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TÓM TẮT

Chúng tôi đưa ra các điều kiện đủ để một chuỗi luỹ thừa hình thức (tương ứng, một dãy
của chuỗi luỹ thừa hình thức) của các đa thức thuần nhất, liên tục, giá trị Fréchet hội tụ trong
lân cận của 0 trên không gian Fréchet E (tương ứng, E = CN ) là hội tụ trong lân cận của 0

trên mỗi đường thẳng phức ℓa := Ca với mỗi a ∈ A (A là tập không đa cực xạ ảnh trong CN ).
Kết quả trong trường hợp E = CN là một “phiên bản giá trị Fréchet” của định lý Alexander cổ
điển nhưng với các giả thiết yếu hơn. Chúng tôi cũng chứng minh rằng mọi không gian Fréchet
F có tính chất Forelli mạnh, nghĩa là nếu mọi hàm f : ∆N → F sao cho f ∈ C∞(0) và f |la∩∆N

là chỉnh hình với mọi đường thẳng phức la, a ∈ A, thì f chỉnh hình trên ∆N .

Từ khóa: Hàm đa điều hoà dưới, hàm chỉnh hình, tập đa cực xạ ảnh, chuỗi luỹ thừa hình thức.
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ABSTRACT

We give sufficient conditions to ensure the convergence on some zero-neighbourhood in a
Fréchet space E (resp. E = CN ) of a formal power series (resp. a sequence of formal power series)
of Fréchet-valued continuous homogeneous polynomials provided that the convergence holds at a
zero-neighbourhood of each complex line ℓa := Ca for every a ∈ A, a non-projectively-pluripolar
set in E. The result in the case E = CN is a Fréchet-valued analog of classical Alexander’s
theorem but under weaker assumptions. It is also shown that every Fréchet space has the strong
Forelli property, i.e, for a non-projectively-pluripolar set A ⊂ CN , every Fréchet-valued function
f on the open unit ball ∆N ⊂ CN , f ∈ C∞(0), such that its restriction on each complex line ℓa,

a ∈ A, is holomorphic admits an extension to an entire function.

Keywords: Plurisubharmonic functions, holomorphic functions, projectively pluripolar sets, for-
mal power series

1. INTRODUCTION AND PRELIMI-
NARIES

The focus of this paper is to study the
Fréchet-valued analogs and the generaliza-
tions of the following two classical theorems.

Forelli’s Theorem 1. If f is a function
defined in the unit ball ∆N ⊂ CN , holomor-
phic on the intersection of ∆N with every
complex line ℓ passing through the origin and
if f is of class C∞ in a neighborhood of this
point, then it is holomorphic in ∆N .

Alexander’s Theorem 2. Let F be a
family of analytic functions on ∆N ⊂ CN .

If the restriction of F to each complex line
through the origin is normal (resp. at the ori-
gin), then F is normal (resp. at the origin).

Recall that a family F of analytic func-

tions on a complex manifold Ω is normal if
every sequence in F has a subsequence which
converges uniformly on compact subsets of Ω
either to an analytic function or to ∞, and
that F is normal at a point x ∈ Ω if there
exists a neighborhood W of x such that the
restriction of F to W is normal.

Forelli’s theorem is a radial analogue of
the fundamental theorem of Hartogs. Alexan-
der’s theorem allows us to obtain the Hartogs
theorem on the convergence of formal power
series in several complex variables.

The problems of extensions and general-
izations of the above classical theorems for
holomorphic maps and vector-valued holo-
morphic functions have drawn attention of
mathematicians.
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In this note, we will investigate these
results for the Fréchet-valued case in the
“strong” sense in which the functions are only
required that their restrictions on ℓ∩∆N are
holomorphic for every ℓ ∈ L , a family of suf-
ficiently many complex lines passing through
the origin.

Families of “sufficiently many” complex
lines in the paper concern the notions of
pluripolar sets and projectively pluripolar
sets. These notions require some extra back-
ground material for their definition.

Let D be a domain in a locally convex
space E. An upper-semicontinuous function
φ : D → [−∞,+∞) is said to be plurisub-
harmonic, and write φ ∈ PSH(D), if φ is
subharmonic on every one dimensional sec-
tion of D.

