to 300 nm and the average is 46.8 to 48.9 nm. The zeta potential values from -20.4 to -22.31 mV show that AgNPs colloidal solutions can be prepared by physical methods without the need for stable stabilizers. Although the production of AgNPs by the above physical methods does not use chemicals, so it has high purity, but the equipment is complicated, uses a lot of energy, the concentration is not high and the quantity obtained is not large. Therefore, the cost is high and the field of use is limited.

2.1.2. The principle of "Bottom - up"

Physical methods can also implement the principle of preparing AgNPs from the "bottom-up" by beams: gamma,³⁴⁻³⁷ electrons,³⁸ or microwave³⁹ activating components in solution to reduce Ag⁺ of AgNO₃ salts into AgNPs.

According to the author group Bui Duy Du⁴⁰, the energy of gamma rays can affect the components of the medium such as water to form strong reactive agents including strong reducing agents such as H- radical with potential value - 2, 3 V:

Although the obtained AgNPs have the best shape and small size, the fabrication process must use different stabilizers^{34-37,40,41} and the maximum value of the UV-Vis spectrum ranges from 405.5 to 41.8 nm. With the advantage of using available equipment, the process of technology is not complicated and can prepare a large amount of AgNPs solution, so the cost will be more reasonable, but the resulting solution still has a large amount of NO₃⁻ ions. As well as other stabilizers and by-products, the field of application is only suitable for environmental remediation.

2.2. Chemical Methods

2.2.1. Reducing agents

The chemical method for preparing AgNPs solution is to implement the "Bottom-up" principle to create nanoparticles from Ag⁺ ions of silver salts by reduction process.⁴² The commonly used silver salt is AgNO₃ and the reducing agents used are very different. such as glucose,^{43,44} sucrose,⁴⁵ hydrazine,⁴⁶⁻⁴⁸ ethylene glucol, ethanol, aniline,⁴⁹ citrate,^{46,50-54} hydrogen,⁵² borhidird⁵³

The chemical method of preparing AgNPs solution is to follow the principle from the "Bottom-up" to create nanoparticles from the Ag⁺ ions of silver salts by reducing the reduction process.⁴² The commonly used silver salts are AgNO₃ and the reducing agents that have been used very different such as glucose (C₆H₁₂O₆),^{43,44} sacarose (C₁₂H₂₂O₁₁),⁴⁵ hydrazine (N₂H₄),⁴⁶⁻⁴⁸ ethylene glycol (C₂H₆O₂), ethanol (C₂H₅OH), aniline (C₆H₅NH₂),⁴⁹ sodium citrat (Na₃C₆H₅O₇),^{46,50-53} hydrogen (H₂),⁵² sodium borhydird (NaBH₄)⁵³⁻⁵⁷ ...

Table 1 presents the reaction equation to form AgNPs with a number of different reducers. To ensure the reduction process is completely done, the reducing agent usually has many times compared to silver salt. From the reactions in Table 1 can be seen: In addition to the spherical silver nanoparticles after the reaction, there are ions of silver salt such as NO₃⁻, Na⁺, the products of reducing agents and stabilizers are added. Removing these ingredients to get AgNPs is completely pure, expensive and also changes the properties of AgNPs, so the product is usually applied only in areas that do not require AgNPs high purity.

Table 1 also shows that nanoparticles are obtained as a wide area, so it is necessary to use stabilizers to control the size of nanoparticles as

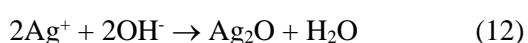
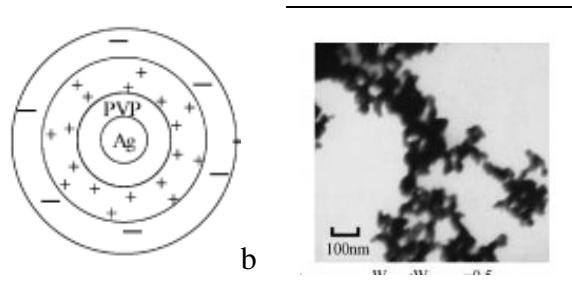
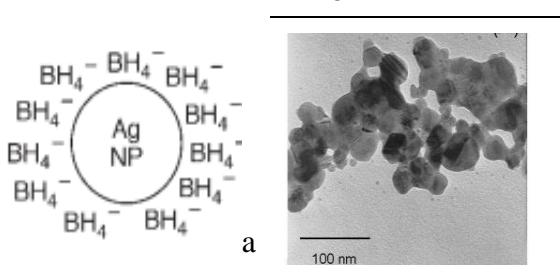

desired. From Table 1, the reducing reaction mechanism according to different authors⁵⁴⁻⁵⁸ is also different. It also means that the substances in AgNPs solution after the reaction will also vary, for example, NaBH_4 reduction reaction (10) creating B_2H_6 ⁵⁴⁻⁵⁷ gas will escape from the solution and if the reaction (11) quantity H_2 gas from the solution will be 3.5 times higher than (10).⁵⁸

Table 1. Reducing and reactions to create AgNPs



Reducing agent	Reaction equation	Size, nm	Ref
C ₆ H ₁₂ O ₆	C ₆ H ₁₂ O ₆ +2Ag ⁺ + 2OH ⁻ → 2Ag ⁰ +C ₆ H ₁₂ O ₇ +H ₂ O (4)	20.80 sphere	44
N ₂ H ₄	4AgNO ₃ +N ₂ H ₄ +4NaOH →4Ag ⁰ +N ₂ +4NaNO ₃ +4H ₂ O (5)		48
N ₂ H ₄	4AgNO ₃ + N ₂ H ₄ → 4Ag ⁰ +N ₂ +4HNO ₃ (6)	8-50 sphere	46
RCHO	2AgNO ₃ +RCHO+2NaO H→2Ag ⁰ +RCOOH+2NaNO ₃ +H ₂ O (7)	10-250	49
C ₆ H ₅ NH ₂	C ₆ H ₅ NH ₂ +AgNO ₃ → Ag ⁰ + C ₆ H ₅ NH ₂ NO ₃ (8)	10-30	49
C ₆ H ₅ O ₇ Na ₃	4AgNO ₃ +C ₆ H ₅ O ₇ Na ₃ +2H ₂ O→4Ag ⁰ +C ₆ H ₈ O ₇ +3NaNO ₃ + HNO ₃ +O ₂ (9)		50
NaBH ₄	AgNO ₃ + NaBH ₄ →Ag ⁰ +1/2H ₂ +1/2B ₂ H ₆ +NaNO ₃ (10)	10-80	54-57
NaBH ₄	AgNO ₃ + NaBH ₄ + 3H ₂ O → Ag ⁰ +7/2H ₂ + B(OH) ₃ + NaNO ₃ (11)	30-40	58

2.2.2. Stabilizers

The process of creating a silver nano colloidal solution with reducing agents that always exists in the system with ions and reducing agents, so silver colloids can be formed according to the equation:

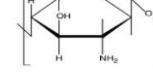
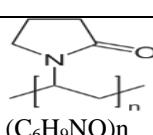
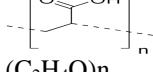
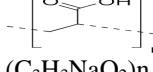
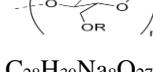
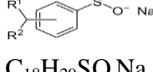
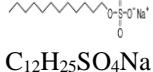
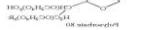








and simulated as shown in Figure 2.^{44,54}

Figure 2. AgNPs colloidal seeds and stamp images are made up of AgNO_3 chemical reduction with reducing agents: a) NaBH_4 , b) R-HO with PVP.

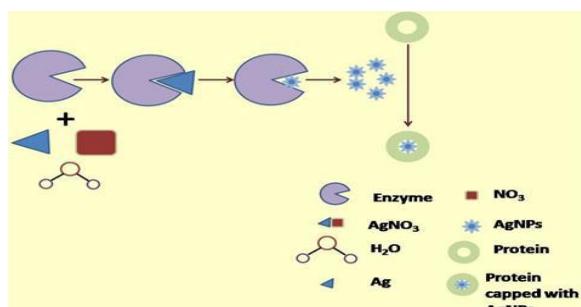
In order to control the size and shape of AgNPs in the colloidal solution, it is not formed into a large particles, stabilizers are high molecular compounds or surfactants added to the chemical reaction.⁵⁹⁻⁶¹ Stabilizers often have functional groups, dissolve well in the reaction environment, good compatibility or high biological activity, non-toxic and biodegradable ability.⁶² Table 2 presentation of some stabilizers often used for chemical manufacturing of AgNPs such as: Chitosan,⁶²⁻⁶⁷ PVA,^{68,69} PVP,^{51,59,70} ...

Table 2. Stabilizers are often used in the process of chemical manufacturing of AgNPs.

Stabilizers	Chemical formula	M _{ever} , g/mol	Ref.
Chitosan poly β(1,4)D-glucosamine cation		3,800-20,000	66
PVP polyvinyl-pyrrolindone		40,000	59
PVA poly vinyl alcohol		85.000	
PAA polyacrylic acid		15,000	
PAH poly allylamine hydrochloride		15,000	
CMC carboxymethyl cellulose		90,000	
NaDDBS Surfactants (anion)		348	
SDS Surfactants (anion)		288	
TW80 Surfactants		1,310	

(neutral)	$C_6H_{124}O_{26}$		
CTAB Surfactants (cation)		365	
	$C_{19}H_{42}BrN$		

From Table 2, stabilizers can be found with electrical charge groups of straight or cyclic circuits, that can orient the adsorption on the AgNPs core to form a micell or reverse micell with the corresponding charge to combat flocculation of the colloidal system.^{71,72} So that the stabilizers with the appropriate nature and concentration will control the size and shape of the AgNPs colloid as well as the characteristics of AgNPs as desired.


2.2.3. Silver nanocomposite

Fabrication of silver nanocomposite with chemical reducing processes will diversify AgNPs carried materials for applications in life. Composite materials carried AgPNs are usually studied as polymers PP, PET, Nylon, PC, ABS,^{73,74} PU,⁷⁵ PE,⁷⁶ ceramic, pottery,⁷⁷⁻⁷⁹ glass,⁸⁰ fabric,⁸¹⁻⁸³ fiber,⁸⁴⁻⁸⁵ paint.⁸⁶⁻⁸⁸ Common manufacturing methods are dispersed AgNPs made by chemical methods in materials, but can also be made *in-situ* from $AgNO_3$ with reducing agents in the material during the processing ceramics, fabric or polymers.⁸⁶⁻⁸⁸

2.3. Biological method

2.3.1. Microorganism

The biology method uses bacterial microorganisms, yeast, mushrooms, molds as $AgNO_3$ silver-deducted agents into metal silver and AgNPs.⁸⁹⁻⁹¹ microorganisms using silver salts as nutrients to survive and develop as described in Figure 3.

Figure 3. Microorganisms use Ag^+ as a nutrient and reduce it to AgNPs.

From Figure 3 it can be seen that the protein can act as a stabilizer to control the size of AgNPs. There are many types of microorganisms studied and used to make AgNPs from $AgNO_3$ which are presented in Table 3.

Table 3. Particle size, characteristic UV-Vis spectra and references of some typical microorganisms using AgNPs preparation.

Microorganism	Size/UV, nm	Ref.
<i>Enterobacteria</i>	52.5 / 420-430	92
<i>Rhodopseudomonas palustris</i>	5-20 / 420-460	93
<i>Rhodobacter Sphaeroides</i>	9.56 / 420	94
<i>vibrio alginolyticus</i>	75 / 420	95, 96
<i>Halococcus salifodinae BK6</i>	50.3 / 380-440	97
<i>Bacillus</i>	42-94 / 450	98
<i>Euploites focardii</i>	20-70 / 420	99
<i>Haloferax</i>	27.7 / 458	100
<i>Verticillium</i> (fungus)	25 / 420	101
<i>Aspergillus fumigatus</i>	5-25 / 420	102
<i>Penicillium</i>	5-25 / 430	103

The results from Table 3 show that microorganisms can also reduce $AgNO_3$ salts to AgNPs with characteristic UV-Vis wavelengths from 380 to 460 nm and average particle sizes less than 100 nm. The special thing is that AgNPs products are stabilized with stable proteins for more than 6 months, so there is no need for stabilizers. However, the ions of $AgNO_3$ salt are still present in the reaction product, so the purity of AgNPs is not enough for application in the field of medicine.

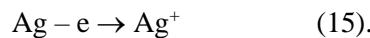
2.3.2. Extraction solution – green chemistry

Humans develop in association with the plant environment and often use many types of plants for food or medicine, so using plants in the preparation of AgNPs is also a method with many advantages in terms of extremely rich raw materials, environmentally friendly and low cost. Therefore, the method of preparing AgNPs by plant extracts has been studied all over the world such as USA,¹⁰⁴ China,¹⁰⁵ India,¹⁰⁶ Germany,¹⁰⁷

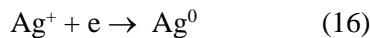
Africa¹⁰⁸ and Vietnam.¹⁰⁹ Water extracted from parts of plants such as leaves,¹¹⁰ roots,¹¹¹ bark,¹¹² tubers,¹¹³ flowers,¹¹⁴ fruits¹¹⁵ can all be used to prepare AgNPs. Table 4 presents extracts of some plants used to prepare AgNPs. Using plant water extract as AgNO₃ reducing agent to prepare AgNPs does not need to use more stabilizers, but the product is still available with NO₃⁻ ions and reducing products, so it also limits the application field.

Table 4. Extracts of some plants used to prepare AgNO₃.

