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Tinh chat Forelli manh ctia cAc khéng gian Fréchet
va dinh 1y Alexander déi véi cac chubi luy thira
hinh thic gia tri Fréchet

Nguyén Van Dai*

Khoa Su pham, %m’mg Dai hoc Quy Nhon, Viet Nam
*Tac gia lién hé chinh. Email: nguyenvandai@gnu. edu.vn

TOM TAT

Chiing toi dua ra cac diéu kién dii dé mot chudi luy thira hinh thiic (tuong ting, mot day ciia
chudi uy thita hinh thitc) ctia cac da thite thuan nhét, lién tuc, gia tri Fréchet hoi tu trong lan
can ctia 0 trén khong gian Fréchet E (tuong wng, £ = CV) Ia hai tu trong lan can ciia 0 trén
mbi dudng thing phic £, := Ca vdi mdi a € A (A la tap khong da cie xa anh trong CV). Két
qué trong trudng hgp F = CV la mot “tudng tu gia tri Fréchet” ciia dinh 1y Alexander ¢6 dién
nhung vdi cac gia thiét yvéu hon; Dua ra ldp cac dinh 1y tudng tir dinh 1y Alexander nhan gia tri
Fréchet trong trudng hop £ = CN nhung véi cac gia thiét yéu hon. Ching t6i ciing chiing minh
rang moi khong gian Fréchet F' ¢6 tinh chat Forelli manh, nghia 1a néu mei ham f: Ay — F
sao cho f € C™(0) va f|,na, la chinh hinh véi moi dutng thing phiic l,.a € A, thi f chinh
hinh trén Ay.

T khéa: Ham da diéu hoa dudi, ham chinh hinh, tip da cuc za dnh, chuéi lug thita hinh thic.
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ABSTRACT

e give sufficient conditions to ensure the convergence ﬂsome zero-neighbourhood in a

Fréchet space E (resp. E = CN) of a formal power series (resp. a sequence of formal power series)
of Fréchet-valued continuous homogeneous polynomials provided that the convergence holds at a
zero-neighbourhood of each complex line ¢, := Ca for every a € A, a non-projectively-pluripolar
set in E. The result in the case £ = CV is a Fréchet-valued analog of classical Alexander’s
theorem but under weaker assumptions. It is also shown that every Fréchet space has the strong
Forelli property, i.e, for a non-projectively-pluripolar set A ¢ CV, everyﬂréchet—valued function
[ on the open unit ball Ay € CV, f € C*(0), such that its restriction on each complex line ¢,

g& A, is holomorphic admits an extension to an entire function.

eywords: Plurisubharmonic functions, holomorphic functions, projectively pluripolar sets, for-

mal power series

1. INTRODUCTION AND PRELIMI-
NARIES

The focus of this paper is to study the
Fréchet-valued analogs and the generaliza-
tions of the following two casical theorems.
Forelli’s Theorem [T, If f is a function
defined in the unit ball Ay C CN, holomor-
phic on the intersection of Apn with every
complez line £ passing through the origin and
if [ is of class C*° in a neighborhood of this
point, then it is holomorphic in Ay .
Alexander’s Theorem 2. Let F be a
fawsily of analytic functions on Ay < CN.
If the restriction of # to each complex line
through the origin is normal (resp. at the ori-
gin), then . F is normal (resp. at the origin).
Recall that a family % of analytic func-

tions on a complex manifold € is normal if
every sequence in .# has a subsequence which
converges uniformly on compact subsets of (2

gther to an analytic function or to oo, and
g&t % is normal at a point = € € if there
exists a neighborhood W of x such that the
restriction of .# to W is normal.

Forelli's theorem is a radial analogue of
the fundamental theorem of Hartogs. Alexan-
der’s theorem allowed us to obtain the Har-
togs theorem on the convergence of formal
power series in several complex variables.

The problems of extensions and general-
izations of the above classical theorems for
holomorphic maps and vector-valued holo-
morphic functions have drawn attention of
mathematicians.




In this note we will investigate these
results for the Fréchet-valued case in the
“strong” sence in which the functions are only
required that their restrictions on {MN Ay are
holomorphic for every ¢ € &, a family of suf-
ficiently many complex lines passing through
the origin.

Families of “sufficiently many” complex
lines in the paper concern the notions of
pluripolar sets and projectively pluripolar
sets. These notions require some extra back-
cropmd material for its definition.

et D be a domain in a locally convex
space E. An upper-semicontinuous function
p : D — [—0o,+00) is said to be plurisub-
harmonic, and write ¢ € PSH(D), if p is
subharmonic on every one dimensional sec-

tiorgef D.

rgsubset B C D is said to be pluripolar
in nif there exists ¢ € PSH(D) such that
¢ #A =00 and p|; = —cc.