A subset B ⊂ D is said to be pluripolar
in D if there exists φ ∈ PSH(D) such that
φ ̸≡ −∞ and φ

∣∣
B
= −∞.

A function φ ∈ PSH(E) is called homo-
geneous plurisubharmonic if

φ(λz) = log |λ|+ φ(z) ∀λ ∈ C, ∀z ∈ E.

We denote by HPSH(E) the set of homo-
geneous plurisubharmonic functions on E.

We say that a subset A ⊂ E is projectively
pluripolar if A is contained in the −∞ lo-
cus of some element in HPSH(E) which is
not identically −∞. It is clear that projec-
tive pluripolarity implies pluripolarity. The
converse is not true (see 3 [Proposition 3.2
b]).

Some properties, examples and coun-
terexamples of projectively pluripolar sets
may be found in 3. We introduce below a few
examples in locally convex spaces.

Example 1.1. Let E be a metrizable locally
convex space. Fix a ∈ E. Then, the complex
line ℓa := Ca = {λa : λ ∈ C}, hence, every
A ⊂ ℓa, is projectively pluripolar in E.

Indeed, let d be the metric defining the
topology on E. Consider the function

φ(z) = − log d(z, ℓa) := − log inf
w∈ℓa

d(z, w).

It is easy to check that φ ∈ HPSH(E),

φ ̸≡ −∞ and ℓa ⊂ φ−1(−∞).

Example 1.2. Let E be a Fréchet space
which contains a non-pluripolar compact bal-
anced convex subset B. By the same proof
as in Example 1.1, the set ∂B is pluripolar.
However, ∂B is not projectively pluripolar in
E.

Otherwise, we can find a function φ ∈
HPSH(E), φ ̸≡ −∞ and ∂B ⊂ φ−1(−∞).

For every z ∈ B we can write z = λy for some
y ∈ ∂B and |λ| < 1. Then

φ(z) = φ(λy) = log |λ|+φ(y) = −∞, ∀z ∈ B.

It is impossibe because B is non-pluripolar.

Example 1.3. By Theorem 9 of 4 and Ex-
ample 1.2, a nuclear Fréchet space having
the linear topological invariant (Ω̃) which is
introduced by Vogt (see 5) contains a non-
projectively-pluripolar set.

We recall that a complex space or a lo-
cally convex space X is said to have Forelli
Property if every map f : ∆N → X such that
f is of C∞- class in a neighborhood of 0 ∈ ∆N

and f
∣∣
ℓ∩∆N

is holomorphic for all complex
lines ℓ through 0 ∈ ∆N then f is holomorphic
on ∆N . In 2005 L. M. Hai and N. V. Khue
6 studied the Forelli property for complex
spaces. They also investigated the relation
between these spaces with Hartogs spaces
and Hartogs holomorphic extension spaces
for holomorphically convex Kähler complex
spaces.

Definition 1.1. A locally convex space F

is said to have the strong Forelli property if
every function f : ∆N → F satisfying that:

(i) f belongs to Ck-class at 0 ∈ CN for
k ≥ 0,

(ii) for some non-projectively-pluripolar
subset A ⊂ CN , the restriction of f on
each complex line ℓa, a ∈ A, is holo-
morphic,
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then there exists an entire function f̂ on CN

such that f̂ = f on ℓa for all a ∈ A.

Note that, from Proposition 3.1 in 3, in
CN , the following are equivalent:

a) A is projectively pluripolar;

b) Aλ := {tz : t ∈ C, |t| < λ, z ∈ A} is
pluripolar for each λ > 0;

c) µ(Aλ) = 0 where µ is the Lebesgue
measure;

d) ν(ϱ(Aλ)) = 0 where ν is the invari-
ant measure on the projective space
CPN−1 and ϱ : CN \ {0} → CPN−1

is the natural projection.

It follows that the condition (ii) in Definition
1.1 can be replaced by the following condi-
tion:

(ii’) for some family L of complex lines
through 0 ∈ CN such that
µ
(
∆N ∩

⋃
ℓ∈L ℓ

)
> 0, the restriction of

f on each ℓ ∈ L is holomorphic.

The main theorems of our note are the fol-
lowing.

Theorem 1.1. Every Fréchet space has the
strong Forelli property.