The plants	Science name	Part	Ref.
Geraniums	<i>pelargonium graveolens</i>	Flower	104
Cordyceps	<i>Cordyceps militaris</i>	Total	105
Mud	<i>Brillantaisia patula, Crossopteryx febrifuga and Senna siamea</i>	Tree and leaves	108
Soybean	<i>soymida febrifuga</i>	Total	110
Carrot	<i>D. carota</i>	Tubers	111
Dill	<i>Syzygium cumini</i>	Total	112
Turmeric	<i>Curcuma Longa</i>	Tubers	113
Hibiscus	<i>Hibiscus Rosa</i>	Flower	114
Papaya	<i>Papaya</i>	Fruit	115
Basil	<i>Ocimum sanctum</i>	Total	117
Ginger	<i>Zingiber officinale</i>	Total	123
Tea	<i>Camellia sinensis</i>	Leaf	125
Sinus	<i>Azadirachta indica</i>	Leaf	124
Sesame oil (castor oil)	<i>Jatropha curcas</i>	Total	126
Euphorbiaceae	<i>Acalypha Indica</i>	Total	135


Mint	<i>Mentha piperita</i>	Total	122
Chrysanthemum	<i>Stevia rebaudiana</i>	Total	134
Amaranthaceae	<i>Chenopodium album</i>	Total	120
Fabaceae	<i>Casia fistula</i>	Total	133
Terminalia	<i>Terminalia chebula</i>	Leaf	118
Cinnamon, Camphor	<i>Cinnamomum camphora zeylanicum</i>	Bark	121
Garlic	<i>Allium sativum</i>	Total	127
Curry patta	<i>Murraya koenigii</i>	Leaf	132
Lemon basil	<i>Coleus amboinicus</i>	Total	131
Alfalfa	<i>Medicago sativa</i>	Total	130
Oranges, Lemons	<i>Citrus sinensis</i>	Total	128
Lemongrass	<i>Lemon grass</i>	Total	119
Bình bát	<i>Coccinia grandis</i>	Leaf	129
Combretaceae	<i>Terminalia catappa</i>	Leaf	128
Aloe vera	<i>Aloe vera</i>	Leaf	116
Lime tree	<i>Robustra</i>	Leaf	109

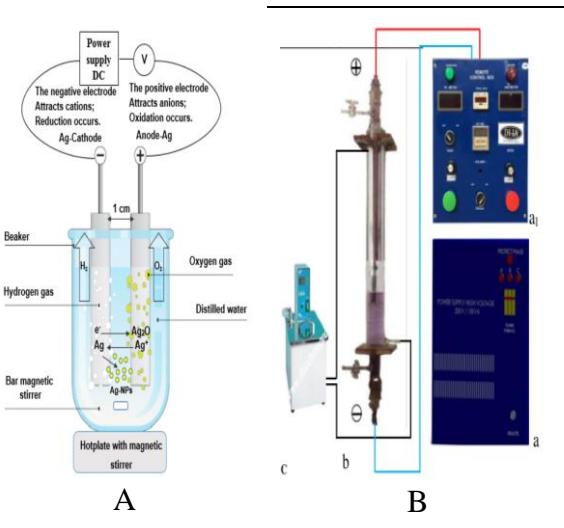
From Table 4, it can be seen that plants from all continents of the world are food sources, spices such as oranges, lemons, papayas, sesame, basil to pharmaceuticals such as cinnamon, garlic, lemongrass, and cordyceps as well as wood-bearing trees such as neem tree, neem tree, etc., can be extracted using water containing AgNO₃ desalting agents into AgNPs. Common reducing agents in plant extracts are flavonoids, terpenoids, polyphenols, alkaloids, glucose which are compounds having carbonyl and hydroxyl groups or amine groups.¹³⁶


2.4. Electrochemical Method

2.4.1. With electrolyte

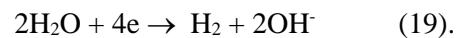
The electrochemical method in the field of Chemistry-Physics can perform a top-down process by oxidizing the metal silver anode in the electrolyte into Ag^+ ions with electrode potential value +0.799 V:¹³⁷

Simultaneously combined with the cathode reaction to reduce silver ions from the electrolyte to form silver nanoparticles, performing the bottom-up process:¹³⁸⁻¹⁴²



It is also possible to perform the preparation of AgNPs by simply reducing the reaction on the cathode (16) with AgNO_3 salt dissolved in the electrolyte solution and an inert anode such as Pt.^{143,144} To control the size of AgNPs obtained at the cathode can be used electrochemical specifications such as voltage, current density, conductivity as well as supporting measures such as pulses, vibrations, ultrasound or even strong escape gas on the electrode with higher voltages than normal water dissociation. With the usual electrochemical method, the electrolyte or anion NO_3^- of AgNO_3 still exists in AgNPs products, so it also limits the application field.

2.4.2. With high voltage


Electrode reactions can occur in a non-electrolyte medium such as double distilled water with very low conductivity but the voltage must be sufficiently high^{138,139,141} or very high.¹⁴⁵⁻¹⁴⁹ There are two typical electrode arrangements in the electrochemical reactor when using high voltage (Figure 4).

With high DC voltage the potential drop across the electrodes will still be greater than the decomposition potential of water as well as the equilibrium electrode potential of Ag and the electrochemical oxidation on the anode to form Ag^+ ions as the reaction (15) as well as water is electrochemically decomposed to form O_2 :

Figure 4. A) the cathode is parallel to the anode,¹⁴⁰ B) the bottom cathode is far from the upper anode¹⁴⁶⁻¹⁴⁸

At the same time on the cathode, the water will also be decomposed to form H_2 gas that escapes strongly towards the anode as shown in Figure 4B:

Due to the strong escaping gas covering the cathode surface, the amount of Ag^+ ions generated from the anode moves slowly due to poor conductivity, so it is difficult to reach the cathode to carry out the reaction (16). Therefore, the reduction of Ag^+ to Ag^0 and then to AgNPs according to (17) will be carried out by nascent H_2 gas from the cathode and dispersed into the solution:

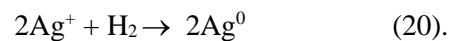
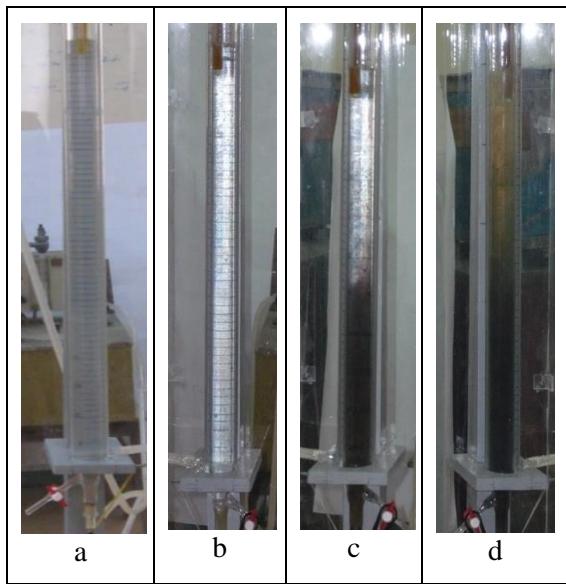
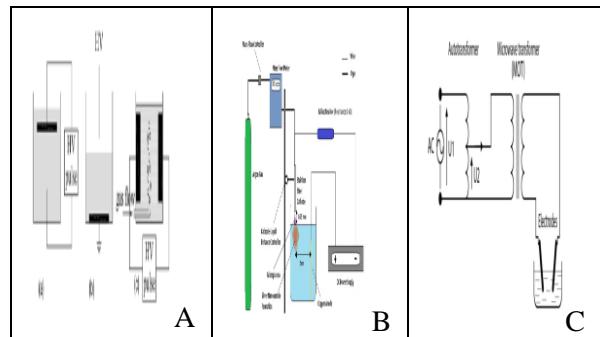
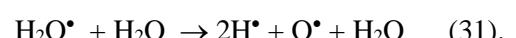
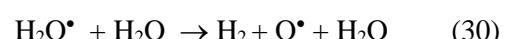
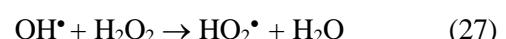
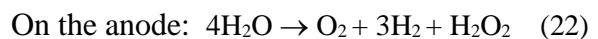
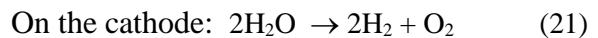



Figure 5 shows the process of generating AgNPs by H_2 generated from the cathode by electrochemical reaction from high voltage. Figure 5a shows that the color of distilled water is transparent, but after 3 minutes of reaction, H_2 gas escaping from the cathode turned white (b), and after 15 minutes of reaction, AgNPs formed turned dark color from the cathode side (c) and after 30 min the color of AgNPs occupied the entire reaction vessel (d).


Figure 5. AgNPs generation process by high voltage electrochemical reaction.

With the method of electrochemical manufacturing AgNPs by high voltage DC in distilled water with Ag electrode, the obtained product still has a spherical shape, size smaller than 100 nm with UV-Vis spectrum at about 420 nm and the ability to kill all kinds of bacteria very good. However, the zeta potential is opposite in sign to the chemical method and has a high value, so there is practically no need to use a stabilizer. The conductivity of colloidal solutions is very small because there are no ions of the reactants so the high purity is suitable for applications where only AgNPs are required.

2.5. Plasma method






Plasma is the fourth state of matter, the ionized state is changed from a gaseous state when further energized.¹⁵⁰ Unlike high-temperature plasma which produces a fully ionized state with only electrons and ions, low-temperature plasma ionization process only partially contains not only electrons, ions but also atoms, neutral molecules and radicals and is being applied in many fields of science, technology and life.¹⁵¹ The cold plasma state is also used for the preparation of AgNPs by the reduction of AgNO_3 by free electrons or hydrogen atoms generated by plasma according to the reaction (16) or (20).¹⁵² Figure 6 shows the plasma generation methods for the preparation of AgNPs.^{153,155}

From Figure 6 it is shown that the gaseous medium can be used either by air on the surface (Figure 6A,b) or by blowing air between the two electrodes (Figure 6A,c; 6B) or by the ARC arc generating steam (Figure 6C).

Figure 6. Principle of plasma generation for the preparation of AgNPs.

The plasma generation process uses electrodes and electrochemical reactions to create a gaseous environment when the electrodes are arranged as shown in Figures 4B and 5 or Figure 6A,a, so the plasma method can also be considered as an electrochemical method with high voltage. In the plasma state, the water will be decomposed on the electrodes to create a large amount of gas that does not obey Faraday's electrochemical theorem as well as ionization reactions to create atoms, molecules and radicals:

UV rays in the presence of plasma also contribute to the radical reaction:

The reactants generated from the plasma medium can participate in the formation of AgNPs in addition to the reactions (16) and (20):

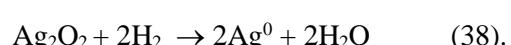
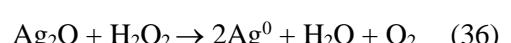
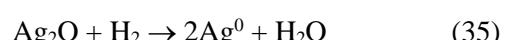
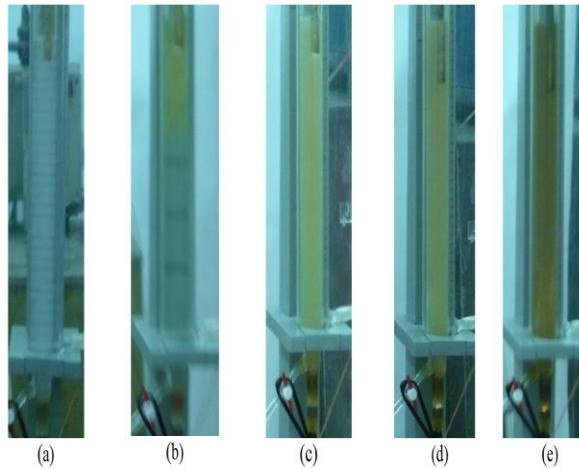
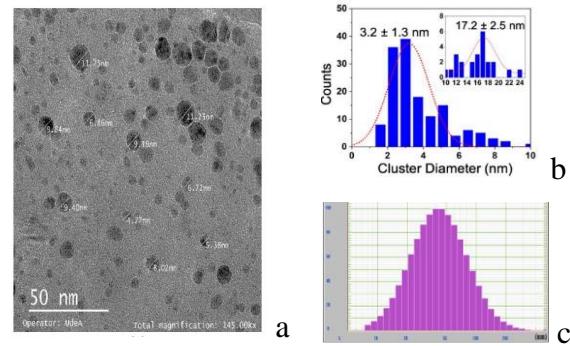





Figure 7 presents the process of generating AgNPs by high-voltage DC with the contribution of electrochemical plasma, showing that after the time of gas generation from the electrochemical reaction (Figure 7a), an anodic electrochemical plasma will appear after 15 minutes (Figure 7b) and the light yellow AgNPs color appearing from the anode towards the cathode gradually darkens over time of 23, 26, 35 min, respectively with Figures 7c, 7d and 7e.

Figure 7. The process of generating AgNPs by high voltage DC with the contribution of electrochemical plasma.

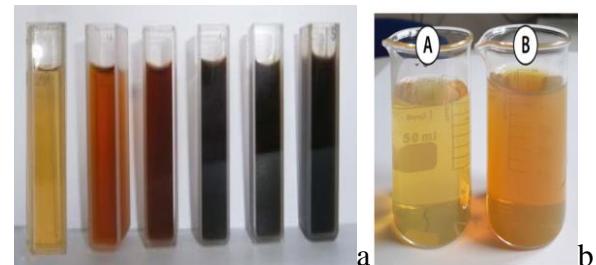

The process of creating Ag_2O and Ag_2O_2 intermediates besides Ag^0 due to the presence of O_2 , OH^- , OH^\cdot , H_2O_2 agents, etc. in the electrochemical plasma environment has created a yellow color before turning black.¹⁵⁶ By Ronghen, EDX and XPS spectra also demonstrated the presence of O in AgNPs accounting for $5.77 \div 9.6\%$ and also increased the bactericidal efficiency of AgNPs.¹⁵⁷⁻¹⁶⁰ Similar to the method of preparing AgNPs by High voltage DC, electrochemical plasma contribution will create the ability to increase the speed, product concentration as well as the ability to kill bacteria, although there is a small amount of Ag_2O or Ag_2O_2 , but it does not affect the purity of the product.