A function ¢ € PSH(E) is called homo-
geneous plurisubharmonic if

w(Az) =log|A +p(z) VA€EC, VzeE.
We denote by HPSH(E) the set of homo-

geneous plurisubharmonic functions on E.
We say that a subset A C E is projectively
pluripolar if A is contained in ghe —oo lo-
cus of some element in HPSH(Q) which is
not identically —oc. It is clear that projec-
tive pluripolarity implies pluripolarity. The
converse is not true (see = [Proposition 3.2
b]).

Some properties, examples and coun-
terexamples of projectively pluripolar sets
may be found in B We introduce below a few

examples in locally convex spaces.

Example 1.1. Let E be a metrizable locally
convex space. Fix a € E. Then,
line £, := Ca = {\a: \ € C},
A C {,, is projectively pluripolar in E.
Indeed, let d be the metric defining the
topology on E. Consider the function

e complex
nce, every

plz) = —logd(z,£,) := — log inéf z,w).
weL

It is easy to check that ¢ € HPSH(E),

@ # —oc and £, C p~1(—00).

Example 1.2. Let E be a Fréchet space
which contains a non-pluripolar compact bal-
anced convex subset B. By the same proof
as in Example the set 9B is pluripolar.
However, dB is not projectively pluripolar in
E.

Otherwise, we can find a function ¢ €
HPSH(E), ¢ # —oc and 8B C ¢ !(—0c0).
For every z € B we can write z = Ay for some
y € 0B and |A| < 1. Then

p(2) = p(My) =log|A|+p(y) = —cc Yz € B.
It is impossibe because B is non-pluripolar.

Example . By Theorem 9 of @ and Ex-
ample a nuclear Fréchet space having
the linear topological invariant (ﬁ) which is
intfroduced by Vogt (see IEI) contains a non-
projectively-pluripolar set.

We recall that complex space or a locally
convex space X is said to have Forelli Prop-
erty if every map f : Ay — X such that f
is of €™~ class in a neighborhood of 0 € Ay
and f|£rmN is holomorphic for all complex
lines ¢ through 0 € Ay then f is holomorphie
on Ap. In 2005 L. M. Hai and N. V. Khue
B studied the Forelli property for complex
spaces. They also investigated the relation
between these spaces with Hartogs spaces
and Hartogs holomorphic extension spaces
for holomorphically convex Kihler complex
spaces.

Definition 1.1. ocally convex space F'
is said to have the strong Forelli property if
every function f: Ay — F satisfying:

(i) f belongs to C*-class at 0 € CV for
k>0,

(ii) for some non-gRojectively-pluripolar
subset A C CV, the restriction of f on
each complex line ¢,, a € A, is holo-
morphic,




then there exists an entire function fon cr
such that f= fon ¥, forall a € A.

Note that, from Proposition 3.1 in EZI, mn
CN, the following are equivalent:

a) A is projectively pluripolar;

b) A* == {tz: t € C,|t| < A\,z € A} is
pluripolar for each A > 0;

c) u(A*) = 0 where u is the Lebesgue
Hmeasure;

d) v(e(A*)) = 0 where v is the invari-
ant measure on the projective space
CPN-! and o : CV \ {0} - CPN-!
is the natural projection.

It follows that the condition (ii) in Definition
can be replaced by the following condi-

tion:

(ii') for some family % of complex lines
through 0 € CV such that
;..‘.(ANI"]UEE_Y 1’?) > (), the restriction of
foneach ¢ € £ is holomorphic.

The main theorems of our note are the fol-
lowing.

Theorem 1.1. Ewvery Fréchet space has the

strong Forelli property.
1
Theorem 1.2. Let A ¢ CN be a non-

projectively-pluripolar set and (fn)n>1 be a
sequence of formal power series of contin-
wous homogeneous polynomials on CN with
values in a Fréchet space. Assume that there
exists rg € (0,1) such that, for each a € A,
the restriction of (fn)n>1 on £, is a sequence
of holomorphic functions which is convergent
on the disk A(ry). Then there exists r > 0
such that ( f.)n>1 s a sequence of holomor-
phie functions that converges on An(r).

By the equivalence of a) and d) men-
tioned above, the hypotheses of Theorem|1.2]
may be gated under an alternative form as

e

follows: Let B be a subset of Ay such that

v(p(B)) = 0 where v is the invariant mea-
sure on the projective space CPN—1 and
o: CN\ {0} — CPN-! is the natural pro-
jection. Assume that for some ro € (0,1),
the restriction of the sequence (fn)n>1 on
each complex line £ through 0 € Ay with
N B = {0} is convergent in A(ry).
Actually, Theorem is not a generaliza-
tion of Alexander’s theorem because our re-
sult only refers to uniform convergence, not
to the normality of the sequence of formal
power series. Therefore, it is still an open
question that whenever we obtain a truly gen-
eralization of Alexander’s theorem. In other
words, *“ Whether or not a version of Theorem
where the uniform convergence of the se-
quence (fnle, Jn=1 on compact sets of A(rg)
is replaced by normality of this sequence on
Alrg) i.e., we allow convergence to oo uni-
formly on compact sets?”