Theorem 1.2. Let A ⊂ CN be a non-
projectively-pluripolar set and (fn)n≥1 be a
sequence of formal power series of contin-
uous homogeneous polynomials on CN with
values in a Fréchet space. Assume that there
exists r0 ∈ (0, 1) such that, for each a ∈ A,

the restriction of (fn)n≥1 on ℓa is a sequence
of holomorphic functions which is convergent
on the disk ∆(r0). Then there exists r > 0

such that (fn)n≥1 is a sequence of holomor-
phic functions that converges on ∆N (r).

By the equivalence of a) and d) men-
tioned above, the hypotheses of Theorem 1.2
may be stated under an alternative form as
follows: Let B be a subset of ∆N such that

ν(ϱ(B)) = 0 where ν is the invariant mea-
sure on the projective space CPN−1 and
ϱ : CN \ {0} → CPN−1 is the natural pro-
jection. Assume that for some r0 ∈ (0, 1),

the restriction of the sequence (fn)n≥1 on
each complex line ℓ through 0 ∈ ∆N with
ℓ ∩B = {0} is convergent in ∆(r0).

Actually, Theorem 1.2 is not a generaliza-
tion of Alexander’s theorem because our re-
sult only refers to uniform convergence, not
to the normality of the sequence of formal
power series. Therefore, it is still an open
question that whenever we obtain a truly gen-
eralization of Alexander’s theorem. In other
words, “Whether or not a version of Theorem
1.2 where the uniform convergence of the se-
quence (fn|ℓa)n≥1 on compact sets of ∆(r0)

is replaced by normality of this sequence on
∆(r0) i.e., we allow convergence to ∞ uni-
formly on compact sets? ”

The proof of the first main theorem will
be presented in Section 2. To prepare for the
proof, with the help of techniques of pluripo-
tential theory and functional analysis, we in-
vestigate the Hartogs Lemma for sequence
of plurisubharmonic functions for the infinite
dimensional case (Theorem 2.2). This result
is also essential to the Section 3 in which
we discus a problem closely related to the
two classical theorems mentioned above. The
main goal of this section (Theorem 3.1) is to
study the convergence set of a formal power
series of continuous homogeneous polynomi-
als between Fréchet spaces under the hypoth-
esis that it is convergent along a pencil of
complex lines through the origin.

Finally, the last section presents the proof
of the second main theorem of the paper.
Some results concerning to Vitali’s theorem
for a sequence of Fréchet-valued holomorphic
functions (Proposition 4.3) will be shown to
help for our proof.

The standard notation of the theory of
locally convex spaces used in this note is pre-
sented as in the book of Jarchow 7. A locally

4



convex space is always a complex vector space
with a locally convex Hausdorff topology. For
a locally convex space E we use E′

bor to de-
note E′ equipped with the bornological topol-
ogy associated with the strong topology β.

The locally convex structure of a Fréchet
space is always assumed to be generated by
an increasing system (∥·∥k)k≥1 of seminorms.
For an absolutely convex subset B of E, by
EB we denote the linear hull of B which be-
comes a normed space in a canonical way if B
is bounded (with the norm ∥ ·∥B is the gauge
functional of B).

We say that a Fréchet space E has the
property (LB∞), and write E ∈ (LB∞) for
short, if ∀ϱN ↑ ∞, ∃p ∀q ∃k(q) ≥ q,

C(q) > 0, ∀x ∈ E,∃m with q ≤ m ≤ k(q) :

∥x∥1+ϱm
q ≤ C(q)∥x∥m∥x∥ϱmp .

This property is a linear toplogical invariant
which plays a very important role in modern
theory of Fréchet spaces. Khue, Hai, Hoan 8

[Theorem 4.1] proved that if E ∈ (LB∞) then
(E′

bor)
′
β ∈ (LB∞).

For further terminology from complex
analysis we refer to 9.

We use throughout this paper the follow-
ing notations: ∆N (r) = {z ∈ CN : ∥z∥ < r};
∆N := ∆N (1);∆(r) = ∆1(r); ∆ := ∆1;

and ℓa is the complex line Ca.

2. THE STRONG FORELLI PROP-

ERTY OF FRÉCHET SPACES

This section is devoted to the proof of The-
orem 1.1. First we investigate the Hartogs
Lemma for a sequence of plurisubharmonic
functions in the infinite dimensional case.
This is essential to our proofs.

