Dang tich phan cho mo6t sé6 mé rong
ctia bat dang thiic Aczél

TOM TAT

Bét ding thitc Aczél xuat hien lan dau tién vio nam 1956. Ké tit d6, né da thu hit sy quan tam cfia nhiéu nha
toan hoc. Tt d6 cac két qud mé rong va ung dung cla bat ding thic nay da dugce cong bd. Trong bai bao nay,
chiing t6i trinh bay cac phién ban tich phan cho mot sé mé rong ctia bat déng thitc Aczél. Qua dé, ching toi thu
duge dang tich phan cho cac bat dang thiic Aczél va Bellman.
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Integral versions of some generalizations

of Aczél’s inequality

ABSTRACT

Aczél inequality was first proposed in 1956. Then it has been considered by many mathematicians. Thus its

generalizations and applications were published. In this paper we establish integral versions of some generalizations

of Aczél’s inequality. As a consequence, we obtain integral types of Aczél’s inequality and Bellman’s inequality.
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1. INTRODUCTION

In 1956, a famous result of J. Aczél was published

in! stated as follows.

Theorem A (1). If ay, as,...,an, by, ba,... b,
are positive real numbers such that a? > a3 + a3 +

o+ a2 and b3 > b3+ b3+ - + b2, then

n n n 2
a? — Za?) (b% - Z bf) < <a1b1 - Zaibi> .
i=2 i=2 i=2

(1)

Inequality (1) was later called ‘Aczél’s inequal-
ity’. In 1959, the first extension of (1) was provided
by Popoviciu® and later called ‘Popoviciu’s inequal-

ity’ stated as follows.

Theorem B (3). Let p, q be positive real numbers

1 1
such that — + — =1 and let a1,...,a,, b1,...,b,
P q

be positive real numbers such that a§ > ab+---+a?

and b{ > b3 + -+ bd. Then

1/q n
< a1b1 — Za,bz
=2

(2)

n 1/p n
aﬁj—Zaf) b?—Zbg)
=2 =2

The next result is the famous Bellman’s inequal-
ity. Although this inequality was discovered in 1934
by Hardy et al.?, it is also considered as a Aczél-

type inequality. Let us recall this inequality.

Theorem C (%). Letay,...,an,, bi,...,b, be pos-
itive real numbers and p > 1. If a} > ab+---+a?,

and by > by +--- 4+ b8, then

n 1/p n 1/p
af—Zaf) + b’f—be)
; i=2



n 1/p %: aJQ = :aljin7 ]—1,27 ,m
< (e +b1)P = (ai +b;) bjr  bj2 bjn
=2
' Then
(3)
n m
Recently, some generalizations of inequalities ((al +b1)P — Z(ai + bi)p> - Z(aﬂ +b1)P—
i=2 j=1
(2) and (3) are presented by Chang-Jian Zhao and 1/p
Wing-Sum Cheung?. These results are stated as the — Z (aj; + bj;)P
_ j=1 i=2
following theorems. : - o 1/p
p_ p| _ P P
Theorem D (%). Let p, q be positive real numbers = <a1 z;a’t) Z;ajl z; z;aji
i= j= j=1i=
1 1
such that — + — = 1 and let a;,b;,a;;,b5; (i = " 1/p
q

p n m
D D D
1,...,n,5 = 1,...,m) be positive real numbers X (bl Zb > Zb Z : bj;

n m m n
p_ P\ _ P p
<a1 Z al) Z @~ Z Z @i 0, In the present paper we establish integral ver-

sions for inequalities (4) and (5). As a result, re-

n m m n
q q q q
(bl N Z bi) N Z bjr — Z bji | >0, spective integral versions of inequalities (1) and (3)
i=2 j=1 j=1 i=2
%:.”:aﬂ’ i=1....m are obtained.
bj1 bjn
Then 2. MAIN RESULTS
a1b1 — albz — a-lb 1 a Zb i
( ; ) ]Zl Y ]Zl ; 7 We first establish an integral version of inequality
1/p

(4) in Theorem D as follows.

Theorem 2.1. Let A,B, A;,B; (j = 1,...,m)

m m n
Zbgl_ZZb;?i be positive real numbers. Let f, g, fj,g; (j =
= — £

1,...,m) be positive Riemann integrable functions

—~
N
~—

on [a,b] such that
Theorem E (*). Let p > 1, a;,b;,a4:,b5 (5 =

b
1,...,m,i=1,...,n) be positive real numbers such ( A2 /fQ dac) <

that j=1 Jj=1
(6)
n m m n b m m b
<a§’ - Za?> -2 dh -2 2 a | >0 B2—/gz(x)d:c - ZB]?—Z/g]?(x)dm >0,
i=2 j=1 j=1 =2 p j=1 =17
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—
-3
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> 0, filx) A
1i=2 gj(xz) By’

O“

(bﬁ’—ébf) - Zm:b

Jj=1 J



Then for j = 1,2,...,m and i = 2,3...,n. Applying

[(AB/bf(w)g(w)dx) _
! (jml mh é/bf] )] ai=f<a+(i—1)b;a> (b;a>1/2’

Theorem D with

1
p=gq¢=3 a=4 b =B ap=4; by =B

> (A2/bf2 ) (f:lA f:l/bff(x)dx)] bi:g(a+(i_1)b;a> (b;a>1/27
ab J . : pp—_ - b—a b—a 1/2
X (B/ ) (iB i/g?(wm)].%f](““ I