3. CHARACTERISTICS OF NANOSILVER

3.1. Silver nanoparticles

The characteristics of shape and size of AgNPs were determined by imaging methods by electron microscopy SEM, TEM, FE-TEM. Particle size distribution was determined by statistical particle counting software from SEM or by Laser Scattering Particle Size Distribution Analyzer. Figure 8 presents TEM images of AgNPs shape and size (a) as well as particle size distribution

from TEM (b) and laser determination (c). Figure 8 shows that AgNPs prepared by different methods all have near-spherical shape but different sizes in the nanometer region with Gaussian distribution as determined by laser method.^{154,158,161}

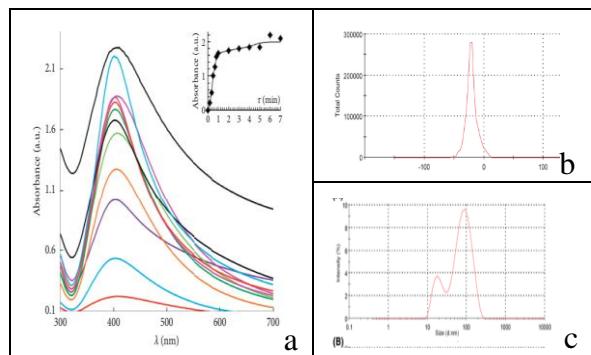

Figure 8. TEM image of AgNPs (a) and particle size distribution counted from TEM image (b) and laser particle size distribution analysis (c).

X-Ray,¹⁶² XRD,¹⁵³ XPS^{142,152} methods are also used to further investigate the properties of AgNPs particles in terms of phase, ratio of elements or ions: $\text{Ag}/\text{Ag}^+/\text{O}$, contributing to a better understanding of state of AgNPs in solution.

3.2. Nano silver colloid solution

3.2.1. Color

Figure 9 presents AgNPs products prepared by different methods such as: a) chemically,^{54,163} or b) plasma.¹⁵⁵


Figure 9. Color of AgNPs colloid a) chemically prepared, b) by plasma at different times and concentrations.

The AgNPs products obtained are all true solutions in the state of a transparent colloidal system with color from light yellow to brown or black depending on the concentration and preparation time, while the colorless solution will have no AgNPs.¹⁶³

3.2.2. UV-Vis and zeta potential

The AgNPs colloidal solution has the important properties of UV-Vis plasmon spectrum and zeta potential. Figure 10 shows the UV-Vis

spectrum,¹⁶⁴ zeta potential and colloidal particle distribution.¹⁵⁵

Figure 10. UV-Vis spectrum (a), zeta potential (b) and colloidal particle size distribution (c) of AgNPs colloidal solution.

From Figure 10a, the UV-Vis spectrum can be found of the AgNPS glue solution that has a range of 400 nm and increases the height when the concentration or reaction time increases and the location is moved when the acacia grain nature is essentially affected. Figure 10b shows that the Zeta value is about -22.31 mV that proves that the surface of the AgNPS acacia seeds is positive and the size of colloidal seeds distributed from 20 to 90 nm (Figure 10c). Therefore, Zeta is the diffusion layer, the surface of the glue seeds should be dependent on the environment and charge of the AgNPS seed surface with values that change from yin and yang, but the absolute value is greater than 20 MV, the glue system will be durable over time. Table 5 presents the zeta value of AgNPS glue solutions with different stabilizers.^{60,66,139,159}

Table 5. The zeta value of some stabilizers.

Stabilizer	Chemical formula	mW, g/mol	ζ , mV
NaDDBS	$\text{C}_{18}\text{H}_{29}\text{SO}_3\text{Na}$	348	5 ÷ -30
SDS	$\text{C}_{12}\text{H}_{25}\text{SO}_4\text{Na}$	288	-2 ÷ -20
TW80	$\text{C}_{64}\text{H}_{124}\text{O}_{26}$	1310	4 ÷ -15
CTAB	$\text{C}_{19}\text{H}_{42}\text{BrN}$	365	20 ÷ -30
PVP	$(\text{C}_6\text{H}_9\text{NO})_n$	40000	0 ÷ -25
PAA	$(\text{C}_3\text{H}_5\text{NaO}_2)_n$	14000	5 ÷ -25
PAH	$(\text{C}_3\text{H}_8\text{ClN})_n$	15000	5 ÷ 20
CMC	$(\text{C}_{28}\text{H}_{30}\text{Na}_8\text{O}_{27})$	90000	0 ÷ -10
Chitosan	$(\text{C}_6\text{H}_{11}\text{NO}_4)_n$	20000	50 ÷ 70
PP SH ¹⁶⁵	<i>Entada spiralis</i>	Chiét	-80,7
PPDH ¹³⁹	DC 25 kV	Ag	-(27 ÷ 39)
PPPL ¹⁵⁹	ARC discharge	Ag	-(40 ÷ 70)

Table 5 shows that the value of zeta is very dependent on the nature of stabilization of chemical structure, weight, electronegativity,^{66,67} as well as depending on the modulation method and composition of ions that exist in glue solution.

3.2.3. Conductivity and pH

Because Ag^0 or AgNPS silver particles are dispersed in water environments, it is impossible to conduct electronic conduct as metal as well as ionic forms like electrolyte solution. However, while using AgNO_3 in the methods as well as reducing the ionic amount of: NO_3^- as well as the reducing agent: Na^+ or the products of the reducing agent will create the conductivity of the AgNPS solution. Moreover, AgNPS colloidal seeds also adsorb ion and create charge, although not large and much but also create conductivity. Table 6 The conductivity and pH of AgNPS glue solutions are prepared from different methods.

Table 6. Electrical conductivity (χ , mS/cm) and pH of AgNPS solution are prepared by chemical and electrochemical methods

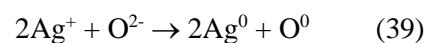
Chem	c , ppm	RO	100	200	300	500
	χ , mS/cm	0,01	0,27	0,36	0,46	0,58
	pH	6,9	4,6	4,9	4,4	4,5
Electr	c , ppm	NC	109	185	285	411
	χ , mS/cm	0,003	0,08	0,07	0,07	0,07
	pH	6,9	6,64	5,63	5,78	5,79

Table 6 also shows that with the methods using of AgNO_3 , conductivity levels increases when the concentration increases but the methods of electrochemical or plasma use the silver electrode, the conductivity is small and has almost no change, even when the synthesis time as well as when the concentration increases.¹⁶⁶

3.2.4. Concentration of AgNPS

Determining the concentration of AgNPS is not as simple as determining the concentration of soluble substances because it is difficult to separate between silver nano and ionic. With AgNPs synthesis methods by using AgNO_3 often think that the process of reaction completely and the AgNPS concentration is also considered as AgNO_3 concentration. The AAS method transfers AgNPs to Ag^+ so it cannot be determined by the nano form. With the methods of using Ag metal, it is possible to determine by soluble silver weight ($c_{\Delta m}$) with the assumption that silver is

soluble for formation of AgNPs.¹⁶⁷ It can also determine the amount of AgNPs by adjectives. The amount of electricity according to the law of Faraday ($c_{\text{Far.}}$), but besides the dissolving process, there are other electrochemical processes, so the concentration of Faraday's law is usually larger than the amount of soluble metal ($c_{\text{Far.}} > c_{\Delta m}$).¹³⁹ The AAS method can also be used to determine the AgNPs concentration of the electrochemical and plasma modulation methods, but it cannot be separated from Ag^+ . The UV-Vis spectroscopic method for the determination of AgNPs alone would be the most accurate, but standard curve construction is not feasible because standard solutions are difficult to obtain.


3.3. Antibacterial ability

3.3.1. Traditional

Since BC, silver's bactericidal properties have been used for prevention and treatment of diseases such as: acupuncture needles, containers for liquids and drinking water for the prevention and treatment of infections. Former feudal dynasties in many countries around the world used spoons, knives, bowls and plates in eating and drinking to kill pathogens to ensure life safety. Silver has also been used for a long time in dentistry, to treat neurological diseases, eye diseases, to treat wounds, and to disinfect drinking water systems. During the World Wars, colloidal silver was used to fight gastrointestinal diseases and infections. From the late 19th century to the present, colloidal silver has been used quite widely in the form of oral and injectable drugs to treat arthritis, bronchitis, respiratory, lung, influenza as well as gastrointestinal diseases, stomach ulcers or Disinfection of purulent-necrotic burn wounds, dermatosis, boils or even syphilis, mastitis, meningoencephalitis, vestibular...¹⁶⁸

3.3.2. Outstanding antibacterial properties

Elemental silver has outstanding bactericidal ability because Ag^+ ions exist in the form of salt.¹⁶³ In the form of AgNPs, with extremely large contact area, it is easy to provide Ag^+ , so the bactericidal efficiency is improved many times. Although there is still no consensus, but the bactericidal mechanism of Ag^+ is agreed with 3 possibilities: (1) Destruction of the function of the cell wall; (2) Destruction of respiratory function due to inactivation of -SH group in O_2 transporter; (3) Destruction of DNA function by dimerization of pyridine interferes with DNA replication of bacterial cells. In addition, atomic oxygen is produced from the reaction:

It also inhibits the growth of bacteria. Furthermore, the plasmons of AgNPs are susceptible to thermogenesis and destruction of bacteria. Because of many different ways to kill bacteria, the bactericidal ability of AgNPs cannot be greasy or resistant like current antibiotics.

3.3.3. Kills many types of bacteria

Unlike antibiotics that are only suitable for bacteria, AgNPs can kill up to 650 types of bacteria, gram negative and positive as well as viruses and fungi, mold.¹⁶⁸⁻¹⁷⁰ Recent studies have shown AgNPs have remarkable anti-inflammatory and antiviral potential, even against viruses such as HIV^{171,172} or Sars corona,^{173,174} Monkeypox,¹⁷⁵ Hepatitis B,¹⁷⁶ Syncytial,¹⁷⁷ Herpes,¹⁷⁸ Tacaribe,¹⁷⁹ West Nile, Hanta, Nipah, Hendra, Chikugunya, as well as viruses of avian origin and pig.^{173,180}

3.3.4. Toxicity

The toxicity of silver and silver ions has been of concern for a long time due to the phenomenon of blue skin when the amount of silver accumulates and has not been eliminated in time.¹⁸⁰ With its small size, it is dispersed in gaseous and liquid environments and solids when used, AgNPs also easily penetrate into the body and accumulate in cells through the respiratory tract,¹⁸¹ esophagus or skin contact.¹⁸² Therefore, the toxicity of AgNPs is also very noticeable.^{183,184} Although AgNPs are not as toxic as ions, AgNPs still generate ions¹⁸⁵ from AgNPs and accumulate in organs such as lungs,¹⁸⁶ liver, and spleen¹⁸⁷ and cause harmful effects depending on the time and concentration of exposure¹⁸⁸ as well as the size, and the shape of AgNPs.¹⁸⁹

4. APPLICATIONS

4.1. In chemistry

Silver metal as well as nanosilver are applied due to its properties such as absorption and optical control, bactericidal, electrical and thermal conductivity, and especially as a catalyst for some reactions as well as as a sensor in analysis in chemistry.¹⁹⁰

4.1.1. Catalysis

The reduction of oxygen of epoxides to alkenes catalyzed by AgNPs can be as efficient as 99% as efficient as using Au or AuNPs.¹⁹¹ AgNPs are used as catalysts for the reduction reactions of nitro aromatic compound,¹⁹² carbonyl as well as

oxidation of alcohols, silanes, olefins, alkylation of amines and arenes as well as ring-opening or closing reactions and a variety of value reactions.¹⁹³ AgNPs are used as homogeneous or heterogeneous catalysts. to synthesize many special chemical compounds with high efficiency such as:¹⁹⁴ pyrimido 96%, triazole 98%, pyrano 96%, isoxazole 93%, quinoline 88%, tetrazole 93%, benzopyranopyrimidine 95%, bivalent amine 92% , etc...

4.1.2. Analysis

Silver nanomaterials with advantages in size, shape and surface also play an important role in determining and controlling electrical, optical, physical and especially chemical properties. With the GC electrode combined with AgNPs, it is possible to have excellent electrocatalytic activation as a sensor for determining H_2O_2 in water with a concentration of 0.92 μM .¹⁹⁵ With different techniques, it is possible to fabricate the mounted electrode. AgNPs for performing cyclic voltammetry CV, differential voltammetry DPV, linear sweep voltammetry LSV, square wave voltammetry SWV analyzes with up to the limit of ppb detection of various organic compounds.¹⁹⁶ Especially, has advantages in detecting chemical contamination in the state of the environment, so the number of publications by 2022 is increasing rapidly.¹⁹⁷

4.2. In environmental treatment

The excellent bactericidal ability of AgNPs has been applied to environmental treatment mainly in 3 directions: Surface disinfection, water disinfection and air sterilization.¹⁹⁸

4.2.1. Contact surface

Contact with material surfaces is the most frequent activity, so the antibacterial properties of AgNPs are also studied for applications in construction materials, fabrics or plastic tools. Interior paints with additive AgNPs 0.1 \div 0.5 ppm have good antibacterial effect.¹⁹⁹ Glass surface coated with AgNPs not only has bactericidal value but also has plasmon effect to increase absorption capacity. energy.²⁰⁰ Plastic coated with AgNPs has many useful applications in medical transmission materials, in food packaging and preservation,²⁰¹⁻²⁰³ as well as export tropical fruits.²⁰⁴⁻²⁰⁶ Fabric fibers surface coated with AgNPs with the amount of 180 mg/kg have a bactericidal effect of 99.28%, even after 30 washing cycles it is still 98.77%.²⁰⁷

4.2.2. Water treatment

Water is necessary for the life of all things. Humans also use water for all living activities as well as production, so they need clean water but it is easy to pollute water sources with different wastes.²⁰⁸ AgNPs with special chemical and biological properties should be noticed. It is intended for use in environmental treatment systems including water.²⁰⁹ The European Union alone uses up to 20.5 tons of AgNPs to treat wastewater each year.²¹⁰ Effects of AgNPs in water treatment Not only in the ability to kill bacteria but also in the chemical reaction ability²¹¹ as well as sensor application to control water pollution.²¹² In aquaculture, seafood AgNPs have also been used in water treatment to reduce pollution. infection as well as prevention of network diseases have high economic efficiency.²¹³⁻²¹⁵