Lemma 2.1. Let (Pn)n≥1 be a sequence of
continuous homogeneous polynomials on a
Baire locally convex space E of degree ≤ n.

Assume that

lim sup
n→∞

1

n
log |Pn(z)| ≤ 0

for each z ∈ E. Then for every ε > 0 and ev-
ery compact set K in E there exists n0 such
that

1

n
log |Pn(z)| < ε ∀n > n0, ∀z ∈ K.

Proof. Since

lim sup
n→∞

|Pn(z)|
1
n ≤ 1 ∀z ∈ E

the formula

f(z)(λ) =
∑
n≥1

Pn(z)λ
n

defines a function f : E → H(∆), the Fréchet
space of holomorphic functions on the open
unit disc ∆ ⊂ C.

Let us check f is holomorphic on E.

Given z ∈ E \ {0} and consider f(· z) : C →
H(∆) with

f(ξz)(λ) =
∑
n≥1

Pn(z)λ
nξkn

where kn = degPn ≤ n. Then f(· z) is holo-
morphic because for 0 < r < 1 we have

lim
n→∞

sup
|λ|≤r

(|Pn(z)||λ|n)
1
kn

= lim sup
n→0

(|Pn(z)|
1
n r)

n
kn

≤ lim sup
n→0

|Pn(z)|
1
n r ≤ r < 1.

This means that f is Gâteaux holomorphic
on E.

Now for each k ≥ 1 we put

Ak := {z ∈ E : |Pn(z)| ≤ kkn ∀n ≥ 1}.

By the continuity of Pn, the sets Ak are
closed in E. Moreover, E =

⋃
k≥1Ak. Since

E is a Baire space, there exists k0 ≥ 1 such
that IntAk0 ̸= ∅. Then f is holomorphic on
1
k0

IntAk0 because

∑
n≥1

|Pn(z)||λ|n ≤
∑
n≥1

kkn0
kkn0

rn =
∑
n≥1

rn < ∞

for 0 < r < 1. Hence, by Zorn’s theorem 10

[Theorem 1.3.1], f is holomorphic on E.
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Now given K ⊂ E a compact set and
ε > 0. Take 0 < r < 1 and denote

C := sup{|f(z)(λ)| : z ∈ K, |λ| ≤ r} < ∞.

Then we have

|Pn(z)| =

∣∣∣∣∣ 1

2πi

∫
|ξ|=r

f(z)(ξ)dξ

ξn+1

∣∣∣∣∣ ≤ C

rn
∀z ∈ K,

i.e,

|Pn(z)|
1
n ≤ C

1
n

r
.

Choose n0 sufficiently large we obtain

|Pn(z)|
1
n ≤ C

1
n

r
< eε ∀n > n0.

The lemma is proved.

The Proposition 5.2.1 in 11 says that
a non-empty family (uα)α∈I of plurisubhar-
monic functions from the Lelong class such
that the set {z ∈ CN : supα∈I uα(z) < ∞}
is not L-polar is locally uniformly bounded
from above.

The next is similar to the above result in
the infinite dimensional case.

Theorem 2.2. Let B be a balanced con-
vex compact subset of a Fréchet space E and
(Pn)n≥1 be a sequence of continuous homoge-
neous polynomials on E of degree ≤ n. As-
sume that the set{

z ∈ EB : sup
n≥1

1

n
log |Pn(z)| < ∞

}
is not projectively pluripolar in EB. Then
the family ( 1n log |Pn|)n≥1 is locally uniformly
bounded from above on EB.

Proof. Suppose that the family ( 1n log |Pn|)n≥1

is not locally uniformly bounded from above
on B. Then there exists a sequence (uj)j≥1 =

( 1
nj

log |Pnj |)j≥1 such that

Mj := sup
z∈B

uj(z) ≥ j ∀j ≥ 1.