= = b— b—a\'/?
j=1 j=1? bji—gj<a+(i—1) a>< a>

forj=1,....,m, i =1,...,n, we obtain
equidistant partition of [a,b] by n + 1 points > N

Ty < T <0 < Ty, - (ZAB ZZf] Ti—1 g](xz 1)(Ax)%
j=1

Jj=1 =1

Proof. For any positive integer n, we choose an

(SIS

(AB - Z Fxis1) g (i) (Az)2t

. . —a n
Wit m S A T A S e S <A2 =5 P i) AUU) )

— a, i=1,2,...,n. Due to (6) and (7), it follows i=1

" m o 1/2
that there exists a positive integer number N such . (Z AJZ _ Z Z fjg (25 1) Am)
that for all n > N we have Jj=1 j=1i=1

: (oS eenar) -
A% — 2 (zi1) Az | — i—1
( ; f (x 1) x) 1/2

m n
(Sa-EErua) -0
7= Hence

(AB - Zf (zim1) g (wi-1) Aﬂ?-)
- (Z A;jBj — Zij (zi-1) gj (Ti-1) Ax)

j=1i=1

<A2 — Z 72 (i) Ax) -

and

(32 - 292 (®i-1) A£B> -
- (Z =YY g (zil)Aw) > 0.
j=1

Jj=11i=1

It follows from (8) that = 1/2

(Z@ZZﬁmﬁM)
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1/2
m n

> 9 (win) Ae

j=1i=1

2
- 2B -
j=1
(9A)
Since f, g, f;, g; are Riemann integrable on [a, b],
S0 are f27 92, fga ]‘27 9327 and f]gj (.7 = 1)"'7m)‘
Letting n — oo in both sides of (9A), we obtain

(9). The proof is complete. O

In the case of m = 1, we get an integral type of

Aczél’s inequality (1):

Corollary 2.2. Let A > 0, B > 0, and let f,g :
[a,b] — (0,00) be Riemann integrable functions
such that A% > fbe(x)daz and B% > fbg2(az)d$.
Then ’ '

b b

<A2 - / fQ(w)dw) (32 - / gZ(x)dw)

a

b 2
<|aB- / f@)g(n)dz | . (10)

By using a similar method in the proof of The-
orem 2.1, we get the following result, which is an

integral version of inequality (5).

gg; = Zj v€a,b], j=1,2,...,m. (13)
Then
: m
(A+B)P — / [f(z)+g(x))Pdx | — Z(aj +b;)P—
1/p

> AP — [ fP(2)da | — a? — f7 (x)dx
b m m 0 l/p
+ || B?— [ ¢P(x)dx | — bt — gt (z)dx
joue) -0
(14)

Proof. For any positive integer n, we choose an

equidistant partition of [a,b] by n + 1 points

To<Tp <---< Ty,

) . a
with xg = a, z; = a +1 A = — 1 =

b—a .

, 2

1,2,...,n. Owing to (11) and (12), there
n

exists a positive integer number N such that for all

n>N

Theorem 2.3. Letp > 1, A > 0, B > 0. Let — Za;’—Zfo (xi—1) Az | >0,
=1 =1 i=1
a;j,bj, (j=1,...,m) be positive real numbers. Let ’ !
d
f. 9. fi,9; (4 =1,...,m) be positive Riemann in- o
tegrable functions on [a,b] such that (Bp - Zg” (xiz1) Aaz) -
i=1
b m m b m m n
AP — /fp(x)da: — Za? — Z/ff(:r)d:c > 0, — Zb? — Z g5 (xi1) Az | >0
a Jj=1 Jj=1y j=1 j=1i=1
(11
b m m b Since (13) , it follows that
P P
- [@is |- Yu - [ @] >0 s
° j=1 Jj=17, fj('rl)( x) _ 7 s 1.2
1/p_B7j_ ) 7"'7m'
(12) g (i) (Ax) j



1/p

Applying Theorem E with a; = A, by = B, and for
j = ]" 7m7 Z = 17 7n
ajp = Aj,  bp = Bj,
ai = f (@io1) (Ax)"7,
bi =g (xi1) (A2)"7,
aji = fj (wia1) (A2)'7,
bj; = g; (75-1) (Ax)l/p
we get
{ ((A + B)p - Z [f (xz 1) +g (xz 1)] A(L’)
i=1
j=1
- Z Z [fj (@im1) + g5 (zi1)]” Az
j=1i=1
(Ap — Efp (l'i—1> A.I‘) —
i=1
ZAi’ PIPIFACTY
J=11i=1
(Bp - ng (xi—1) Ax) -
i=1
2B/ =22 9 @)
Jj=1 j=11:=1
(14A)

Since f, g, f;,9; are Riemann integrable on [a, b],
it follows that fp, gqa (f + g)p7 ]p’ gjv (f] _'_gj)p»
j=1,...,m are also Riemann integrable on [a, b].
Letting n — oo in both sides of (14A), we obtain

(14). The proof of Theorem 2.3 is complete. O

By getting m = 1 in (14), we obtain an integral
version of the famous Bellman’s integral as follows.

Corollary 2.4. Letp > 1, A > 0, B > 0. Let

f and g be positive Riemann integrable functions

on [a,b] such that AP > ffp

b
[ g (x)dz. Then

)dx and BP >

b 1/p b 1/p
Ap—/fp(m)dx + | B? /gp(x)dx
a b a 1/p
<| @By [ @+ @) o
(15)
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