
Dạng tích phân cho một số mở rộng

của bất đẳng thức Aczél

TÓM TẮT

Bất đẳng thức Aczél xuất hiện lần đầu tiên vào năm 1956. Kể từ đó, nó đã thu hút sự quan tâm của nhiều nhà

toán học. Từ đó các kết quả mở rộng và ứng dụng của bất đẳng thức này đã được công bố. Trong bài báo này,

chúng tôi trình bày các phiên bản tích phân cho một số mở rộng của bất đẳng thức Aczél. Qua đó, chúng tôi thu

được dạng tích phân cho các bất đẳng thức Aczél và Bellman.
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Integral versions of some generalizations

of Aczél’s inequality

ABSTRACT

Aczél inequality was first proposed in 1956. Then it has been considered by many mathematicians. Thus its

generalizations and applications were published. In this paper we establish integral versions of some generalizations

of Aczél’s inequality. As a consequence, we obtain integral types of Aczél’s inequality and Bellman’s inequality.

Keywords: Aczél-type inequality, Bellman’s inequality, Popoviciu’s inequality.

1. INTRODUCTION

In 1956, a famous result of J. Aczél was published

in1 stated as follows.

Theorem A (1). If a1, a2, . . . , an, b1, b2, . . . , bn

are positive real numbers such that a21 > a22 + a23 +

· · ·+ a2n and b21 > b22 + b23 + · · ·+ b2n, then

a21 −
n∑

i=2

a2i

)(
b21 −

n∑
i=2

b2i

)
6

(
a1b1 −

n∑
i=2

aibi

)2

.

(1)

Inequality (1) was later called ‘Aczél’s inequal-

ity’. In 1959, the first extension of (1) was provided

by Popoviciu3 and later called ‘Popoviciu’s inequal-

ity’ stated as follows.

Theorem B (3). Let p, q be positive real numbers

such that
1

p
+

1

q
= 1 and let a1, . . . , an, b1, . . . , bn

be positive real numbers such that ap1 > ap2+· · ·+apn

and bq1 > bq2 + · · ·+ bqn. Then

ap1 −
n∑

i=2

api

)1/p

bq1 −
n∑

i=2

bqi

)1/q

6 a1b1 −
n∑

i=2

aibi.

(2)

The next result is the famous Bellman’s inequal-

ity. Although this inequality was discovered in 1934

by Hardy et al.2, it is also considered as a Aczél-

type inequality. Let us recall this inequality.

Theorem C (2). Let a1, . . . , an, b1, . . . , bn be pos-

itive real numbers and p > 1. If ap1 > ap2 + · · ·+ apn

and bp1 > bp2 + · · ·+ bpn, then

ap1 −
n∑

i=2

api

)1/p

+ bp1 −
n∑

i=2

bpi

)1/p

1



6

[
(a1 + b1)p −

n∑
i=2

(ai + bi)
p

]1/p
.

(3)

Recently, some generalizations of inequalities

(2) and (3) are presented by Chang-Jian Zhao and

Wing-Sum Cheung4. These results are stated as the

following theorems.

Theorem D (4). Let p, q be positive real numbers

such that
1

p
+

1

q
= 1 and let ai, bi, aji, bji (i =

1, . . . , n, j = 1, . . . ,m) be positive real numbers

such that(
ap1 −

n∑
i=2

api

)
−

 m∑
j=1

apj1 −
m∑
j=1

n∑
i=2

apji

 > 0,

(
bq1 −

n∑
i=2

bqi

)
−

 m∑
j=1

bqj1 −
m∑
j=1

n∑
i=2

bqji

 > 0,

aj1
bj1

= · · · = ajn
bjn

, j = 1, . . . ,m.

Then(
a1b1 −

n∑
i=2

aibi

)
−

 m∑
j=1

aj1bj1 −
m∑
j=1

n∑
i=2

ajibji


>

(ap1 − n∑
i=2

api

)
−

 m∑
j=1

apj1 −
m∑
j=1

n∑
i=2

apji

1/p

×

(bq1 − n∑
i=2

bqi

)
−

 m∑
j=1

bqj1 −
m∑
j=1

n∑
i=2

bqji

1/q

.

(4)

Theorem E (4). Let p > 1, ai, bi, aji, bji (j =

1, . . . ,m, i = 1, . . . , n) be positive real numbers such

that(
ap1 −

n∑
i=2

api

)
−

 m∑
j=1

apj1 −
m∑
j=1

n∑
i=2

apji

 > 0,

(
bp1 −

n∑
i=2

bpi

)
−

 m∑
j=1

bpj1 −
m∑
j=1

n∑
i=2

bpji

 > 0,

aj1
bj1

=
aj2
bj2

= · · · = ajn
bjn

, j = 1, 2, . . . ,m.