Take w ∈ EB \B and for each j ≥ 1 consider
the function

vj(ζ) := uj(ζ
−1w)−Mj − log+(|ζ|−1∥w∥B),

for ζ ∈ ∆(∥w∥B) \ {0}. Obviously, vj is sub-
harmonic and, it is easy to see that vj(ζ) ≤
O(1) as ζ → 0. Hence, in view of Theorem
2.7.1 in 11, vj extends to a subharmonic func-
tion, say ṽj , on ∆(∥w∥B). Now, by the max-
imum principle, ṽj ≤ 0 on ∆(∥w∥B). In par-
ticular,

vj(1) = ṽj(1) = uj(w)−Mj− log+ ∥w∥B ≤ 0.

Hence

uj(z)−Mj ≤ log+ ∥z∥B for z ∈ EB, ∀j ≥ 1.

(2.1)
Then there exists z0 ∈ EB such that

lim sup
j→∞

exp (uj(z0)−Mj) =: δ > 0. (2.2)

For otherwise we would have

lim sup
j→∞

exp(uj(z)−Mj) ≤ 0

at each point z ∈ EB. By Lemma 2.1, the
sequence (exp(uj(z) − Mj))j≥1 is bounded
from above on any compact set in EB. This
would imply from 10[Lemma 1.1.12] that
exp (uj(z)−Mj) < 1

2 for all z ∈ B and all
sufficiently large j. But then the last esti-
mate would contradict the definition of the
constants Mj .

Now we choose a subsequence (ujk)k≥1 ⊂
(uj)j≥1 such that

lim
k→∞

exp(ujk(z0)−Mjk) = δ and Mjk ≥ 2k

for all k ≥ 1. Consider the function

w(z) :=
∑
k≥1

2−k(ujk −Mjk), z ∈ EB.

In view of (2.1) we have the extimate

wk(z) := 2−k(ujk −Mjk)− 2−k logR ≤ 0

for z ∈ EB, ∥z∥B ≤ R and R ≥ 1. Thus wk is
plurisubharmonic on {z ∈ EB : ∥z∥B < R}
and wk ≤ 0. Hence, the function

∑
k≥1wk =

w − logR, R > 1, is either plurisubharmonic
on {z ∈ EB : ∥z∥B < R} or identically −∞.
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Consequently, as R can be chosen arbitrarily
large, w is either plurisubharmonic or iden-
tically −∞. Therefore, since w(z0) > −∞,

w ∈ PSH(EB). It is easy to see that w ∈
HPSH(EB).

If z ∈ EB, supn≥1
1
n log |Pn(z)| < ∞ then∑

k≥1 2
−kujk(z) < ∞ and, hence

w(z) ≤
∑
k≥1

2−kujk(z)−
∑
k≥1

1 = −∞

which proves that the set{
z ∈ EB : sup

n≥1

1

n
log |Pn(z)| < ∞

}
is projectively pluripolar in EB. This con-
tradics the hypothesis.

Corollary 2.3. Let B,E and (Pn)n≥1 be as
in Theorem 2.2; in addition assume that B

contains a non-projectively-pluripolar subset.
Then the family ( 1n log |Pn|)n≥1 is locally uni-
formly bounded from above on E.

Proof. It suffices to prove that EB is dense in
E. Indeed, if the closure of the subspace EB

is not equal to E then, by the Hahn-Banach
theorem, there exists φ ∈ E′, φ ̸= 0, such
that φ(EB) = 0. Then it is easy to see that
v := log |φ| ∈ HPSH(E), v ̸≡ 0, B ⊂ EB ⊂
{z : v(z) = −∞}. This contradicts the fact
that B contains a non-projectively-pluripolar
subset.

It is known that a subset with non-empty
interior in a Fréchet space is not pluripolar,
hence it is not projectively pluripolar. Then
by Corollary 2.3 we have the following.

Corollary 2.4. Let B be a balanced convex
compact subset of a Fréchet space E which
contains a non-projectively-pluripolar subset
and (Pn)n≥1 be a sequence of continuous ho-
mogeneous polynomials on E of degree ≤ n.

If the set{
z ∈ EB : sup

n≥1

1

n
log |Pn(z)| < ∞

}
has the non-empty interior in E then the
family ( 1n log |Pn|)n≥1 is locally uniformly
bounded from above on E.

We are now in a position to prove the first
main theorem.