4.2.3. Air handling

The excellent bactericidal effect of AgNPs has also been studied for application to air purification. By depositing AgNPs into a porous quartz tube fitted with an air purifier with a capacity of 250 m^3/h , it is possible to both process organic compounds up to 91.6% butanol, 80% acetone, and 70.1%. diethyl ether and 43% benzene as well as 99% bacteria and fungi and installed for E Hanoi hospital.²¹⁶ The air conditioning system combined with AgNPs due to improved heat transfer ability saved energy on average 36- 58%.²¹⁷ However, when using AgNPs to treat air pollution, great care must be taken to limit the dispersion of AgNPs into the air so as not to cause inflammation of the respiratory system.²¹⁸ Therefore, the concentration of AgNPs to spray in Air should also be kept to a low level and avoid long exposure times.²¹⁹

4.3. Nanomedicine

AgNPs are widely used in many biomedical applications, known as nanomedicine including diagnostics, therapeutics, drug manufacturing, medical device coating, and personal healthcare. With increasing applications in medicine, a better understanding of the mechanisms is becoming necessary.²²⁰

4.3.1. Disinfectant

Because the hospital environment needs to be clean, the special antibacterial ability of AgNPs is noticed as a disinfectant agent for the environment as well as tools. The MBC concentration of AgNPs for hospital bacterial strains such as *S. Aureus* or *P. Aeruginosa* in the operating room after 20 minutes is 100 $\mu\text{g}/\text{mL}$ and after 24 hours it is 12.5 $\mu\text{g}/\text{mL}$.²²¹

Fluid pathways or medical instruments are also tested for emergency disinfection with AgNPs.²⁰¹ Even the air in hospital rooms can be treated with contamination by bacteria as well as organic substances with AgNPs.²¹⁵

4.3.2. Diagnose

Silver nanoparticles are used in imaging diagnosis and treatment of dental and oral cancers, acting as a carrier to disperse to targets along with chemotherapy agents and as radiation and phototherapy enhancers. It is valuable for studying inflammation, tumors, immune responses, and the effects of stem cell therapy, in which contrast agents are conjugated or surface-modified and bioconjugated to particles. Silver has an important role in imaging systems with plasmonic properties that should produce a clearer image.^{222,223} Due to reactive oxygen species (ROS) of cancer cells AgNPs control and damage DNA. contribute to the formation of cancer nano flavor in nano medicine.^{224,225}

4.3.3. Healing

The advantage of AgNPs is that they can kill many types of bacteria¹⁷¹⁻¹⁸⁰ and are not resistant to drugs like antibiotics,²²⁶ so special attention is paid to exploiting them to treat diseases. Disinfecting all types of open wounds²²⁷ especially in the treatment of burns²²⁸ or teeth and mouth²²⁹ with AgNPs not only heals the wound quickly but also leaves almost no scars after healing. With infectious diseases such as HIV, hepatitis, SARC, and chickenpox, injections with a concentration of 20 ppm of 10 nm AgNPs have achieved good curative effects.²³⁰ Because cancer is currently an incurable disease, AgNPs have also been researched and applied and found that cancer cells have been inhibited by AgNPs from proliferating as well as angiogenesis due to the destruction of living and proliferation conditions.²³¹ Furthermore, AgNPs particles have the ability to absorb heat, so they can use energy from the laser source to kill cancer cells.²³²

5. CONCLUSION

Nano silver is prepared by chemical, physical, biological and physicochemical methods. Raw materials for the preparation process are AgNO₃ salt and reducing chemicals such as NaBH₄, citrate salt, plant water as well as reducing microorganisms, or activating rays that create reducing properties of the solution such as γ . It is also possible to use Ag to disperse by laser or dissolve the anode into ions and then reduce it to

form AgNPs. The appropriate purity for different practical applications of AgNPs products depends on the method and materials used. Pure AgNPs solution is prepared by high-voltage electrochemical method or electrochemical plasma method because it only uses Ag and distilled water.

The basic characteristic of AgNPs is that the nanoparticle has a nearly spherical shape, the size is in the nanometer range and the UV-Vis spectrum is in the range of 420 nm with the height depending on the concentration and the pH value depending on the size. The zeta potential has an absolute value of ≥ 20 mV, which characterizes the stability of the silver nano colloid solution, then the negative or positive value depends on the method and the composition of ions in the solution. Pure AgNPs colloidal solution has a very small electrical conductivity, but the conductivity value will increase depending on the concentration of reducing agent ions or reaction products in the solution. A very important characteristic of AgNPs is the ability to kill microorganisms from positive and negative bacteria, viruses to fungus by destroying cell membranes, affecting -SH groups as well as destroying functions microbial DNA.

AgNPs are applied in chemical fields as catalysts and analytical sensors. In the environment, AgNPs are applied to treat bacterial infections as well as air and water pollution. In medicine, AgNPs is given special attention in research and application to: treat environmental infections, medical tools and equipment; diagnose and heal many diseases, including dangerous diseases such as, burn, HIV, SARC and cancer.

REFERENCES

1. Hammond, C. R., *The Elements, in Handbook of Chemistry and Physics*, 81st edition, CRC press, 2000.
2. Drexler, K. Eric, *Nanosystems: Molecular Machinery, Manufacturing, and Computation*, New York: John Wiley & Sons, 1992.
3. Goesmann H, Feldmann C., Nanoparticulate functional materials, *Angew Chemie – Int. Ed.*, **2010**, 49, 1362 - 95
4. Chernousova S, Epple M. Silver as antibacterial agent: Ion, nanoparticle, and metal., *Angew Chemie -Int. Ed.*, **2013**, 52(1636), 53.
5. Calderón-Jiménez B, Johnson ME, Montoro Bustos AR, Murphy KE, Winchester MR, Vega Baudrit JR., Silver Nanoparticles: Technological Advances, Societal Impacts, and Metrological Challenges. *Front Chem.*, **2017**; 5, 1 - 26.

6. Matsuhisa N, Kaltenbrunner M, Yokota T, Jinno H, Kuribara K, Sekitani T, et al., Printable elastic conductors with a high conductivity for electronic textile applications., *Nat. Commun.*, **2015**, *6*, 1–11.

7. Chen D, Qiao X, Qiu X, Chen J., Synthesis and electrical properties of uniform silver nanoparticles for electronic applications, *J. Mater. Sci.*, **2009**, *44*(1076), 81.

8. Dong XY, Gao ZW, Yang KF, Zhang WQ, Xu LW. Nanosilver as a new generation of silver catalysts in organic transformations for efficient synthesis of fine chemicals. *Catal. Sci. Technol.*, **2015**, *5*(2554), 74.

9. Alexander JW., History of the medical use of silver, *Surg Infect (Larchmt)*, **2009**, *10*(289), 92.

10. Eckhardt S, Brunetto PS, Gagnon J, Priebe M, Giese B, Fromm KM., Nanobio silver: Its interactions with peptides and bacteria, and its uses in medicine. *Chem. Rev.*, **2013**, *113*(4708), 54.

11. Naidu K, Govender P, Adam, J. Biomedical applications and toxicity of nanosilver: a review. *Med Technol SA*, **2015**, *29*, 13–29.

12. Hayelom Dargo Beyene, Adhena Ayaliew Werkneh, Hailemariam Kassa Bezabh, Tekilt Gebregergs Ambaye, Synthesis paradigm and applications of silver nanoparticles (AgNPs), a review , *Sustainable Materials and Technologies*, **2017**, *13*, 18-23.

13. Stephanie Marín Gamboa, Ericka Rodríguez Rojas, Verónica Vega Martínez, José VegaBaudrit, Synthesis and characterization of silver nanoparticle and their application as an antibacterial agent, *Int. J. Biosen Bioelectron.* **2019**, *5*(5), 166–173.

14. Li Xu, Yi-Yi Wang, Jie Huang, Chun-Yuan Chen, Zhen-Xing Wang, Hui Xie, Silver nanoparticles: Synthesis, medical applications and biosafety, *Theranostics*, **2020**, *10*(20), 8996–9031.

15. Mafune F, Kohno J, Takeda Y, Kondow T, Sawabe H., Structure and stability of silver nanoparticles in aqueous solution produced by laser ablation, *J. Phys. Chem. B.*, **2000**, *104*(35), 8333–8337

16. Tsuji M., Hashimoto M., Nishizawa Y., Kubokawa M., Tsuji T., Microwave-assisted synthesis of metallic nanostructures in solution, *Chem. Eur. J.*, **2005**, *11*, 440–452.

17. Shameli K., Ahmad M.B., Yunus W.M.Z.W., Ibrahim N.A., Gharayebi Y., Sedaghat S. Synthesis of silver/montmorillonite nanocomposites using γ -irradiation, *Int. J. Nanomed.*, **2010**, *5*, 1067–1077.

18. Behravan M, Hossein Panahi A, Naghizadeh A, Ziae M, Mahdavi R, Mirzapour A., Facile green synthesis of silver nanoparticles using Berberis vulgaris leaf and root aqueous extract and its antibacterial activity, *Int. J. Biol.Macromol.*, **2019**, *124*, 148–154.

19. Le Tu Hai, Luong Tu Uyen, Biosynthesis of silver nanoparticles from silver nitrat solution using aqueous extract of lemongrass leaf, *J. Sci. Univ. Danang – Univ. Sci. Educ.*, **2017**, *24*(03), 109-112.

20. T. Sowmyya, G. Vijayalakshmi, Green synthesis and characterization of silver nanoparticles using Soymida febrifuga aqueous leaf extract, *World J. Pharm. Sci.*, **2016**, *5*(1), 786-805.

21. Kamyar Shameli, Mansor Bin Ahmad, Mohsen Zargar, Wan Md Zin Wan Yunus, Nor Azowa Ibrahim, Parvaneh Shabanzadeh, Mansour Ghaffari Moghaddam, Synthesis and characterization of silver / montmorillonite / chitosan bionanocomposites by chemical reduction method and their antibacterial activity, *Int. J. Nanomedicine.*, **2011**, *6*, 271–284.

22. Nguyen Hoai Chau, Le Anh Bang, Ngo Quoc Buu, Tran Thị Ngọc Dung, Huynh Thị Ha, Dang Viet Quang, Manufacture of nanosilver and investigation of its application for disinfection, *Adv. Nat. Sci.*, **2008**, *9*(2), 241-248.

23. Manal A Awad, Awatif A Hendi, Khalid MO Ortashi, Reem A Alotaibi, Maha Sh Sharafeldin, Characterization of silver nanoparticles prepared by wet chemical method and their antibacterial and cytotoxicity activities, *Tropical Journal of Pharmaceutical Research*, **2016**, *15*(4), 679-685.

24. Nasretdinova, Gulnaz R., Fazleeva, Rezeda R., Mukhitova, Rezeda K., Nizameev, Irek R., Kadirov, Marsil K., Ziganshina, Albina Y., Yanilkin, Vitaliy V., Electrochemical synthesis of silver nanoparticles in solution, *Electrochemistry Communications*, **2015**, *50*, 69–72.

25. Nguyen Duc Hung, Nguyen Minh Thuy, Mai Van Phuoc, Nguyen Nhi Tru, Preparation of Nanosilver Colloidal Solution by Anodic Dissolution under High DC Voltage, *Electrochemistry*, **2013**, *81*(6), 454–459.

26. L. Blandon, M. V Vazquez, D. M. Benjumea, and G. Ciro, Electrochemical Synthesis of Silver Nanoparticles and their Potential Use as Antimicrobial Agent: a Case Study on *Escherichia Coli*, *Port. Electrochim. Acta*, **2012**, *30*(2), 135–144.

27. Nguyen Duc Hung, Vu Nang Nam, Le Van Trung, Tran Thi Ngoc Dung, Electrochemical preparation of nano silver by combining high DC voltage with anodic plasma, *Vietnam Journal of Science and Technology*, **2019**, *57*(2), 186-198.

28. Backman U., *Studies on nanoparticle synthesis via gas-to-particle conversion*, University of Helsinki, 2005.

29. Zhang, X.F., Liu, Z.G., Shen, W., Gurunathan, S., Silver nanoparticles: Synthesis, characterization, properties, applications, and therapeutic approaches, *Int. J. Mol. Sci.*, **2016**, *17*(9), 1534.

30. Mafune F, Kohno J, Takeda Y, Kondow T. Formation and Size Control of Silver Nanoparticles by laser ablation in aqueous solution, *J. Phys. Chem. B*, **2000**, *104*, 9111 - 9117.