The proof of the main first theorem will
be pr ted in Sections 2. To prepear for the
proof, with the help of techniques of pluripo-
tential theory and functional analysis, we in-
vestigate the Hartogs Lemma for sequence
of plurisubharmonic functions for the infinite
dimensional case (Theorem [2.2). This result
is also essential to the Section 3 in which
we discus a problem closely related to the
two classical theorems mentioned above. The
main goal of this section (Theorem |(3.1) is to
study the convergence set of a formal power
series of continuous homogeneous polynomi-
als between Fréchet spaces under the hypoth-
esis that it is convergent along a pencil of
complex lines through the origin.

Finally, the last section presents the proof
of thegmnain second theorem of the paper.
Some results concerning to Vitali's theorem
for a sequence of Fréchet-valued holomorphic
functions (Proposition will be shown to

helﬁc:r our proof.

e standard notation of the theory of
locally convex spaces used in this note is pre-
sented as in the book of Jarchow @ A locally




convex space is always a complex vector space
with a locally convex Hausdorff topology. For
to de-
note E" equipped with the bornological topol-

a locally convex space E we use £}

ogy associated with the strong topology 3.

The locally convex structure of a Fréchet
space is always assumed to be generated by
an increasing system (|| -||z)x>1 of seminorms.
For an absolutely convex subset B of E, by
Eg we denote the linear hull of B which be-
comes a normed space in a canonical way if B
is bounded (with the norm || - |5 is the gauge
functional of B).

We say that a Fréchet space E has the
property (LB..), apsd write E € (LB,) for
short, if Yon 1 00, Ip¥gIk(q) = q,

C(qg) > 0,Vz € E,3m with ¢ <m < k(q) :

lzllyFe < Cl@lzllmllz ]S

This property is a linear toplogical invariant

which plays a very important role in modern

theory of Fréchet spaces. Khue, Hai, Hoan &

[Theorem 4 ] proved that if £ € (LBx) then
hor) 3 )

For f111th91 terminology from complex

ana@lq we refer to@

e use throughout this paper the follow-
ing notations: Ay(r) = {z eCN: 2|l <r};
AN = ), ) = ), A = A],
and f, is the complex line Ca.

2. THE STRONG FORELLI PROP-
ERTY OF FRECHET SPACES

This sectiogmis devoted to the proof of The-
orem |[1.1] ucp st we investigate the Hartogs
Lemma for sequence of plurisubharmonic
functions for the infinite dimensional case.
This is essential to our proofs.

Lemma 2.1. Let (P,)n>1 be a sequence of
continuous homogeneous polynomials on a
Baire locally convexr space E of degree < n.
Assume that

lim sup —
TE— DO

10g|-Pn 2)| <0

for each z € E. qhen for every € > 0 and ev-
ery compact set K in E there exists ng such
that

1
;log|Pn(z)\ <z Yn>ny, Vze K.
Proof. Since

1
limsup |P,(2)|» <1 VzeE

T—C

the formular

— Z-Pn(z)/\n

n=>1

defines a function f : E' — H(A), the Fréchet
space of holomorphic functions on the open
unit disc A < C.

Let us check f is holomorphic on E.
Given z € E'\ {0} and consider f(-z) : C —
H(A) with

F€2)(A) =

5 et
n>1
1
where k, = deg P,, < n. Then f(-z) is holo-
morphic because for 0 < r < 1 we have

lim sup (|P:n.(z)||/\|n)ﬁ

Ti— 00 |A]<r

= lim sup(| RL('ZN% "')ﬁ
ri—0)

< lim sup |Pn(z)|%r <r<l.
n—+0
“lis means that f is Gateaux holomorphic
on E.

.Now for each k& > 1 we put
1

Ay :={z€ E: |P,(2)| <k Wn>1}.

By the continuity of P,, the sets A; are
closed in E. Moreover, £ = [J;-, Ag. Since
E is a Baire space, there exists Er{; > 1 such
that IntAy, # @. Then f is holomorphic on
,‘{]Int Ay, because

pDICTRINEED oF: SEED WERES
121 n)l n=l

for 0 < r < 1. Hence, by Zorn's theorem 10
[Theorem 1.3.1], f is holomorphic on E.




Now given X' C E a compact set and
£>0. Take 0 < r < 1 and denote

C = sup{| (=) (M) :

Then we have

ze K |\ £r} < 0.