Proof of Theorem 1.1. Let F be a Fréchet
space, f : ∆n → F be a function which be-
longs to Ck-class at 0 ∈ Cn for k ≥ 0 and
A ⊂ Cn be a non-projectively-pluripolar set.
If the restriction of f on each complex line
ℓa, a ∈ A, is holomorphic. By the hypothesis,
for each k ≥ 0 there exists rk ∈ (0, 1) such
that f is a Ck-function on ∆N (rk). We may
assume that rk ↘ 0. Put

Pk(z) =
1

2πi

∫
|λ|=1

f(λz)dλ

λk+1
, z ∈ ∆N (rk).

Then, for each k ≥ 0 and p ≥ k, Pm is a
bounded Cp-function on ∆N (rp). Since λ 7→
f(λa) is holomorphic for all a ∈ A we deduce
that

Pk(λa) = λkPk(a) for a ∈ A, λ ∈ C. (2.3)

By the boundedness of Pk on ∆N (rk) we have

Pk(w) = O(|w|k) as w → 0.

On the other hand, since Pk ∈
Ck+1(∆N (rk+1)), the Taylor expansion of
Pk at 0 ∈ ∆N (rk+1) has the form

Pk(z) =
∑

α+β=k

Pk,α,β(z) + |z|kϱ(z) (2.4)

where Pk,α,β is a polynomial of degree α in z

and degree β in z and ϱ(z) → 0 as z → 0.

In (2.4), replacing z by λz, |λ| < 1, from
(2.3) we obtain∑

α+β=k

Pk,α,β(z)λ
αλ

β
+ |λ|k|z|kϱ(λz)

=
∑

α+β=k

Pk,α,β(z)λ
k + λk|z|kϱ(z) (2.5)

for z ∈ rk+1A.

This yields that ϱ(λz) = ϱ(z) for λ ∈
[0, 1), and hence, ϱ(z) = ϱ(0) = 0 for z ∈
rk+1A. Thus

Pk,α,β(z) = 0 for β > 0 and z ∈ rk+1A.
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Note that rk+1A is also not projectively
pluripolar. It is easy to check that

Pk,α,β = 0 for β > 0.

Indeed, for every φ ∈ F ′, the function

u(w) =
1

degPk,α,β
log |(φ ◦ Pk,α,β)(w)|

is homogeneous plurisubharmonic on CN ,

u ≡ −∞ on rk+1A. Since rk+1A is not projec-
tively pluripolar, it implies that u ≡ −∞ and
hence φ ◦ Pk,α,β ≡ 0 on CN for every φ ∈ F ′.

It implies that Pk,α,β ≡ 0 on CN for β > 0.

Thus, from (2.4) we have

Pk(z) = Pk,k,0(z) =
∑
|α|=k

cαz
α

for z ∈ ∆N (rk+1) and Pk is a homogeneous
holomorphic polynomial of degree k.

Now, let (∥·∥m)m≥1 be an increasing fun-
damental system of continuous semi-norms
defining the topology of F. By the hypoth-
esis, for every m ≥ 1

lim sup
k→∞

1

k
log ∥Pk(z)∥m = −∞ for z ∈ A.

Then, by Corollary 2.3, the sequence
( 1k log ∥Pk(z)∥m)k≥1 is locally uniformly
bounded from above on Cn for all m ≥ 1.

Thus we can define

um(z) = lim sup
k→∞

1

k
log ∥Pk(z)∥m, z ∈ CN .

By 12 the upper semicontinuous regulariza-
tion u∗m of um belongs to the Lelong class
L(CN ) of plurisubharmonic functions with
logarithmic growth on CN . Moreover, by
Bedford-Taylor’s theorem 13

Sm := {z ∈ CN : u∗m(z) ̸= um(z)}

is pluripolar for all m ≥ 1.

On the other hand, by 3, A∗ := {ta : t ∈
C, a ∈ A} is not pluripolar. This yields that
u∗m ≡ −∞ for all m ≥ 1 because u∗m = um =

−∞ on A∗\Sm and A∗\Sm is non-pluripolar.
Since u∗m ≥ um we have um ≡ −∞ for m ≥ 1.

Hence the series
∑

k≥0 Pk(z) is convergent for
z ∈ CN and it defines a holomorphic exten-
sion f̂ of f

∣∣
ℓa

for every a ∈ A. □

3. THE CONVERGENCE OF A FOR-
MAL POWER SERIES BETWEEN
FRÉCHET SPACES

In mathematics, a formal power series is a
generalization of polynomials as a formal ob-
ject, where the number of terms is allowed to
be infinite.