31. Pyatenko A, Shimokawa K, Yamaguchi M, Nishimura O, Suzuki M. Synthesis of silver nanoparticles by laser ablation in pure water, *Appl. Phys. A Mater. Sci. Process.*, **2004**, 79(803), 6.
32. Tien D.C., Liao C. Y., Huang J. C., Tseng K. H., Lung J. K., Tsung T. T., Kao W. S., Tsai T. H., Cheng T. W., Yu B. S., Lin H. M. and Stobinski L., Novel technique for preparing a nano-silver water suspension by the arc-discharge method, *Rev. Adv. Materer. Sci.*, **2008**, 18, 750 - 756.
33. Joanna Jabłońska, Krzysztof Jankowski, Mikołaj Tomasik, Dariusz Cykalewicz, Paweł Uznański, Szymon Całuch, Mirosław Szybowicz, Joanna Zakrzewska, Paweł Mazurek, Preparation of silver nanoparticles in a high voltage AC arc in water, *SN Applied Sciences*, **2021**, 3, 244.
34. Chen P, Song L, Liu Y, Fang Y E., Synthesis of silver nanoparticles by γ -ray irradiation in acetic water solution containing chitosan, *Radiat. Phys. Chem.*, **2007**, 76, 1165–8.
35. Dang Van Phu, Bui Duy Du, Nguyen Ngoc Duy, Nguyen Tue Anh, Nguyen Thi Kim Lan, Vo Thi Kim Lang, Nguyen Quoc Hien, The effect of pH and molecular weight of chitosan on silver nanoparticles synthesized by gama-irradiation, *Vietnam Journal of Science and Technology*, **2009**, 47(6), 47 - 52.
36. D. Long, G. Wu, and S. Chen, Preparation of oligochitosan stabilized silver nanoparticles by gamma irradiation, *Radiat. Phys. Chem.*, **2007**, 76(7), 1126 - 1131.
37. H. S. Shin, H. J. Yang, S. Bin Kim, and M. S. Lee, Mechanism of growth of colloidal silver nanoparticles stabilized by polyvinyl pyrrolidone in γ -irradiated silver nitrate solution, *J. Colloid Interface Sci.*, **2004**, 274(1), 89 - 94.
38. O. Dial, Fabrication of high-density nanostructures by electron beam lithography, *J. Vac. Sci. Technol. B Microelectron. Nanom. Struct.*, **1998**, 16(6), 3887.
39. H. Jiang, K. Moon, Z. Zhang, S. Pothukuchi, and C. P. Wong, Variable Frequency Microwave Synthesis of Silver Nanoparticles, *J. Nanoparticle Res.*, **2006**, 8(1), 117 - 124.
40. Bui Duy Du, Dang Van Phu, Nguyen Ngoc Duy, Nguyen Thi Kim Lan, Vo Thi Kim Lang, Ngo Vo Ke Thanh, Nguyen Thi Phuong Phong, Nguyen Quoc Hien, Preparation of colloidal silver nanoparticles in poly(N-vinylpyrrolidone) by γ -irradiation, *Journal of Experimental Nanoscience*, **2008**, 3(3), 207 - 213.
41. Nguyen Tan Man, Le Hai, Le Huu Tu, Tran Thu Hong, Nguyen Duy Hang, Pham Thi Le Ha, Tran Thi Thuy, Tran Thi Tam, Nguyen Trong Hoanh Phong, Le Xuan Cuong, Preparation of silver nanoparticles by gamma Irradiation method using chitosan as stabilizer, *Nuclear Science and Technology*, **2014**, 4(3), 43-46.
42. Atiqah Salleh, Ruth Naomi, Nike Dewi Utami, Abdul Wahab Mohammad, Ebrahim Mahmoudi, Norlaila Mustafa, Mh Busra Fauzi, The Potential of Silver Nanoparticles for Antiviral and Antibacterial Applications: A Mechanism of Action, *Nanomaterials*, **2020**, 10, 1566 -1586.
43. Tevfik Raci Sertbakan, Emad K. Al-Shakarchi, Saif Sultan Mala, The Preparation of Nano Silver by Chemical Reduction Method, *Journal of Modern Physics*, **2022**, 13, 81-88.
44. Hongshui Wang, Xueliang Qiao, Jianguo Chen, Shiyuan Ding, Preparation of nanoparticles by chemical reduction method, *Colloids and Surfaces A; Physicochem. Eng. Aspects*, **2005**, 256, 111- 115.
45. Nguyen Thi Huong, Nguyen Viet Hung, Preparation of silver nano colloidal solution by reducing sucrose, *Journal of Military Science and Technology Research*, **2011**, 10(15), 86 - 91.
46. Maribel G.Guzmán, Jean Dille, Stephan Godet, Synthesis of silver nanoparticles by chemical reduction method and their antibacterial activity, *International Journal of Chemical and Biomolecular Engineering*, **2009**, 2(3), 104 – 111.
47. Vladimir V. Tatarchuk, Anastasiya P. Sergievskaya, Tamara M. Korda, Irina A. Druzhinina, Vladimir I. Zaikovsky, Kinetic Factors in the Synthesis of Silver Nanoparticles by Reduction of Ag^+ with Hydrazine in Reverse Micelles of Triton N-42, *Chem. Mater.*, **2013**, 25(18), 3570 - 3579.
48. Nguyen Quoc Hien, Nguyen Thuy Ai Trinh, Dang Van Phu, Nguyen Ngoc Duy1, Le Anh Quoc, Synthesis of silver nanoparticles doped in the zeolite framework by chemical reduction method, *Journal of Science and Technology*, **2015**, 53(3), 348-354.
49. Landage S.M., Wasif A.I., Dhuppe P., Synthesis of nanosilver using chemical reduction method, *International Journal of Advanced Research in Engineering and Applied Sciences*, **2014**, 3(5), 14 - 22.
50. G. Suriati, M. Mariatti, A. Azizan, Synthesis of silver nanoparticles by chemical reduction method: efect of reducing agent and surfactant concentration, *International Journal of Automotive and Mechanical Engineering (IJAME)*, **2014**, 10, 1920-1927.
51. Shenava Aashritha, Synthesis of silver nanoparticles by chemical reduction method and their antifungal activity, *International research Journal of Pharmacy*, **2013**, 4(10), 111 – 113.
52. Krishna Gudikandula, Sigara Charya Maringanti, Synthesis of silver nanoparticles by chemical and biological methods and their antimicrobial

properties, *Jounal of Experimental Nanoscience*, **2016**, 11(9), 714 – 721.

53. Catalina Quintero-Quiroz, Natalia Acevedo, Jenniffer Zapata-Giraldo, Luz E. Botero, Julián Quintero, Diana Zárate-Triviño, Jorge Saldarriaga, Vera Z. Pérez, Optimization of silver nanoparticle synthesis by chemical reduction and evaluation of its antimicrobial and toxic activity, *Biomaterials Research*, **2019**, 23(27), 1-15.

54. Solomon S.D., Bahadory M., Jeyarajasingam A.V., Rutkowsky S.A., Boritz C., Synthesis and Study of Silvernanoparticles, *J. Chem. Educ.*, **2007**, 84(2) 322–325.

55. Kandarp Mavani, Mihir Shah, Synthesis of Silver Nanoparticles by using Sodium Borohydride as a Reducing Agent, *International Journal of Engineering Research & Technology (IJERT)*, **2013**, 2(3), (5pp).

56. Bihter Zeytuncia, Mehmet Hakan Morcali, Fabrication and Characterization of Antibacterial Polyurethane Acrylate-based Materials, *Materials Research*, **2015**, 18(4), 867 – 872.

57. Xuan Hoa Vu, Thi Thanh Tra Duong, Thi Thu Ha Pham, Dinh Kha Trinh, Xuan Huong Nguyen, Van-Son Dang, Synthesis and study of silver nanoparticles for antibacterial activity against Escherichia coli and Staphylococcus aureus, *Adv. Nat. Sci.: Nanosci. Nanotechnol.* **2018**, 9, 025019.

58. Ki Chang Song, Sung Min Lee, Tae Sun Park, Bum Suk Lee, Preparation of colloidal silver nanoparticles by chemical reduction method, *Korean J. Chem. Eng.*, **2009**, 26(1), 153–155.

59. Fischer, F., Bauer, S., Polyvinylpyrrolidon, Ein Tausendsassa in dē Chemie, *Chemie in Unserer Zeit*, **2009**, 43(6), 376 – 383.

60. Eunjoo Bae, Hee-Jin Park, Junsu Parkk, Jeyong Yoon, Younhun Kim, Kyunghee Choi, Jonheop Yi, Effect of Chemical Stabilizers in Silver Nanoparticle Suspension on Nanotoxicity, *Bull. Korean Chem. Soc.* **2011**, 32(2), 613 – 619.

61. Dzilal Amir, Ricca Rahman Nasaruddin, Nurul Sakinah Enlin=man, Sarina Sulaiman, Mohd Mastuli, Effect of Stabilizers in the Synthesis of Silver Nanoparticles and Methylene Blue Oxidation, *IOP Conf. Ser.: Mater. Sci. Eng.*, **2021**, 1192, 1 -6.

62. Kamyar Shamel, Mansor Bin Ahmad Mohsen Zargar, Wan Md Zin Wan Yunus, Nor Azowa Ibrahim Parvaneh Shabanzadeh, Mansour Ghaffari, Moghaddam, *International Journal of Nanomedicine* **2011**, 6, 271–284

63. M.A. Hettiarachchi, P.A.S.R. Wickramarachchi, Synthesis of chitosan stabilized silver nanoparticles using gama ray irradiation and characterization, *J. Sci. Univ. Kelaniya*, **2011**, 6, 65-75 (63)

64. José Vega-Baudrit, Ricardo Alvarado-Meza, Federico Solera-Jiménez, Synthesis of silver nanoparticles using chitosan as a coating agent by sonochemical method, *Avances en Quismica*, **2014**, 9(3), 125 – 129.(64)

65. R. Kalaivani, M. Maruthupandy, T. Muneeswaran, A. Hameeda Beevi, M. Anand, C.M. Ramakritinan, A.K. Kumaraguru, Synthesis of chitosan mediated silver nanoparticles (AgNPs) for potential antimicrobial application, *Frontiers in Laboratory Medicine*, **2018**, 2, 30 -35.

66. Ludmila Otilia Cintea, Cristina Scomoroscenco, Sorina Nicoleta Voicu, Critina Lavinia Nistor, Sabina Georgiana Nitu, Bogdan Trica, Maria-Luiza Jecu, Cristina Petcu, Chitosan-Stabilized Ag Nanoparticles with Superior Biocompatibility and Their Synergistic Antibacterial Effect in Mixtures with Essential Oils, *Nanomaterials*, **2018**, 8, 826 – 832.

67. Ho Dinh Quang, Chu Thi Thuy Dung, Nguyen Thi Quynh Giang, Nguyen Hoa Du, Le Thi Tam, Research on fabrication of silver - chitosan nanoparticles by in-situ coating method oriented as preparations for plant disease prevention, *Journal of Science*, **2020**, 49(4A), 51 – 59.

68. Schnepf MJ, Mayer M, Kuttner C, Tebbe M, Wolf D, Dulle M, Nanorattles with tailored electric field enhancement". *Nanoscale*, **2017**, 9(27), 9376–9385.

69. Halina Kaczmarek, Magdalena Metzler, Katarzyna We.grzynowska-Drzymalska Effect of stabilizer type on the physicochemical properties of poly(acrylic acid)/silver nanocomposites for biomedical applications, *Polym. Bull.*, **2016**, 73, 2927–2945.

70. Caleb M. Wigham, Dr. Jeffrey J. Richards, Synthesis of Silver Nanoparticles via the Chemical Reduction Method, (Richards, J. J.; Scherbarth, A. D.; Wagner, N. J.; Butler, P. D.) *ACS Appl. Mater. Interfaces* **2016**, 8(36), 24089–24096.

71. K. Shiomori, T. Honbu, Y. Kawano, R. Kuboi, I. Komasa, Formation and Structure Control of Reverse Micelles by the Addition of Alkyl Amines and their Applications for Extraction Processes of Proteins, 2001, Elsevier Science.

72. Bhavya Somalapura Gangadharappa, Manjunath Dammalli, Sharath Rajashekharappa, Krishna Murthy Thirupathihalli Pandurangappa, Gowrishankar Bychapur Siddaiah, Reverse micelles as a bioseparation tool for enzymes, *Journal of proteins and proteomics*, **2017**, 8(2), 105-120.

73. Lee Jong-Hua, Choi Gill-Bac, Method for the

preparation of silvernanoparticles-polymer composite, International Application Publisched under the Patent cooperation treaty (PCT), No. WO 2005/085339 A1, 2005.

74. Huynh Nguyen Thanh Luan, Huynh Chi Cuong, Ha Thuc Chi Nhan, Lam Quang Vinh, Le Van Hieu, Synthesis and study on mechanical properties of the polypropylene/TiO₂ - nano Ag composite for antibacterial application, *Science & Technology Development*, **2015**, 18(T1), 70 - 80.
75. Hoang Anh Son, Vo Thanh Phong, Tran Anh Tuan, Study and preparation of antiseptic filter film based on polyurethane/nanosilver composite for water treatment, *Journal of analytical Sciences, Tạp chí phân tích Hóa, Lý và sinh học*, **2007**, 12(4), 3 – 8.
76. Jing Deng, Quan Ming Ding, Wen Li, Jian Hui Wang, Dong Min Liu, Xiao Xi Zeng, Xue Ying Liu, Liang Ma, Yan Deng, Wei Su, and Bin Ye, Preparation of Nano-Silver-Containing Polyethylene Composite Film and Ag Ion Migration into Food-Simulants, *Journal of Nanoscience and Nanotechnology*, **2020**, 20, 1 - 9.
77. Yaohui Lv, Hong Liu, Zhen Wang, Shujiang Liu, Lujiang Hao, Yuanhua Sang, Duo Liu, Jiyang Wang, R.I. Boughton, Silver nanoparticle-decorated porous ceramic composite for water treatment, *Journal of Membrane Science*, **2009**, 331, 50 – 56.
78. Mohit Kumar, G. Pugazhenthi, D. Vasanth, Synthesis of zirconia-ceramic composite membrane employing a low-cost precursor and evaluation its performance for separation of microbially produced silver nanoparticles, *Journal of Environmental Chemical Engineering*, **2022**, 10, 107569.
79. Nguyen Duc Hung, Nguyen Thi Thanh Ha, Tran Thi Ngoc Dung, Manufacturing of Porous Nanosilver-Covered Ceramic for Waste water Treatment in Thi Nai Lagoon-Binh Dinh Province, *Journal of Science, Quy Nhon University*, **2016**, 10(4), 139 - 145.
80. Nguyen Duc Hung, Nguyen Thuy Linh, Tran Thi Ngoc Dung, Study on Fabrication of Antibacterial Surface with Nano Silver for Glass, Ceramic, *Journal of Science, Ha Noi national university*, **2016**, 32(4), 53-57.
81. Reda M. El-Shishtawy, Abdullah M. Asiri, Nayera A. M. Abdelwahed, Maha M. Al-Otaibi, In situ production of silver nanoparticle on cotton fabric and its antimicrobial evaluation, *Cellulose*, **2011**, 18, 75 – 82.
82. Sevil Erdogan, Textile finishing with chitosan and silver nanoparticles against Escherichia coli ATCC 8739, *Trakya University Journal of Natural Sciences*, **2020**, 21(1), 21-32.
83. Ya-Nam Gao, Ye Wang, Tian-Ning Yue, Yun-Xuan Weng, Ming Wang, Multifunctional cotton non-woven fabrics coated with silver nanoparticles and polymers for antibacterials, superhydrophobic and high performance microwave shielding, *Journal of Colloid and Interface Science*, **2021**, 582, 112 – 123.
84. J. Weber, L. Henssler, L. Zeman, C. Pfeifer, V. Alt, M. Nerlich, M. Huber, T. Herbst, M. Koller, W. Schneider-Brachert, M. Kerschbaum, Nanosilver/DCOIT-containing surface coating efectively and constantly reduces microbial load in emergency room surfaces, *Journal of Hospital Infection*, **2023**, 135, 90 - 97.
85. Haiping Zhang, Jixing Cui, Jesse Zhu, Yuanyuan Shao, Hui Zhang, Fabrication of Nano-Silver-Silver Ion Composite Antibacterial Agents for Green Powder Coatings, *Coatings*, **2023**, 13, 575.
86. Tran Thi Ngoc Dung, Nguyen Hoai Chau, Manufacturing silver nano – porous ceramic membrane for disinfection of drinking water by in-situ reduction method, *Tạp chí Khoa học và Công nghệ*, **2015**, 53(6), 715 – 722.
87. Mohammad Shateri-Khalilabad, Mohammad E. Yazdanshenas, Ali Etemadifar, Fabricating multifunctional silver nanoparticles-coated cotton fabric, *Arabian Journal of Chemistry*, **2013**, 08, 013.
88. K. M. Faridul Hasan¹, Péter György Horváth, Zsófia Kóczán, Miklós Bak, Tibor Alpár, Colorful and facile in situ nanosilver coating on sisal/cotton interwoven fabrics mediated from European larch heartwood, *Scientific Reports*, **2021**, 11, 22397.
89. Deendayal Mandal, Mark E. Bolander, Debabrata Mukhopadhyay, Gobinda Sarkar, Priyabrata Mukherjee, The use of microorganisms for the formation of metal nanoparticles and their application, *Appl. Microbiol. Biotechnol.*, **2006**, 69, 485–492.
90. Amin Boroumand Moghaddam, Farideh Namvar, Mona Moniri, Paridah Md. Tahir, Susan Azizi, Rosfarizan Mohamad, Nanoparticles Biosynthesized by Fungi and Yeast: A Review of Their Preparation, Properties, and Medical Applications, *Molecules*, **2015**, 20(9), 16540-16565.
91. Khan N.T., Khan M.J., Mycofabricated Silver Nanoparticles: An Overview of Biological Organisms Responsible for its Synthesis, *Biochem. Mol. Biol. J.*, **2017**, 3, 14.
92. Ahmad R. Shahverdi, Sara Minaeian, Hamid Reza Shahverdi, Hossein Jamalifar, Ashraf – Asadat Nohi, Rapid synthesis of silver nanoparticles using culture supernatans of *Enterobacteria*: A novel biological approach, *Process Biochemistry*, **2007**, 42, 919-923.