1 fz)(§dg)  C .
- | ATl g
|P'n(z)| i /|‘€|=1" €n+l = pn vz e }\'
ie,
1 (7%
|Pu(2)] < —
Choose ng sufficiently we obtain
. O
|P(2)| < " < e Yn>ng.
The lemma is proved. O

1
The Proposition 5.2.1 in a says that

a non-empty family (ua)aer of plurisubhar-
monic functions from the Lelong class such
that the set {z € CN : sup,c; ua(z) < oo}
is not L-polar is locally uniformly bounded
from above.

The next is similar to the above result in
the infinite dimensional case.

Theorem 2.9 Let B be a balanced con-
vex compact subset of a Fréchet space E and
(Pn)n>1 be a sequence of continuous homoge-
neous polynomials on E of degree < n. As-
sume that the set

1
{z € Eg :sup —log|P.(z)| < oo}
n>1 N

is not projectively pluripolar in Eg. Then
the family (X log |Py|)n>1 is locally uniformly
bounded from above on Eg.

Proof. Suppose that the family (‘.r_le log | Py|)n>1
is not locally uniformly bounded from above
on B. Then @re exists a sequence (u;)j>1 =
(% log |P,,;|)j>1 such that

M; :=supu(z) =2 j Vj=1.
z€EB

Take w € Eg'\ B and for each j > 1 consider
the function

vi(€) := s (¢ w) — M — log*(I¢| " |lwll5),

for ¢ € A(|lw|B)\ {0}. Obviously, v; is sub-
harmonic and, it is easy to see that v;({) <
O(1) as ¢ — 0. Hence, in view of Theorem
2.71 in@, v; extends to a subharmonic func-
tion, say U;, on A(||w||z). Now, by the max-
imum principle, 7; < 0 on A(||w||z). In par-
ticular,

v; (1) = 0(1) = uj(w) — M; —log™ ||w||z < 0.
Hence

uj(z) —M; <log™ ||z||g forz € Ep,¥j > 1.
(2.1)
Then there exists zy € Ep such that

lnsupexp (uj(zo) = Mj) =:0 > 0. (2.2)

J—oc

For otherwise we would have

lim sup exp(u;(z) — M;) <0

oo

at each pgmt z € EFp. By Lemma the
sequence <Q{p(uj(z) — M;))j>1 is bounded
from above on any compact set in Ep. This
would imply from mma 1.1.12] that
exp (uj(z) — M;) < 3 for all z € B and all
sufficiently large j. But then the last esti-
mate would contradict the definition of the
constants M;.

Now we choose a subsequence (u;, )r>1 C
(u)j>1 such that
lim_ exp(u; (20)~M;,) =8 and  M;, > 2k

k—

for all k > 1. Consider the function

w(z) =Y 2%, — M;,), z€ Ep.

k=1

In view of 1| we have the extimate
wi(2) =2 F(uj, — M;, ) -2 FlogR <0

for z € Eg, ||z|lg < Rand B > 1. Thus wy, is
plurisubharmonic on {z € Ep : |z|p < R}
and wy < 0. Hence, the function ), ., wy =
w—logR, R > 1, is either plurisuhh;rmonic
on {z € Ep: |z||p < R} or identically —oc.




Consequently, as R can be chosen arbitrarily
large, w is either plurisubharmonic or iden-
tically —oc. Therefore, since w(zy) > —oo,
w € PSH(ER). It is easy to see that w €
HPSH(Eg).

If z € Eg, sup,>; - 1og| P, (z)| < oo then
Y har2 Fu (2) < oo and, hence

w(z) < ZQ_kuJ-R(z) - Z l=-00

k=1 k=1
ghich proves that the set

1
{z € Eg :sup —log|P,(z)| < oo}
n>1 N

is projectively pluripolar in Ep. This con-
tradics the hypothesis. a

Corollary 2.3. Let B, E and (P,)n>1 be as
in Theorem ' in addition assume that B
contains a non-projectively-pluripolar subset.
Then the family [% log | Pp|)n>1 is locally uni-
formly bounded from above on E.

Proof. 1t suffices to prove that E is dense in
E. Indeed, if the closure of the subspace Ep
is not equal to E then, by the Hahn-Banach
theorem, there exists ¢ € E', ¢ # 0, such
that ¢(ER) = 0. Then it is easy to see that
v:=log|p| € HPSH(E), v# 0, BC Eg C
{z: v(z) = —oc}. This contradicts the fact
that B contains a non-projectively-pluripolar
subset. O

It is known that a subset with non-empty
interior in a Fréchet space is not pluripolar,
hence it is not projectively pluripolar. Then
by Corolla.rywe have the following.

Corollary 2.4. Let B be a balanced convex
compact subset of a Fréchet space E which
contains a non-projectively-pluripolar subset
and (P,)n>1 be a sequence of continuous ho-
mogeneous polynomials on E of degree < n.
If the set

1
{z € Eg :sup —log|P,(2)| < oo}
n>1 N

as the non-empty interior in E then the
family (%log\PanZl is locally wniformly
bounded from above on E.

a'e are now in a position to prove the
main first theorem.