The theory of formal power series has
drawn attention of mathematicians working
in different branches because of their vari-
ous applications. One can find applications
of formal power series in classical mathemat-
ical analysis and in the theory of Riordan al-
gebras. Specially, this theory lays the foun-
dation for substantial parts of combinatorics
and real and complex analysis.

A formal power series f(z1, . . . , zN ) =∑
cα1,...,αN z

α1
1 . . . zαN

N in CN , N ≥ 2, with
coefficients in C is said to be convergent if it
converges absolutely in a zero-neighborhood
in CN . A classical result of Hartogs 14 states
that a series f converges if and only if fz(t) =
f(tz1, . . . , tzN ) converges, as a series in t, for
all z = (z1, . . . , zN ) ∈ CN . In other words, a
formal power series in several complex vari-
ables is convergent if it converges on all lines
through the origin. This can be interpreted as
a formal analog of Hartogs’ theorem on sep-
arate analyticity. Because a divergent power
series still may converge in certain directions,
it is natural and desirable to consider the set
of all z ∈ CN for which fz converges. Since
fz(t) converges if and only if fw(t) converges
for all w ∈ CN on the affine line through z,

ignoring the trivial case z = 0, the set of di-
rections along which f converges can be iden-
tified with a subset of the projective space
CPN−1. The convergence set Conv(f) of a di-
vergent power series f is defined to be the
set of all directions ξ ∈ CPN−1 such that
fz(t) is convergent for some z ∈ ϱ−1(ξ) where
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ϱ : CN \ {0} → CPN−1 is the natural pro-
jection. In the two-variables case, Lelong 15

proved that Conv(f) is an Fσ-polar set (i.e.
a countable union of closed sets of vanish-
ing logarithmic capacity) in CP1, and more-
over, every Fσ-polar subset of CP1 is con-
tained in the Conv(g) of some formal power
series g. The optimal result was later ob-
tained by Sathaye 16 who showed that the
class of convergence sets of divergent power
series in two-variables is precisely the class
of Fσ-polar sets in CP1. Levenberg and Mol-
zon, in 17, showed that if the restriction of
f on sufficiently many (non-pluripolar) sets
of complex line passing through the origin is
convergent on small neighborhood of 0 ∈ C
then f is actually represent a holomorphic
function near 0 ∈ CN . By using delicate es-
timates on volume of complex varieties in
projective spaces, Alexander’s theorem men-
tioned above was proved. This follows readily
that if the restriction of a formal power series
f on every complex line passing through the
origin in CN is convergent then f is conver-
gent 2 [Theorem 6.3].

The main result of this section is follow-
ing.

Theorem 3.1. Let A be a non-projectively-
pluripolar set which is contained in a balanced
convex compact subset of a Fréchet space E

and f =
∑

n≥1 Pn be a formal power series
where Pn are continuous homogeneous poly-
nomials of degree n on E with values in a
Fréchet space F. Assume that for each a ∈ A,

the restriction of f on the complex line ℓa is
convergent. Then f is convergent in a neigh-
bourhood of 0 ∈ E if one of the following
holds:

(a) E is Schwartz.

(b) F ∈ (LB∞).

Proof. We divide the proof into three steps:
(i) Step 1: We consider the case where

F = C. It follows from the hypothesis that

lim sup
n→∞

|Pn(z)|
1
n < ∞ ∀z ∈ A.

Then, by Corollary 2.3 there exists a zero-
neighbourhood U in E such that

sup{|Pn(z)|
1
n : z ∈ U, n ≥ 1} =: M < ∞.

This implies that f is uniformly convergent
on (2M)−1U.