Then((a1 + b1)p −
n∑

i=2

(ai + bi)
p

)
−

 m∑
j=1

(aj1 + bj1)p−

−
m∑
j=1

n∑
i=2

(aji + bji)
p

1/p

>

(ap1 − n∑
i=2

api

)
−

 m∑
j=1

apj1 −
m∑
j=1

n∑
i=2

apji

1/p

×

(bp1 − n∑
i=2

bpi

)
−

 m∑
j=1

bpj1 −
m∑
j=1

n∑
i=2

bpji

1/p

.

(5)

In the present paper we establish integral ver-

sions for inequalities (4) and (5). As a result, re-

spective integral versions of inequalities (1) and (3)

are obtained.

2. MAIN RESULTS

We first establish an integral version of inequality

(4) in Theorem D as follows.

Theorem 2.1. Let A,B, Aj , Bj (j = 1, . . . ,m)

be positive real numbers. Let f , g, fj , gj (j =

1, . . . ,m) be positive Riemann integrable functions

on [a, b] such that

(
A2−

b∫
a

f2(x)dx

)
−

(
m∑
j=1

A2
j−

m∑
j=1

b∫
a

f2
j (x)dx

)
> 0,

(6)(
B2−

b∫
a

g2(x)dx

)
−

(
m∑
j=1

B2
j−

m∑
j=1

b∫
a

g2j (x)dx

)
> 0,

(7)

fj(x)

gj(x)
=

Aj

Bj
, ∀x ∈ [a, b], j = 1, 2, . . . ,m. (8)
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ThenAB −
b∫

a

f(x)g(x)dx

−
−

 m∑
j=1

AjBj −
m∑
j=1

b∫
a

fj(x)gj(x)dx

2

>

A2 −
b∫

a

f2(x)dx

−
 m∑

j=1

A2
j −

m∑
j=1

b∫
a

f2
j (x)dx


×

B2 −
b∫

a

g2(x)dx

−
 m∑

j=1

B2
j −

m∑
j=1

b∫
a

g2j (x)dx

 .

(9)

Proof. For any positive integer n, we choose an

equidistant partition of [a, b] by n + 1 points

x0 < x1 < · · · < xn,

with x0 = a, xi = a + i
b− a

n
, ∆x = xi − xi−1 =

b− a

n
, i = 1, 2, . . . , n. Due to (6) and (7), it follows

that there exists a positive integer number N such

that for all n > N we have(
A2 −

n∑
i=1

f2 (xi−1) ∆x

)
−

−

 m∑
j=1

a2j −
m∑
j=1

n∑
i=1

f2
j (xi−1) ∆x

 > 0,

and(
B2 −

n∑
i=1

g2 (xi−1) ∆x

)
−

−

 m∑
j=1

b2j −
m∑
j=1

n∑
i=1

g2j (xi−1) ∆x

 > 0.

It follows from (8) that

fj

(
a + (i− 1)

b− a

n

)(
b− a

n

)1/2

gj

(
a + (i− 1)

b− a

n

)(
b− a

n

)1/2
=

Aj

Bj
,

for j = 1, 2, . . . ,m and i = 2, 3 . . . , n. Applying

Theorem D with

p = q =
1

2
, a1 = A, b1 = B, aj1 = Aj , bj1 = Bj ,

ai = f

(
a + (i− 1)

b− a

n

)(
b− a

n

)1/2

,

bi = g

(
a + (i− 1)

b− a

n

)(
b− a

n

)1/2

,

aji = fj

(
a + (i− 1)

b− a

n

)(
b− a

n

)1/2

,

bji = gj

(
a + (i− 1)

b− a

n

)(
b− a

n

)1/2

for j = 1, . . . ,m, i = 1, . . . , n, we obtain(
AB −

n∑
i=1

f (xi−1) g (xi−1) (∆x)
1
2+

1
2

)
−

−

 m∑
j=1

AjBj −
m∑
j=1

n∑
i=1

fj (xi−1) gj (xi−1) (∆x)
1
2+

1
2


>

[(
A2 −

n∑
i=1

f2 (xi−1) ∆x

)
−

−

 m∑
j=1

A2
j −

m∑
j=1

n∑
i=1

f2
j (xi−1) ∆x

1/2

×

[(
B2 −

n∑
i=1

g2 (xi−1) ∆x

)
−

−

 m∑
j=1

B2
j −

m∑
j=1

n∑
i=1

g2j (xi−1) ∆x

1/2

.

Hence(
AB −

n∑
i=1

f (xi−1) g (xi−1) ∆x−

)

−

 m∑
j=1

AjBj −
m∑
j=1

n∑
i=1

fj (xi−1) gj (xi−1) ∆x


>

[(
A2 −

n∑
i=1

f2 (xi−1) ∆x

)
−

−

 m∑
j=1

A2
j −

m∑
j=1

n∑
i=1

f2
j (xi−1) ∆x

1/2

×

[(
B2 −

n∑
i=1

g2 (xi−1) ∆x

)
−

3



−

 m∑
j=1

B2
j −

m∑
j=1

n∑
i=1

g2j (xi−1) ∆x

1/2

.

(9A)

Since f, g, fj , gj are Riemann integrable on [a, b],

so are f2, g2, fg, f2
j , g

2
j , and fjgj (j = 1, . . . ,m).