Proof of Thearem Et F be a Fréchet
space, [ : A, — F be a function which be-
longs to C*-class at 0 € C* for k > 0 and
A C C" be a non-projectively-pluripolar set.
If the restriction of f ongmch complex line
{y, a € A, is holomorphic. Ef the hypothesis,
for each k& > 0 there exists rx € (0,1) such
that f is a C*-function on Ay (rg). We may
assume that r; ™, 0. Put

1 Az)dX
A =5 [ lzl—f S

= om z € An(rg).

“len, for each k = 0 and p = k, P, is a
bounded CP-function on Ay (r,). Since A —»
f(Aa) is holomorphic for all a € A we deduce
that

Pi(Aa) = \*Py(a) forae AN eC. (2.3)
By the boundedness of Py, on Ay (ry) we have
Pi(w) = O(Jw|¥) asw — 0.

911 the other hand, since Py €
C** 1 (An(rks1)), the Taylor expansion of
P, at 0 € Ay(ri.q) has the form

1
Pe(2) = Y Prag(®) +2l*0(z) (24)
a+f=k

where P, 5 is a polynomial of degree o in z
and degree 8 in Z and o(z) » 0 as z — 0.
In , replacing z by Az, [A| < 1, from

we obtain

3" Peas()AX + AFz[ o(A2)
a+8=k

= D Poas@N + 2\ zlfe(z)  (25)

a+fd=k

for rre1 A

ﬁis vields that o(Az) = o(z) for A €
[0,1), and hence, o(z) = o(0) = 0 for z €
ri1A. Thus

Piap(z)=0 for 8 >0and z € rpei A




Note that rp.1A4 is also not projectively
pluripolar. It is easy to check that

Pinsg=0 for 3 =>0.

Indeed, for every ¢ € F’, the function

u(w) = —ln- log|(g o Pk,aﬁ)(wN

deg Pk‘ﬂ‘ﬁ

is homogeneous plurisubharmonic on CV,
= —ooon rp.1A. Since ri.q A is not projec-
tively pluripolar, it implies that u = —oc and
hence o P, , g =0 on CN for every p € F'.
It implies that Py, 5= 0 on CN for g > 0.
Thus, from we have

Pi(z) = Prro(z) = Z caz®
|ee| =k
for z € An(rg+1) and Py is a homogeneous
holomorphic polynomial of degree k.

Now, let (|| - |[sn)m=1 be an increasing fun-
damental system of continuous semi-norms
defining the topology of F. By the hvpoth-
esis, for every m = 1

1
limsup - log || Pe(2)||m = —oo  for z € A.
k—oo k

Then, by Corol the sequence
(£1og || Pi(2)|m)x>1 is locally uniformly
bounded from above on C" for all m > 1.
Thus we can define

1
Um(z) = li}r\nsup % log | Pe(2)|lm, z€CY.
c—o0

By @ the upper semicontinuous regulariza-
tion uj, of u,, belongs to the Lelong class
L(CY) of plurisubharmonic functions with
logarith growth on CY. Morcover, by
Bedford-Taylor’s theorem

Sm 1= {2 € C ¢ up(2) # um(2)}

is pluripolar for all m > 1.

On the other hand, by ® A*:= {ta: te
C,a € A} is not pluripolar. This yields that
u;, = —oc for all m > 1 because u}, = ,, =
—oc on A\ S,,, and A*\ S, is non-pluripolar.
Since wh, >y, we have u, = —occ form > 1.
Hence the series » ;. P (2) is convergent for
z € CN and it defines a holomorphie exten-

sion fof f|f for every a € A. |

3. THE CONVERGENCE OF A FOR-
MAL POWER SERIES BETWEEN
FRECHET SPACES

91 mathematics, a formal power series is a
generalization of polynomials as a formal ob-
ject, where the number of terms is allowed to
be infinite.

The theory of formal power series has
drawn attention of mathematicians working
in different branches because of their vari-
ous applications. One can find applications
of formal power series in classical mathemat-
ical analysis and in the theory of Riordan al-
gebras. Specially, this theory lays the foun-
dation for substantial parts of combinatories
and real and complex analysis.