93. Chai Chun-Jing, Bai Hong-Juan, Biosynthesis of Silver Nanoparticles Using the Phototrophic Bacteria *Rhodopseudomonas palustris* and Its Antimicrobial Activity Against *Escherichia coli* and *Staphylococcus aureus*, *Microbiol. China*, **2010**, 37(12), 1798 -1804.

94. Hong-Juan Bai, Bin-Sheng Yang, Chun-Jing Chai, Guan-E. Yang, Wan-Li Jia, Zhi-Ben Yi, Green synthesis of silver nanoparticles using *Rhodobacter Sphaeroides*, *World J. Microbiol. Biotechnol.* **2011**, 27, 2723–2728.

95. Rajeshkumar S., Malarkodi C., Paulkumar K., Vanaja M., Gnanajobitha G., Annadurai G., Intracellular and extracellular biosynthesis of silver nanoparticles by using marine bacteria *vibrio alginolyticus*, *Nanoscience and Nanotechnology: An International Journal*, **2013**, 3(1), 21-25.

96. S. Rajeshkumar, C. Malarkodi, V. Sivakumar, K. Paulkumar, M. Vanaja, Biosynthesis of Silver Nanoparticles by using Marine Bacteria *Vibrio alginolyticus*, *International Research Journal of Pharmaceutical and Biosciences (IRJPBS)*, **2014**, 1(1), 19-23.

97. Pallavee Srivastava1, Judith Braganca, Sutapa Roy Ramanan, Meenal Kowshik, Green Synthesis of Silver Nanoparticles by Haloarchaeon *Halococcus salifodinae* BK6, *Advanced Materials Research*, **2014**, 938, 236-241.

98. Vidhya Lakshmi Das, Roshmi Thomas, Rintu T. Varghese, E. V. Soniya, Jyothis Mathew, E. K. Radhakrishnan, Extracellular synthesis of silver nanoparticles by the *Bacillus* strain CS 11 isolated from industrialized area, *3 Biotech.*, **2014**, 4, 121–126.

99. Maria Sindhura John, Joseph Amruthraj Nagoth, Kesava Priyan Ramasamy, Alessio Mancini, Gabriele Giuli, Antonino Natalello, Patrizia Ballarini, Cristina Miceli, Sandra Pucciarelli, Synthesis of Bioactive Silver Nanoparticles by a *Pseudomonas* Strain Associated with the Antarctic Psychrophilic Protozoon *Euplotes focialdi*, *Mar. Drugs*, **2020**, 18, 38.

100. Hend M. Tag, Amna A. Saddiq, Monagi Alkinani, Nashwa Hagagy, Biosynthesis of silver nanoparticles using *Haloferax* sp. NRS1: image analysis, characterization, in vitro thrombolysis and cytotoxicity, *Tag et al. AMB Expr.*, **2021**, 11, 75.

101. Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: a novel biological approach to nanoparticle synthesis, *Nano*, **2001**, 1, 515-519.

102. Bhainsa KC, D Souza SF (2006) Extracellular biosynthesis of silver nanoparticles using the fungus *Aspergillus fumigatus*. *Colloids and Surfaces B: Biointerfaces*, **2006**, 47(2) 160–164.

103. Kathiresan K., Manivannan S., Nabeel A.M., Dhivya B., Studies on silver nanoparticles synthesized by a marine fungus *Penicillium fellutanum* isolated from coastal mangrove sediment. *Colloids Surf., B*, **2009**, 71, 133–137.

104. M. Pandian, R. Marimuthu, G. Natesan, R. E. Rajagopa, J. S. Justin1, and A. J. A. H. Mohideen, Development of biogenic silver nano particle from pelargonium graveolens leaf extract and their antibacterial activity, *Am. J. Nanosci. Nanotechnol.*, **2013**, 1(2), 57–64.

105. Wang, L., Liu, C. C., Wang, Y. Y., Xu, H., Su, H., & Cheng, X., “Antibacterial activities of the novel silver nanoparticles biosynthesized using *Cordyceps militaris* extract,” *Curr. Appl. Phys.*, **2016**, 16(9), 969–973.

106. Zargar, M., Hamid, A. A., Bakar, F. A., Shamsudin, M. N., Shameli, K., Jahanshiri, F., & Farahani, F., “Green Synthesis and Antibacterial Effect of Silver Nanoparticles Using *Vitex Negundo* L.,” *Molecules*, **2011**, 16(8), 6667–6676.

107. Kowshik, M., Ashtaputre, S., Kharrazi, S., Vogel, W., Urban, J., Kulkarni, S. K., & Paknikar, K. M., “Extracellular synthesis of silver nanoparticles by a silver-tolerant yeast strain MKY3,” *Nanotechnol.*, **2003**, 14(1), 95–100.

108. Espoir K. Kambate, Christian I. Nkanga, Blaise-Pascal I. Mutonkole, Alain M. Bapolisi, Daniel O. Tassa, Jean-Marie I. Liesse, Rui W.M. Krause, Patrick B. Memvaga, Green synthesis of antimicrobial silver nanoparticles using aqueous leaf extracts from three Congolese plant species (*Brillantaisia patula*, *Crossopteryx febrifuga* and *Senna siamea*), *Helion*, **2020**, 6, 4493.

109. Le Thi Kim Anh, Le Dai Vuong, Vo Van Quoc Bao, Nguyen Thi Phuong Nga, Nguyen Huu Thinh, Nguyen Thi Quynh Anh, Pham Thi Thao Hien, Synthesis of silver-nanoparticles with aqueous extract of robusta plant leaves as reducing agent, *Science Journal of Hue University: Natural Science*, **2022**, 131(1A), 119–126.

110. T. Sowmyyal and G. V. Lakshmi, “Green synthesis and characterization of antimicrobial and catalytic silver nanoparticles using soymida febrifuga aqueous leaf extract,” *World J. Pharm. Pharm. Sci.*, **2016**, 5(1), 786–805.

111. M. Umadevi, S. Shalini, and M. R. Bindhu, “Synthesis of silver nanoparticle using *D. carota* extract,” *Adv. Nat. Sci. Nanosci. Nanotechnol.*, **2012**, 3(2), 025008.

112. R. Prasad and V. S. Swamy, Antibacterial Activity of Silver Nanoparticles Synthesized by Bark Extract of *Syzygium cumini*, *J.*

Nanoparticles, **2013**, *2013*, 1–6, 2013.

113. S. Elumalai, R. Devika, R. D. S Elumalai, S. Elumalai, and R. Devika, Biosynthesis of Silver Nanoparticles Using Curcuma Longa And Their Antibacterial Activity, *Int. J. Pharm. Res. Sci.*, **2014**, 02(1), 98–103.

114. A. Reveendran, S. Varghese, and K. Viswanathan, “Green Synthesis of Silver Nano Particle Using Hibiscus Rosa Sinensis,” *IOSR J. Appl. Phys.*, **2016**, 8(3), 35–38.

115. D. Jain, H. K. Daima, S. Kachhwaha, and S. L. Kothar, “Synthesis of plant-mediated silver nanoparticles using papaya fruit extract and evaluation of their anti microbial activities,” *Dig. J. Nanomater. Biostructures*, **2009**, 4(3), 557–563.

116. Y. Zhang, X. Cheng, Y. Zhang, X. Xue, and Y. Fu, “Biosynthesis of silver nanoparticles at room temperature using aqueous *aloe* leaf extract and antibacterial properties,” *Colloids Surfaces A Physicochem. Eng. Asp.*, **2013**, 423(2), 63–68.

117. Le Tu Hai, “Biosynthesis of silver nanoparticles from AgNO_3 solution using aqueous extract of *Ocimum basilicum L.* leaf as the reducing agent,” *Proc. 5th Int. Work. Nanotechnol. Appl. (IWNA 2015)*, 2015.

118. Le Tu Hai, Nguyen Thi Dung, “Biosynthesis, characterization and photocatalytic activity of copper nanoparticles produced using aqueous extract of *Terminalia Catappa* leaf,” *Taiwan-Vietnam Jt. Symp. Catal.*, vol. Taipei, no. June, pp. 26–27, 2015.

119. Le Tu Hai, Luong Tu Uyen, “Biosynthesis of silver nanoparticles from silver nitrate solution using aqueous extract of *lemongrass* leaf,” *J. Sci. Univ. Danang - Univ. Sci. Educ.*, **2017**, 24(03), 109–112.

120. A. D. Dwivedi and K. Gopal, “Biosynthesis of silver and gold nanoparticles using *Chenopodium album* leaf extract,” *Colloids Surfaces A Physicochem. Eng. Asp.*, **2010**, 369(1–3), 27–33.

121. Jiale Huang, Qingbiao Li, Daohua Sun, Yinghua Lu, Yuanbo Su, Xin Yang, Huixuan Wang, Yuanpeng Wang, Wenyao Shao, Ning He, “Biosynthesis of silver and gold nanoparticles by novel sundried *Cinnamomum camphora* leaf,” *Nanotechnology*, **2007**, 18(10), 105104.

122. Maryam Shahzad Shirazi, Mahdi Moridi Farimani, Alireza Foroumadi, Kamal Ghanemi, Maurizio Benaglia, Pooyan Makvandi, Bioengineered synthesis of phytochemical-adorned green silver oxide (Ag_2O) nanoparticles via *Mentha pulegium* and *Ficus carica* extracts with high antioxidant, antibacterial, and antifungal activities, *Scientific Reports*, **2022**, 12, 21509.

123. Mohsen Mohammadi, Sabrieh Assadi Shahisaraee, Atiyeh Tavajjohi, Negin Pournoori, Samad Muhammadnejad, Shahla Roodbar Mohammadi, Reza Poursalehi, Hamid Delavari H, Green synthesis of silver nanoparticles using *Zingiber officinale* and *Thymus vulgaris* extracts: characterisation, cell cytotoxicity, and its antifungal activity against *Candida albicans* in comparison to fluconazole, *IET Nanobiotechnol.*, **2019**, 13(2): 114–119.

124. S. Anitha Kumari, Anita K. Patlolla, P. Madhusudhanachary, Biosynthesis of Silver Nanoparticles Using *Azadirachta indica* and Their Antioxidant and Anticancer Effects in Cell Lines, *Micromachines (Basel)*, **2022**, 13(9): 1416.

125. Yuet Ying Loo, Buong Woei Chieng, Mitsuaki Nishibuchi, Son Radu, Synthesis of silver nanoparticles by using tea leaf extract from *Camellia sinensis*, *Int J Nanomedicine*, **2012**, 7, 4263–7.

126. Harekrishna Bar, Dipak Kr. Bhui, Gobinda Prasad Sahoo, Green synthesis of silver nanoparticles using latex of *Jatropha curcas*, *Colloids and Surfaces A Physicochemical and Engineering Aspects*, **2009**, 339(1–3), 134–139.

127. Mazhar Abbas, Tariq Hussain, Javed Iqbal, Aziz Ur Rehman, Muhammad Arfan Zaman, Kashif Jilani, Nasir Masood, Samiah H. Al-Mijalli, Munawar Iqbal, Arif Nazir, Synthesis of Silver Nanoparticle from *Allium sativum* as an Eco-Benign Agent for Biological Applications, *Pol. J. Environ. Stud.*, **2022**, 31(1), 533–538.

128. Jyoti Yadav, Pratina Chauhan, Green synthesis of silver nanoparticles using *Citrus X sinensis* (Orange) fruit extract and assessment of their catalytic reduction, *Materialstoday*, 2022, 62(10), 6177–6181.