Letting n → ∞ in both sides of (9A), we obtain

(9). The proof is complete.

In the case of m = 1, we get an integral type of

Aczél’s inequality (1):

Corollary 2.2. Let A > 0, B > 0, and let f, g :

[a, b] → (0,∞) be Riemann integrable functions

such that A2 >
b∫
a

f2(x)dx and B2 >
b∫
a

g2(x)dx.

Then

(
A2 −

b∫
a

f2(x)dx
)(

B2 −
b∫

a

g2(x)dx
)

6

AB −
b∫

a

f(x)g(x)dx

2

. (10)

By using a similar method in the proof of The-

orem 2.1, we get the following result, which is an

integral version of inequality (5).

Theorem 2.3. Let p > 1, A > 0, B > 0. Let

aj , bj , (j = 1, . . . ,m) be positive real numbers. Let

f , g, fj , gj (j = 1, . . . ,m) be positive Riemann in-

tegrable functions on [a, b] such thatAp −
b∫

a

fp(x)dx

−
 m∑

j=1

apj −
m∑
j=1

b∫
a

fp
j (x)dx

 > 0,

(11)Bp −
b∫

a

gp(x)dx

−
 m∑

j=1

bpj −
m∑
j=1

b∫
a

gpj (x)dx

 > 0,

(12)

fj(x)

gj(x)
=

aj
bj

, x ∈ [a, b], j = 1, 2, . . . ,m. (13)

Then(A + B)p −
b∫

a

[f(x) + g(x)]
p
dx

−
 m∑

j=1

(aj + bj)
p−

−
m∑
j=1

b∫
a

[fj(x) + gj(x)]
p
dx

1/p

>

Ap −
b∫

a

fp(x)dx

−
 m∑

j=1

apj −
m∑
j=1

b∫
a

fp
j (x)dx

1/p

+

Bp −
b∫

a

gp(x)dx

−
 m∑

j=1

bpj −
m∑
j=1

b∫
a

gpj (x)dx

1/p

.

(14)

Proof. For any positive integer n, we choose an

equidistant partition of [a, b] by n + 1 points

x0 < x1 < · · · < xn,

with x0 = a, xi = a + i
b− a

n
, ∆x = xi − xi−1 =

b− a

n
, i = 1, 2, . . . , n. Owing to (11) and (12), there

exists a positive integer number N such that for all

n > N(
Ap −

n∑
i=1

fp (xi−1) ∆x

)
−

−

 m∑
j=1

apj −
m∑
j=1

n∑
i=1

fp
j (xi−1) ∆x

 > 0,

and(
Bp −

n∑
i=1

gp (xi−1) ∆x

)
−

−

 m∑
j=1

bpj −
m∑
j=1

n∑
i=1

gpj (xi−1) ∆x

 > 0.

Since (13) , it follows that

fj(xi) (∆x)
1/p

gj(xi) (∆x)
1/p

=
Aj

Bj
, j = 1, 2, . . . ,m.

4



Applying Theorem E with a1 = A, b1 = B, and for

j = 1, . . . ,m, i = 1, . . . , n

aj1 = Aj , bj1 = Bj ,

ai = f (xi−1) (∆x)
1/p

,

bi = g (xi−1) (∆x)
1/p

,

aji = fj (xi−1) (∆x)
1/p

,

bji = gj (xi−1) (∆x)
1/p

we get{(
(A + B)p −

n∑
i=1

[f (xi−1) + g (xi−1)]
p

∆x

)
−

−

 m∑
j=1

(Aj + Bj)
p−

−
m∑
j=1

n∑
i=1

[fj (xi−1) + gj (xi−1)]
p

∆x


1/p

>

[(
Ap −

n∑
i=1

fp (xi−1) ∆x

)
−

−

 m∑
j=1

Ap
j −

m∑
j=1

n∑
i=1

fp
j (xi−1) ∆x

1/p

+

[(
Bp −

n∑
i=1

gp (xi−1) ∆x

)
−

−

 m∑
j=1

Bp
j −

m∑
j=1

n∑
i=1

gpj (xi−1) ∆x

1/p

.

(14A)

Since f, g, fj , gj are Riemann integrable on [a, b],

it follows that fp, gq, (f + g)p, fp
j , g

q
j , (fj + gj)

p,

j = 1, . . . ,m are also Riemann integrable on [a, b].

Letting n → ∞ in both sides of (14A), we obtain

(14). The proof of Theorem 2.3 is complete.

By getting m = 1 in (14), we obtain an integral

version of the famous Bellman’s integral as follows.

Corollary 2.4. Let p > 1, A > 0, B > 0. Let

f and g be positive Riemann integrable functions

on [a, b] such that Ap >
b∫
a

fp(x)dx and Bp >

b∫
a

gp(x)dx. Then

Ap −
b∫

a

fp(x)dx

1/p

+

Bp −
b∫

a

gp(x)dx

1/p

6

(A + B)p −
b∫

a

[f(x) + g(x)]
p
dx

1/p

.

(15)
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