A formal power s@lies f(zi,...,zn) =
Y Carant 23 in €Y, N > 2, with
coefficients in C is said to be convergent if it
converges absolutely in a zero-neighborhood
in CV. A classical result of Hartogs 14 states
that a series f converges if and only if f.(t) =
f(tz1,... tzn) converges, as a series in {, f
all z = (z1,..., ZN) € CN. In other words, a
formal power series in several complex vari-
ables is convergent Et converges on all lines
through the origin. This can be interpreted as
a formal analog of Hartogs’ theorem on sep-
arate analyticity. Because a divergent power
series still may converge in certain directions,
it is natural and desirable to consider the set
of all z € CV for which f. converges. Since
f=(t) converges if and only if f,,(f) converges
for all w € CV on the affine line through z,
ignoring the trivial case z = 0, the set of di-
rections along which f converges can be iden-
tified with a subset of the projective space
CPYN-1. The convergence set Conv(f) of a di-
vergent power series f is defined to be the
set of all directions £ € CPN~! such that
J=(t) is convergent for some z € o7 () where




N\ {0} — CPM! is the natural pro-
jection. In the two-variables case, Lelanng—g.I
proved that Conv(f) is an F,-polar set (i.e.
a countable union of closed sets of vanish-
ing logarithmic capacity) in CP!, and more-
over, every F,-polar subset of CP! is con-
tained in the Conv(g) of some formal power
series g. The optimal result was later ob-
tained by Sathaye @ who showed that the
class of convergence sets of divergent power
series in two-variables is precisely the class
of F,-polar sets in CP'. Levenberg and Mol-
zon, in , showed that if the restriction of
[ on sufficiently many (non-pluripolar) sets
of complex line passing through the origin is
convergentnn small neighborhood of 0 € C
then f is actually represent a holomorphic
function near 0 € CV. By using delicate es-
timates on volume of complex varieties in
projective spaces, Alexander’s theorem men-
tioned above was proved. gehis follows readily
that if the restriction of a Tormal power series
[ on every complex line passing through the
origin in CV is convergent then f is conver-
gent @ [Theorem 6.3].

The main result of this section is follow-

ing.

qheorem 3.1. Let A be a non-projectively-
pluripolar set which is contained in a balanced
conver compact subset of a Fréchet space E
and f = 37 1 P, be a formal power series
where P, are continuous homogeneous poly-
nomials of degree n on E with values in a
Fréchet space F. Assume that for each a € A,
the restriction of f on the complex line £, is
convergent. Then f is convergent in a neigh-
bourhood of 0 € E if one of the following
holds:

(a) E is Schwartz.
(b) F e (LBy).

gmof. We divide the proof into three steps:
(i) Step 1: We consider the case where

F=C. It follows from the hypothesis that

limsup|Pn(z)|% <oo Vze A

T— 00
Then, by Corollary there exists a zero-
neighbourhood U in E such that

sup{|Pn(z)|% czelUn>1}=: M < cc.

This implies that f is uniformly convergent
on (20 )~
1) Step 2: We consider the case where F

is Fréchet. By the step 1 we can define the
linear map

T:F. . — Hg)

by letting

T(u) =Y u(Py)

n>l

where H(0fg) denotes the space of germs of
c;n:alﬁmnlolomol phic functions at 0 € £. Sup-
and T'(u,) — v in
H(0g) as e —+ oc. This implies, in particular,
that [T'(
neighbourhood U in E. However, for z € U

pose that v, — u in F/

bor

uy)](2) = v(z) for all z in some zero-

we have
[T(uu - u)} (Z) = Z(uu —u (RH(Z))
n=1
= lim > (o — 0)(Pa()
k=1
uu - H)( 11_1)11 Y Pn z))

1

k=
(e — u)(z Pyl z))
n=l
Then [T(uu)](g = [T(u)](z) for all z € U.
This implies that v = T'(u). Hence T" has a
closed graph.

Meanwhile, since F' is Fréchet, by [The-
orem 13.4.2] we have B(F', F)yoe = n(F', F)
on F', where n(F’, F) is the corresponding
locally convex inductive lim@l¥ topology on
F' = UUE:Y Fl. with % consists of closed
and absolutely convex sets in F. This implies




that FY

bor 15 ultrabornological. On the other

hand, because E is metrizable, we have
1

H(0g) = lim (H>(Va),| - n)
TE— 00
where (17,),> is a countable fundamental
neighbourhood system at 0 € E, and || - ||,
is the norm on the Banach space H>(V,,)
given by ||fllx = sup.cy, |f(z)]- Hence, by
the closed graph theorem of Grothendieck &
[Introductm, Theorem B], T is continuous.
Next, we shall show that there exists a
neighbourhood V' of 0 € E such that 1" :
Fl;)or
We consider two cases: (a) E is Schwartz;
(b’) E is Banach and F € (LB..).
The case (a): Since E is Schwartz, by 12
[Theorem 2 and Corolln' 9], H(0g) has a
continuous norm. Using Propaosition 1.4 in

— H"°(V) is continuous linear.

we deduce that there exists a neighbourhood
V of 0 € E such that T : Fj,_ — H>*(V) is
continuous linear.