129. Yasmin H. Momim, Veerendra C. Yeligar, Synthesis of *Coccina grandis* (L.) Voigt extract's silver nanoparticles and it's *in vitro* antidiabetic activity, *Research Article*, **2021**, 11(8), (10.7324/JAPS.2021.110815

130. Kexiao Song, Donghao Zhao, Haoyang Sun, Jinzhu Gao, Shuo Li, Tianming Hu, Xueqing He, Green nanopriming: responses of alfalfa (*Medicago sativa L.*) seedlings to alfalfa extracts capped and light-induced silver nanoparticles, *BMC Plant Biology*, **2022**, 22(323), 1–16.

131. Vadivel Subramalam, Dr. Suja S., Green synthesis of silver nanoparticles using *Coleus amboinicus lour*, antioxidant activity and invitro cytotoxicity against Ehrlich's Ascite carcinoma, *Journal of Pharmacy Research*, **2012**, 5(2), 1268–1272.

132. Sajeshkumar N.K, Prem Jose Vazhacharickal, Jiby John Mathew, Anupa Sebastian, Synthesis of silver nano particles from cury leaf (*Muraya Koenigii*) extract and its antibacterial activity,

133. Yugal Kishore Mohanta, Sujogya Kumar Panda, Kunal Biswas, Abiral Tamang, Jaya Bandyopadhyay, Debasish De, Dambarudhar Mohanta, Akshaya Kumar Bastia, Biogenic synthesis of silver nanoparticles from *Cassia fistula* (Linn.): In vitro assessment of their antioxidant, antimicrobial and cytotoxic activities, *IET Nanobiotechnol.*, **2016**, 10(6), 438–444.

134. Marina Timotina, Anush Aghajanyan, Robin Schubert, Karen Trchounian, Lilit Gabrielyan, Biosynthesis of silver nanoparticles using extracts of *Stevia rebaudiana* and evaluation of antibacterial activity, *World J Microbiol Biotechnol*, **2022**, 38(11), 196.

135. C. Krishnaraj, E.G. Jagan, S. Rajasekar, P. Selvakumar, P.T. Kalaichelvan, N. Mohan, Synthesis of silver nanoparticles using *Acalypha indica* leaf extracts and its antibacterial activity against water borne pathogens, *Colloids and Surfaces B: Biointerfaces*, **2010**, 76(1), 50-56.

136. M. R. and C. Posten, “Green Biosynthesis of Nanoparticles – Mechanisms and Applications,” Berfort Inf. Press Ltd, 2013.

137. Nguyen Duc Hung, Electrochemical technology and metal protection, *Journal of Science and Technology*, **2012**, 50(6), 767-79.

138. Rashid A. Khaydarov, Renat R. Khaydarov, Olga Gapurova, Yuri Estrin, Thomas Schepers, Electrochemical method for the synthesis of silver nanoparticles, *J. Nanopart. Res.*, **2009**, 11, 1193–1200.

139. Nguyen Duc Hung, Mai Van Phuoc, Nguyen Minh Thuy, Manufacturing of nano silver solution using electrochemical technology, *Vietnam J. Chem.*, **2012**, 50(2), 261-263.

140. 141. Mohammed J. Haider, Mohammed S. Mahdi, Synthesis of Silver Nanoparticles by Electrochemical Method, *Eng. & Tech. Journal*, **2015**, 33B(7), 1361 - 1373.

141. H A Padilla-Sierra, G Peña-Rodríguez, G Chaves-Bedoya, Silver colloidal nanoparticles by electrochemistry: temporal evaluation and surface plasmon resonance, *Journal of Physics: Conference Series*, **2021**, 2046, 012064.

142. Carla Gasbarri, Maurizio Ronci, Antonio Aceto, Roshan Vasani, Gianluca Iezzi, Tullio Florio, Federica Barbieri, Guido Angelini, Luca Scotti, Structure and Properties of Electrochemically Synthesized Silver Nanoparticles in Aqueous Solution by High-Resolution Techniques, *Molecules*, **2021**, 26(5155), 1 – 9.

143. Nguyen Duc Hung, Nguyen Cong Phuc, Bactericidal activity of electrochemically precipitated nanosilver and Ag/Al₂O₃ nanocomposites, *Vietnam Journal of Chemistry*, **2010**, 48(04), 409-412.

144. 6. M. Virginia Roldán, Nora Pellegrini, Oscar de Sanctis, Electrochemical Method for Ag-PEG Nanoparticles Synthesis, *Journal of Nanoparticles*, **2013**, 2013(524150), 1 - 8.

145. Tran Quoc Tuan, Pham Van Hao, Luu Manh Quynh, Nguyen Hoang Luong, Nguyen Hoang Hai, Preparation and Properties of Silver Nanoparticles by Heat-combined Electrochemical Method, *VNU Journal of Science: Mathematics-Physics*, **2015**, 31(2), 36-44.

146. Nguyen Duc Hung, Tran Van Cong, Hoang Nhu Trang, Synthesis of bimetallic Cu-Ag nanoparticles prepared by DC high voltage electrochemical method, *Vietnam J. Chem.*, **2019**, 57(5), 609-614.

147. Mai Van Phuoc, Nguyen Minh Thuy, Nguyen Duc Hung, Energy balance in the process of creating silver nanoparticles by high voltage electrochemical technology, *Vietnam J. Chem.*, **2014**, 52(6B), 183-186.

148. Nguyen Minh Thuy, Nguyen Duc Hung, Mai Van Phuoc, Nguyen Nhi Tru, Characterization of particles size distribution for nano silver solution prepared by high DC voltage electrochemical technique, *Vietnam J. Chem.*, **2014**, 52(5), 543-547.

149. Nguyen Minh Thuy, Nguyen Duc Hung, Nguyen Thi Ngoc Tinh, Nguyen Nhi Tru, Silver nano solution produced by electrochemical method high voltage: bactericidal ability and application in medicine-pharmaceutical, *Vietnam J. Chem.*, **2012**, 50(5A), 134-138.

150. Frank-Kamenetski, David A., *Plasma-The Fourth State of Matter*, New Yorkk: Plenum Press, 1972.

151. Paul K.. Chu, XinPei Lu, *Low Temperature Plasma Technology, Methods and Application*, CRC Press-Taylor&Francis Group, 2013.

152. Mine Er., *Synthesis of silver nanoparticles using a plasma-liquid process*, PhD Theses, Université Sorbonne Paris, 2020.

153. Urooj Shuaib, Tousif Hussain, Riaz Ahmad, Muhammad Zakaurrah, Farrukh Ehtesham Mubarik, Sidra Tul Muntaha, Sana Ashraf, Plasma-liquid synthesis of silver nanoparticles and their antibacterial and antifungal applications, *Mater. Res. Express*, **2020**, 7, 035015.

154. V. S. Santosh K. Kondeti, Urvashi Gangal, Shurik Yatom, Peter J. Bruggeman, Ag⁺ reduction and silver nanoparticle synthesis at the plasma-liquid interface by an RF driven atmospheric pressure plasma jet: Mechanisms and the effect of surfactant, *Journal of Vacuum Science & Technology A*, **2017**, 35(6), 1-12.

155. Joanna Jabłońska, Krzysztof Jankowski, Mikołaj Tomasik, Dariusz Cykalewicz, Paweł Uznański, Szymon Całuch, Miroslaw Szybowicz, Joanna Zakrzewska, Paweł Mazurek, Preparation of silver nanoparticles in a high voltage AC arc in water, *SN Applied Sciences*, **2021**, 3(244), 1-10.

156. Nguyen Duc Hung, Vu Van Nam, Le Van Trung, Tran Thi Ngoc Dung, Electrochemical preparation of nanosilver by combining high DC voltage with anodic plasma, *Vietnam Journal of Science and Technology*, **2019**, 57(2), 186-198.

157. X. Wang, H.F. Wu, Q. Kuang, R.B. Huang, Z.X. Xie, L.S. Zheng, Shape-dependent antibacterial activities of Ag_2O polyhedral particles, *Langmuir*, 2010, 26(4), 2774-2778.

158. Nguyen Minh Thuy, *Research on electrochemical anodic dissolution at positive electrode (anode) for manufacturing of silver nanoparticles using high voltage*, PhD Theses, Military Academy of Science and Technology, Hanoi, 2010.

159. Carla Gasbarri, Maurizio Ronci, Antonio Aceto, Roshan Vasani, Gianluca Iezzi, Tullio Florio, Federica Barbieri, Guido Angelini, Luca Scotti, Structure and Properties of Electrochemically Synthesized Silver Nanoparticles in Aqueous Solution by High-Resolution Techniques, *Molecules*, **2021**, 26, 5155

160. Alexander Yu. Vasil'kov, Ruslan I. Dovnar, Siarhei M. Smotryn, Nikolai N. Iaskevich, Alexander V. Naumkin, Plasmon Resonance of Silver Nanoparticles as a Method of Increasing Their Antibacterial Action, *Antibiotics* **2018**, 7(80), 1-18.

161. Yubiao Niu, Emil Omurzak, Rongsheng Cai, Dinara Syrgakbekk kyzzy, Zhanarkunov, Abduraim Satyvaldiev, Richard Palmer, Eco-Friendly Synthesis of Silver Nanoparticles Using Pulsed Plasma in Liquid of Surfactants, *Surfaces*, **2022**, 5, 202-208.

162. Margarita Skiba, Alexander Pivovarov, Anna Makarova, Victoria Vorobyova, Plasma-chemical synthesis of silver nanoparticles in the presence of citrate, *Chem. J. Mold.*, **2018**, 13(1), 7-14.

163. Nguyen Ba Nghia, Nano silver, outstanding effects and notes when using, *Disease.vn, Google News*, <https://www.benh.vn>, 17-03-2023.

164. Margaria I. Skiba, Victoria I. Vorobyova, Iryna V. Kossogina, Preparation of Silver Nanoparticles in a Plasma-liquid System in Presence of PVA: Antimicrobial, Catalytic, and Sensing Properties, *Journal of Chemistry*, **2020**, Article ID 5380950, 1-9.

165. Wan Khaima Azira Wan Mat Khalir, Seyed Davoud Jazayeri, Nor Azizi Othman, Nur fatehah Wahyuny Che Jusoh, Noaian Mohd Hassan, Biosynthesized Silver Nanoparticles by Aqueous Stem Extract of *Entada spiralis* and Screening of Their Biomedical Activity, *Frontiers in Chemistry*, **2020**, 8(620), 1-15.

166. Nguyen Duc Hung, Mai Van Phuoc, Nguyen Minh Thuy, The electrical conductivity of nano silver solution, *Journal of Military Science and Technology Research*, **2012**, 17(02), 96-111.

167. Nguyen Duc Hung, Luu Viet Hung, Nguyen Minh Thuy, Using of UV-Vis for metallic nanosilver solution prepared by anodic dissolution with ultra-high voltage, *Journal of Military Science and Technology Research*, **2012**, 19(06), 94-99.

168. Liangpeng Ge, Qingtao Li, Meng Wang, Jun Ouyang, Xiaojian Li, Malcolm MQ Xing, Nanosilver particles in medical application: synthesis, performance, and toxicity, *International Journal of Nanomedicine*, **2014**, 9, 2399-2407.

169. Gordon Pedersen, *A Fighting Chance: How to Win the War Against Virus and Bacteria with Silver*, Amazon.com., 2013.

170. Gordon Pedersen, *A New Fighting Chance: Silver Solution: A Quantum Leap in Silver Technology*, Sound Concepts, 2016.

171. Sun, R.W.; Chen, R.; Chung, N.P.; Ho, C.M.; Lin, C.L.; Che, C.M. Silver nanoparticles fabricated in Hepes buffer exhibit cytoprotective activities toward HIV-1 infected cells. *Chem. Commun. (Camb)* **2005**, 40, 5059-5061.

172. Lara, H.H.; Ixtepan-Turrent, L.; Garza-Treviño, E.N.; Rodriguez-Padilla, C. PVP-coated silver nanoparticles block the transmission of cell-free and cell-associated HIV-1 in human cervical culture. *J. Nanobiotechnol.* **2010**, 8, 15-25.

173. Stefania Galdiero, Annarita Falanga, Mariateresa Vitiello, Marco Cantisani, Veronica Marra, Massimiliano Galdiero, Silver Nanoparticles as Potential Antiviral Agents, *Molecules*, **2011**, 16(10), 8894-8918.

174. Zubair Ahmed Ratan, Fazla Rabbi Mashrur, Anisha Parsuram Chhoan, Sadi Md. Shahriar, Mohammad Faisal Haidere, Nusrat Jahan Runa, Sunggyu Kim, Dae-Hyuk Kweon, Hassan Hosseinzadeh, Jae Youl Cho, Silver Nanoparticles as Potential Antiviral Agents, *Pharmaceutics*, **2021**, 13(12): 2034.

175. Rogers, J.V.; Parkinson, C.V.; Choi, Y.W.; Speshock, J.L.; Hussain, S.M. A preliminary assessment of silver nanoparticles inhibition of monkeypox virus plaque formation. *Nanoscale Res. Lett.* **2008**, 3, 129-133.

176. Lu, L.; Sun, R.W.; Chen, R.; Hui, C.K.; Ho, C.M.; Luk, J.M.; Lau, G.K.; Che, C.M. Silver nanoparticles inhibit hepatitis B virus replication. *Antivir. Ther.* **2008**, 13, 253-262.

177. Sun, L.; Singh, A.K.; Vig, K.; Pillai, S.; Shreekumar, R.; Singh, S.R. Silver nanoparticles

inhibit replication of respiratory syncytial virus. *J. Biomed. Biotechnol.* **2008**, *4*, 149–158.

178. Baram-Pinto, D.; Shukla, S.; Perkas, N.; Gedanken, A.; Sarid, R. Inhibition of herpes simplex virus type 1 infection by silver nanoparticles capped with mercaptoethane sulfonate. *Bioconjug. Chem.* **2009**, *20*, 1497–1502.

179. Speshock, J.L.; Murdock, R.C.; Braydich-Stolle, L.K.; Schrand, A.M.; Hussain, S.M. Interaction of silver nanoparticles with Tacaribe virus. *J. Nanobiotechnol.* **2010**, *8*, 19–27

180. Chu Thi Thu Huyen, Nguyen Thi Thanh Binh, Trinh Ngoc Duong, Nguyen Thanh Hai, Nanosilver and Prospects of Medicinal Applications, *Journal of Science and Technology, Vietnam National University, Hanoi*, **2014**, *30*(2), 23–32.