The case (b’): Since E is Banach, it fol-
lows from 20 [Theorem 1] that H(0g) € (£2).
Then, be@se (F,.)5 € (LBy), using The-
orem 3.2 in[ we deduce that there exists a
neighbc@ghood V' of 0 € E such that T :
F.. — H>(V) is continuous linear.

bor

Now we define the map f: V — £

bor

by

the formula
[F@)w) = [T)](z), z€V; ue Fy.

Since T' is continuous and point evaluations
on H(V )y are continuous (see ¥ [Proposi-
tion 3.19]) it follows that f(z) € FY . for all
z € V. Moreover, for each fixed u € Fj  the
mapping

z€ Vi [T(u)](z)

is holomorphic, that is

f V= (Flfor‘ g-( l:or‘ "Fll)(:r))
1
Ea continuous mapping. For alla € Vb € E

and all u € F/ the mapping

0T

.

{teC: a+theV} 3 A uo fla+ Ab)

10

is a Gateaux holomorphic mapping and hence

f: V- (Fli:r‘ J(Pzi)r‘ ‘Fl’)or))

is holomoihic.
By @ [8.13.2 and 8.13.3], F}

bor 18 @& Ccom-

plete parally convex space. Hence hym [The-
orem 4, p.210] applied to the complete space
see that (., o(Fy,., Fy,,)) and

) i3 have the same bounded sets. An ap-

bor

(Fy,

bor

plication of 23 [Proposition 13] shows that
2V = (Kos

is holomorphic.

Let j denote the canonical injection from
FinF‘”.Ifz € B:=Vn{ta: t € C,a € A}
and f(z) # j(f(z)) then there exists u € F’
such that

F(2)(w) # §(f(2))(u) = u(f(2)).

This, however, contradicts the fact that for
all z € B we have

F@)w) = T@]2) = Y u(Pa)(2) = u(f(2)).
n>l

We now fix a non-zero z € B. Then there ex-

ists a unique sequence in F”, (ay .)2 , such

that for all A € C

oo
FO2) =37 an:Xm.
n=0
Since f(0) = f(0) = ag. it follows that
ap. € F. Now suppose that (a;.)}_, C F.
When A < 1, f(Az) = f(A\z) € F. Hence, if
A€EC,0<|A <1, then

-~ ) 1
Az) =50 a;p M oo .
f( ) /\%1_(] Js — Z aj'z/\}—n—l cF

J=n+l

Since F' is complete we see, on letting A tend
to 0, that a,+1. € F. By induction a,,, € F

-~

for all n and hence f(Az) € F forall A € C
and all z € B. Since fls continuous and F' is
a closed subspace of (F, ) (see'< [Lemma
2.1]) we have shown that f:V = Fis holo-

morphic.




Hence, the series »_ ., P, is convergent
on V to f. -

The proof of the case (a) complete at
here. We continue the last step for the proof
of the case (b) as follows:

(iii) Step 3: Let {Un}n> be a decreas
basis of neighbourhoods of 0 € E. By I’C(g;
we denote the family of all balanced convex
compact subsets of E. By the case (b’) in Step
2, for each K € K(FE) there exists e > 0
such that f is uniformly convergent on sx K.
Put
W= |J exK.
Kek(E)

Obviously, f is vergent on W. It remains
to check that W 1s a neighbourhood of 0 € E.
Assume the contrary, that W is not a neigh-
bourhood of 0 € E. Then for each n > 1 there
exists x, € U, \ W. Put

Ky :=conv{0,x1, z2,...}.

By B3 [Corollary 6.5.4] we can find K; €
K(E), Ky C K1, such that Ky is relatively
compact in Ey, . It implies that z, — 0 in
Ef, . Thus there exists ng > 1 such that for
all n = ng we have x,, € g K; C W. This
is incompatible with z,, being disjoint from

Ww. |

4. ALEXANDER’S THEOREM FOR

FRECHET-VALUED FORMAL
POWER SERIES
We will present the proghof Theorem in

this section. Our work Tequires some extra
results concerning to Vitali's theorem for a
sequence of Fréchet-valued holomorphiec fune-
tions.

Remark 4.1. In exactly the same way, The-
orem 2.1 in 28 is true for the Fréchet-valued
case.

Lemma 4.1. Let E F be Fréchet spaces,
D C E be an open sel. Let f: D — F be

11

a locally bounded function such that po f is
holomorphic for all p € W C F', where W is
separating. Then f is holomorphic.

The proof of Lemma runs as in the proof
of Theorem 3.1 in28 but here we use Vitali's
theorem in 2 [Proposition 6.2] which states
for a sequence of holomorphic functions on
an open connected subset of a locally convex
space.

Lemma 4.2. Let D be a domain in a Fréchet
space E and f : D — F be holomorphic,
where F is a barrelled locally convex space.
Assume that Dy = {z € D : f(z) € G} is
not nowhere dense in D, where G is a closed
subspace of F. Then f(z) € G for all z € D.

Proof. (i) We first consider the case G = {0}.
On the contrary, suppose that f(z*) # 0 for
some z* € D\ Dj. By the Hahn-Banach
theorem, we can find ¢ € F' sudffthat
(po f)(z*) # 0. Let z € (intDg) N D and
let W be a balanced convex neighbourhood
of 0 € E such that zy + W C Dg. Then by
the continuity of f we deduce that f = 0
on zj + W. Hence, it follows from the iden-
tity theorem (see 22 [Proposition 6.6]) that
f = 0on D. This contradicts above our claim
(po N(=") #0.

(ii) For the general case, consider the quo-
tient space F//G and the holomorphic func-
tionwo f: D = F/G where w : F — F/G
is the canonical map. Then wo f =0 on Dy.
By the case (i), wo f =0 on D. This means
that f(z) € G for all z € D. |

Proposition 4.3. Let E, F' be Fréchet spaces
and D C E a domain. Assume that (f,)n>1
is a locally bounded sequence of holomorphic
functions on D with values in F. Then the
following assertions are equivalent:

(i) The sequence (fn.)n>1 converges uni-
Jormly on all compact subsets of D to
a holomorphic function f: D — F;,




(i) The setgwDy = {2z € D
lim f,,(z) ewists} is not nowhere dense
in D.

Proof. 1t suffices to prove the implication (i)
= (i) because the case (i) = (ii) is trivial. De-
fine f: D — £2(N, F) by f(2) = (fu(2))n>1,
where ¢*(N, F") is the Fréchet space with
the topology induced by the system of semi-
nOrms

Illx = N(zi)izallx = sup |lilx, vk,
1

Ve (r;)i>1 € (°(N, F).

E)r each £ € N we denote prg
(>*(N,F) — F is the k-th projection with
pric((w;)ien) = wi. Obviously

W ={popri; g€ F', ke N} C i*(N, F)

is separating and
1

poprio f=poprio(fa)nz1 =wofy

is holomorphic for every & > 1. Then by
Lemma [ is holomorphic.

Since the space

G = {(w;i)iz1 € £(N, F) : lim w; exists}
- 1300

is closed, by the hypothesis, f(z) € G for
all z € Dy. It follows from Lemma [4.2] that
f(z) € G for all z € D. Thus f(z) =
lim; o fi(2) exists for all z € D. Note that
® . G — F given by ©((yi)icn) = limi—oc i
defin bounded operator. Therefore f =
& o f is holomorphic.

Finally, in order to prove that (f;);>1 con-
verges uniformly on compact sets in D to f,
it suffices to show that (f;)i>1 is locally uni-
formly convergent in D to f. Since (f;)i>1
is locally bounded, by 23 [Proposition 6.1],
(fi)iz1 is equicontinuous at every a € D.
Let a be fixed point of D. Then for every
balanced convex neighbourhood V' of 0 in F
there exists a neighbourhood U} of @ in D
such that

fi(z)—fil@) €37V, Vz € U}, Vi>1. (4.1)

12

gnce lim f; = f in D, we can find iy > 1
T—00

such that

Wi = ip.

fila) — f(a) € 371V,

By the conting@fity of f, there exists a neigh-
bourhood U2 of @ in D such that

(4.2)

fla)-f(z) €3V, vzeUZ (43)

From , and ‘ for all z € U, =

Uln U2 for all i > iy we have

ffa-f(Z)eV-

The proof of the proposition is com-
plete. O

(4.4)

‘We now can prove Theoremas follows.

Proof of Theorem [1.4 As in the proof of
Theorem [3.1] for each n > 1, define the con-
F .. — H(0gn) given

tinuous linear map 1), : F}
by

B

ir:u(u) =u ofn‘ U E Fpyop-

By Theorem 3.5 inf the sequence (T, () )n>1
u € FY .. Since
is barrelled (see @ [13.4.2]) it follows
that the sequence (7,),>1 is equicontinuous
in L(F},, H(0c~)) equipped with the strong
topology. As in the proof of Theorem by
Theorem 3.2 inBlwe deduce that there exists

a neighbourhood U of 0 € £ such that
Unw

n=1

converges in H (0z~) for ey

K

bor

is bounded in H(0q~). By the regularity
of H(Ogx), we can find r € (0,7y) such
that | J,,-.; 7.(U) is contained and bounded in
H>(Ay(r)). This yields that (f,,),>1 is con-
tained and bounded in H*(An(r), F). Since

An(r) t (fn |gz)n21
is convergent in A (rg) C £z, by Remark [4.1]
the sequence (f,(z)),>1 is convergent for ev-
ery z € Ax(r). On the other hand, because
(fu)n>1 is bounded in H>(Ax(r), F), by
Proposition it follows that the sequence
(fr)n>1 is convergent in H(Apn(r), F). O
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