181. Hadrup, N.; Sharma, A.K.; Loeschner, K.; Jacobsen, N.R. Pulmonary Toxicity of Silver Vapours, Nanoparticles and Fine Dusts: A Review. *Regul. Toxicol. Pharmacol.* **2020**, *115*, 104690.

182 Kim, Y.S.; Kim, J.S.; Cho, H.S.; Rha, D.S.; Kim, J.M.; Park, J.D.; Choi, B.S.; Lim, R.; Chang, H.K.; Chung, Y.H.; *et al.* Twenty-eight-day oral toxicity, genotoxicity, and genderrelated tissue distribution of silver nanoparticles in Sprague-Dawley rats. *Inhal. Toxicol.* **2008**, *20*, 575–583.

183. Mathur, P.; Jha, S.; Ramteke, S.; Jain, N.K. Pharmaceutical Aspects of Silver Nanoparticles. *Artif. Cells Nanomed. Biotechnol.* **2018**, *46*, 115–126.

184. Panyala, N.R.; Peña-Méndez, E.M.; Havel, J. Silver or silver nanoparticles: A hazardous threat to the environment and human health? *J. Appl. Biomed.* **2008**, *6*, 117–129.

185. S. Kittler, C. Greulich, J. Diendorf, M. Koller, M. Epple, Toxicity of Silver Nanoparticles Increases during Storage Because of Slow Dissolution under Release of Silver Ions, *Chem. Mater.* **2010**, *22*, 4548–4554.

186. Stebounova, L.V.; Adamcakova-Dodd, A.; Kim, J.S.; Park, H.; O'Shaughnessy, P.T.; Grassian, V.H.; Thorne, P.S. Nanosilver induces minimal lung toxicity or inflammation in a subacute murine inhalation model. *Part. Fibre Toxicol.* **2011**, *8*, 5–17.

187. Zhang, T.; Wang, L.; Chen, Q.; Chen, C. Cytotoxic Potential of Silver Nanoparticles. *Yonsei Med. J.* **2014**, *55*, 283–291.

188. Luther, E.M.; Koehler, Y.; Diendorf, J.; Epple, M.; Dringen, R. Accumulation of Silver Nanoparticles by Cultured Primary Brain Astrocytes. *Nanotechnology* **2011**, *22*, 375101.

189. Liu, W.; Wu, Y.; Wang, C.; Li, H.C.; Wang, T.; Liao, C.Y.; Cui, L.; Zhou, Q.F.; Yan, B.; Jiang, G.B. Impact of Silver Nanoparticles on Human Cells: Effect of Particle Size. *Nanotoxicology* **2010**, *4*, 319–330.

190. Stephan Barcikowski, Philipp Wagener, Niko Bärsch, Ligandenfreie Laser-generierte Nanopartikel für Biomedizin und Katalyse, *BioPhotinik*, **2013**, *2*, 34–37

191. Takato Mitsudome, Akifumi Noujima, Yusuke Mikami, Tomoo Mizugaki, Koichiro Jitsukawa, Kiyotomi Kaneda, Supported Gold and Silver Nanoparticles for Catalytic Deoxygenation of Epoxides into Alkenes, *Angew. Chem.* **2010**, *122*, 5677–5680.

192. Prianka Saha, Md. Mahiuddin, A. B. M. Nazmul Islam, Bungo Ochiai, Biogenic Synthesis and Catalytic Efficacy of Silver Nanoparticles Based on Peel Extracts of Citrus macroptera Fruit, *ACS Omega*, **2021**, *6*, 18260–18268.

193. Xiao-Yun Dong, Zi-Wei Gao, Ke-Fang Yang, Wei-Qiang Zhang, Li-Wen Xu, Nanosilver as a new generation of silver catalysts in organic transformations for efficient synthesis of fine chemicals, *Catal. Sci. Technol.*, **2015**, *5*, 2554–2574.

194. Leili Shaker Ardakani, A. Surendar, Lakshmi Thangavelu, Tanmay Mandal, Silver nanoparticles (Ag NPs) as catalyst in chemical reactions, *Synthetic Communications, An International Journal for Rapid Communication of Synthetic Organic Chemistry*, **2021**, *51*(10), 1516–1536.

195. Vineet K. Shukla, Raghvendra S. Yadav, Poonam Yadav, Avinash C. Pandey, Green synthesis of nanosilver as a sensor for detection of hydrogen peroxide in water, *Journal of Hazardous Materials*, **2012**, *213–214*, 161–166.

196. Moustafa Zahran, Ziad Khalifa, Magdy A.-H. Zahrana, Magdy Abdel Azzema, Recent advances in silver nanoparticle-based electrochemical sensors for determining organic pollutants in water: a review, *Mater. Adv.*, **2021**, *2*, 7350.

197. Irena Ivanišević, The Role of Silver Nanoparticles in Electrochemical Sensors for Aquatic Environmental Analysis, *Sensors*, **2023**, *23*(7), 3692.

198. Irfan Shah, Rohana Adnan, Wan Saime Wan Ngah, Norita Mohamed, A Review of the Use of Silver Nanoparticles in Environment, *International Journal of Chemistry*, **2014**, *35*(1), 1459–1471

199. Le Thi Ngoc Hoa, Tran Quang Minh, Huynh Trong Kha, Vu Nang An, Synthesis and evaluation of the antibacterial activity of silver nanoparticles in indoor waterborne architectural coating, *Science Journal of the Cantho University*, **2021**, *57*(3A), 10–22.

200. Bidyut Barman, Hrishikesh Dhasmana, Abhishek Verma, Amit Kumar, DN Singh, VK Jain, Fabrication of silver nanoparticles on glass substrate using low-temperature rapid thermal

annealing, *Energy & Environment*, 2018, 29(3), 358-371.

201. David Roe, Balu Karandikar, Nathan Bonn-Savage, Bruce Gibbins, Jean-Baptiste Roullet, Antimicrobial surface functionalization of plastic catheters by silver nanoparticles, *J Antimicrob Chemother*, 2008, 61(4), 869-876.

202. Abdolhamid Sadeghnejad, Abdolreza Aroujalian, Ahmadreza Raisi, Sharhzad Fazel, Antibacterial nano silver coating on the surface of polyethylene films using corona discharge, *Surface & Coatings Technology*, 2014, 245, 1-8.

203. Claude Lambré, José Manuel Barat Baviera, Claudia Bolognesi, Andrew Chesson, Pier Sandro Cocconcelli, Riccardo Crebelli, David Michael Gott, Konrad Grob, Evgenia Lampi, Marcel Mengelers, Alicja Mortensen, Inger-Lise Steffensen, Christina Tlustos, Henk Van Loveren, Laurence Vernis, Holger Zorn, Laurence Castle, Emma Di Consiglio, Roland Franz, Nicole Hellwig, Stefan Merkel, Maria Rosaria Milana, Eric Barthélémy, and Gilles Rivière, Safety assessment of the substance silver nanoparticles for use in food contact materials, *EFSA Journal*, 2021, 19(8), e06790.

204. Luong Hung Tien, Research on the preparation of chitosan - nano silver applied in post-harvest preservation of fruits, PhD Thesis, Hanoi University of Science and Technology, 2019.

205. Nguyen Ba Trung, Research on synthesis of nano-silver-chitosan combination products for post-harvest preservation of dragon fruit, PhD Thesis, University of Danang, 2016.

206. Nguyen Huynh Dinh Tuan, Research on fabrication of chitosan - nano silver film and initial experiment in preserving Hoa Loc mango, PhD Thesis, Can Tho University, 2014.

207. Hongxia Chen, Guangyu Zhang, Wei Zhang, Weidong Gao, Silver nanoparticles deposited on a cotton fabric surface *via* an *in situ* method using reactive hyperbranched polymers and their antibacterial properties, *RSC Advances*, 2023, 13, 1145.

208. Martin F. Chaplin, Water: its importance to life, *Biochemistry and Molecular Biology Education*, 2001, 29(2), 54-59. [https://doi.org/10.1016/S1470-8175\(01\)00017-0](https://doi.org/10.1016/S1470-8175(01)00017-0)

209. Sumana Siripattanakul-Ratpukdi, Maria Fürhacker, Review: Issues of Silver Nanoparticles in Engineered Environmental Treatment Systems, *Water Air Soil Pollut*, 2014, 225, 1939.

210. Christian Forstner, Thomas G. Orton, Peng Wang, Peter M. Kopittke, Paul G. Dennis, Wastewater Treatment Processing of Silver Nanoparticles Strongly Influences Their Effects on Soil Microbial Diversity, *Environ. Sci. Technol.*, 2020, 54(21), 13538–13547.

211. Geetha Palani, Herri Trilaksana, R. Merlyn Sujatha, Karthik Kannan, Sundarakannan Rajendran, Kinga Korniejenko, Marek Nykiel, Marimuthu Uthayakumar, Silver Nanoparticles for Waste Water Management, *Molecules*, 2023, 28(8), 3520.

212. Andrea Fiorati, Arianna Bellingeri, Carlo Punta, Ilaria Corsi, Iole Venditti, Silver Nanoparticles for Water Pollution Monitoring and Treatments: Ecosafety Challenge and Cellulose-Based Hybrids Solution, *Polymers* 2020, 12(8), 1635.

213. Tran Thi Thu Huong, Research on fabrication and use of silver, copper and iron nanomaterials for the treatment of toxic cyanobacteria (*M. Aeruginosa*) in freshwater bodies, Vietnam Academy of Science and Technology, 2018.

214. Phuong Hong Lam, Mai Thi Le, Dung My Thi Dang, Tin Chanh Duc Doan, Nguyen Phuc Cam Tu, Chien Mau Dang, Safe Concentration of Silver Nanoparticles in Solution for White Leg Shrimp (*Litopeaneus vannamei*) Farming, *Biological and Chemical Research*, 2020, 7, 35-45.

215. Laura Camacho-Jiménez, Ana Ruth Álvarez-Sánchez, Claudio Humberto Mejía-Ruiz, Silver nanoparticles (AgNPs) as antimicrobials in marine shrimp farming: A review, *Aquaculture Reports*, 2020, 18, 100512.

216. Thanh Son Le, Trong Hien Dao, Dinh Cuong Nguyen, Hoai Chau Nguyen, I L Balikhin, Air purification equipment combining a filter coated by silver nanoparticles with a nano-TiO₂ photocatalyst for use in hospitals, *Adv. Nat. Sci.: Nanosci. Nanotechnol.*, 2015, 6, 015016.

217. R. Parameshwaran, S. Kalaiselvam, Energy conservative air conditioning system using silver nano-based PCM thermal storage for modern buildings, *Energy and Buildings*, 2014, 69, 202-212.

218. Marina E Quadros, Linsey C Marr, Environmental and human health risks of aerosolized silver nanoparticles J. Air Waste Manag Assoc. 2010, 60(7), 770-781.

219. Elzbieta Jankowska, Joanna Łukaszewska, Potential exposure to silver nanoparticles during spraying preparation for air-conditioning cleaning, *Med Pr.*, 2013, 64(1), 57-67.

220. Liangpeng Ge, Qingtao Li, Meng Wang, Jun Ouyang, Xiaojian Li, Malcolm MQ Xing, Nanosilver particles in medical applications: synthesis, performance, and toxicity, *International Journal of Nanomedicine*, 2014, 9, 2399 – 2407.

221. Tran Dinh Binh, Tran Thanh Loan et al, Initial results of study on silver nanoparticles concentration applied in hospital infection, *Journal of Medicine*

and Pharmacy - Hue University of Medicine and Pharmacy, **2021**, 9, 26-30.

222. Satyapal Johaley, Freny R. Karjodkar, Kaustubh P. Sansare, Sneha R. Sharma, Mohd Saalim, Silver nanoparticles: New diagnostic and therapeutic approach in treatment of oral diseases, *European Journal of Pharmaceutical and Medical Research*, **2018**, 5(6), 239-244.

223. Ensanya Ali Abou Neel, Laurent Bozec, Roman A Perez, Hae-won Kim, Jonathan C Knowles, Nanotechnology in dentistry: prevention, diagnosis, and therapy, *International Journal of Nanomedicine*, **2015**, 10, 6371–6394.

224. Peter Takáč, Radka Michalková, Martina Čižmáriková, Zdenka Bedlovičová, L'udmila Balážová, Gabriela Takáčová, The Role of Silver Nanoparticles in the Diagnosis and Treatment of Cancer: Are There Any Perspectives for the Future?, *Life*, **2023**, 13, 466.

225. Prateek Mathur, Swati Jha, Suman Ramteke, N. K. Jain, Pharmaceutical aspects of silver nanoparticles, *Artificial Cells, Nanomedicine, and Biotechnology*, **2017**, 1414825, 1-12.

226. Vivian L. Li, Advancing silver nanostructures towards antibacterial applications, PhD Thesis, RMIT University, 2014.

227. X. Chen, H.J. Schluesener, Nanosilver: A nanoproduct in medical application, *Toxicology Letters*, **2008**, 176, 1-12.

228. Marek Konop, Tatsiana Damps, Aleksandra Misicka, Lidia Rudnick. Certain Aspects of Silver and Silver Nanoparticles in Wound Care: A Minireview, *Journal of Nanomaterials*, **2016**, ID 7614753, 10 pages.

229. Federica Paladini, Mauro Pollini, Antimicrobial Silver Nanoparticles for Wound Healing Application: Progress and Future Trends, *Materials (Basel)*, **2019**, 12(16), 2540.

230. Rosa Pangestika, Rahaju Ernawati, Suwarno, Antiviral activity efect of silver nanoparticles (AgNPs) solution against the growth of infectious bursal disease virus on embryonated chickken eggs with elesa test, The Veteribary Medicine International Conference, **2017**, 536-548.

231. Ekaterina O. Mikhailova, Silver Nanoparticles: Mechanism of Action and Probable Bio-Application, *J. Funct Biomater.*, **2020**, 11(4) 84.

232. Ratnadeep R. Koyale, Imran L. Patel, Samradni D. Pingale, Detection of Cholera Toxin Using Lactose-Decorated Silver Nanoparticles, *Science and Technology*, **2018**, 4(2), 902-906.