(ii) Step 2: We consider the case where F

is Fréchet. By the step 1 we can define the
linear map

T : F ′
bor → H(0E)

by letting

T (u) =
∑
n≥1

u(Pn)

where H(0E) denotes the space of germs of
scalar holomorphic functions at 0 ∈ E. Sup-
pose that uα → u in F ′

bor and T (uα) → v in
H(0E) as α → ∞. This implies, in particular,
that [T (uα)](z) → v(z) for all z in some zero-
neighbourhood U in E. However, for z ∈ U

we have

[T (uα − u)] (z) =
∑
n≥1

(uα − u)(Pn(z))

= lim
n→∞

n∑
k=1

(uα − u)(Pn(z))

= (uα − u)
(

lim
n→∞

n∑
k=1

Pn(z)
)

= (uα − u)
(∑

n≥1

Pn(z)
)
.

Then [T (uα)](z) → [T (u)](z) for all z ∈ U.

This implies that v = T (u). Hence T has a
closed graph.

Meanwhile, since F is Fréchet, by 7 [The-
orem 13.4.2] we have β(F ′, F )bor = η(F ′, F )

on F ′, where η(F ′, F ) is the corresponding
locally convex inductive limit topology on
F ′ =

⋃
U∈U F ′

U◦ with U consists of closed
and absolutely convex sets in F. This implies
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that F ′
bor is ultrabornological. On the other

hand, because E is metrizable, we have

H(0E) = lim−→
n→∞

(H∞(Vn), ∥ · ∥n)

where (Vn)n≥ is a countable fundamental
neighbourhood system at 0 ∈ E, and ∥ · ∥n
is the norm on the Banach space H∞(Vn)

given by ∥f∥n = supz∈Vn
|f(z)|. Hence, by

the closed graph theorem of Grothendieck 18

[Introduction, Theorem B], T is continuous.
Next, we shall show that there exists a

neighbourhood V of 0 ∈ E such that T :

F ′
bor → H∞(V ) is continuous linear.

We consider two cases: (a) E is Schwartz;
(b’) E is Banach and F ∈ (LB∞).

The case (a): Since E is Schwartz, by 19

[Theorem 2 and Corollary 9], H(0E) has a
continuous norm. Using Proposition 1.4 in 20

we deduce that there exists a neighbourhood
V of 0 ∈ E such that T : F ′

bor → H∞(V ) is
continuous linear.

The case (b’): Since E is Banach, it fol-
lows from 21 [Theorem 1] that H(0E) ∈ (Ω).

Then, because (F ′
bor)

′
β ∈ (LB∞), using The-

orem 3.2 in 5 we deduce that there exists a
neighbourhood V of 0 ∈ E such that T :

F ′
bor → H∞(V ) is continuous linear.

Now we define the map f̂ : V → F ′′
bor by

the formula

[f̂(z)](u) = [T (u)](z), z ∈ V, u ∈ F ′
bor.

Since T is continuous and point evaluations
on H(V )bor are continuous (see 9 [Proposi-
tion 3.19]) it follows that f̂(z) ∈ F ′′

bor for all
z ∈ V. Moreover, for each fixed u ∈ F ′

bor the
mapping

z ∈ V 7→ [T (u)](z)

is holomorphic, that is

f̂ : V → (F ′′
bor, σ(F

′′
bor, F

′
bor))

is a continuous mapping. For all a ∈ V, b ∈ E

and all u ∈ F ′
bor the mapping

{t ∈ C : a+ tb ∈ V } ∋ λ 7→ u ◦ f̂(a+ λb)

is a Gâteaux holomorphic mapping and hence

f̂ : V → (F ′′
bor, σ(F

′′
bor, F

′
bor))

is holomorphic.
By 7 [8.13.2 and 8.13.3], F ′

bor is a com-
plete locally convex space. Hence by 22 [The-
orem 4, p.210] applied to the complete space
F ′
bor we see that (F ′′

bor, σ(F
′′
bor, F

′
bor)) and

(F ′
bor)

′
β have the same bounded sets. An ap-

plication of 23 [Proposition 13] shows that

f̂ : V → (F ′
bor)

′
β

is holomorphic.
Let j denote the canonical injection from

F into F ′′. If z ∈ B := V ∩{ta : t ∈ C, a ∈ A}
and f̂(z) ̸= j(f(z)) then there exists u ∈ F ′

such that

f̂(z)(u) ̸= j(f(z))(u) = u(f(z)).

This, however, contradicts the fact that for
all z ∈ B we have

f̂(z)(u) = [T (u)](z) =
∑
n≥1

u(Pn)(z) = u(f(z)).

We now fix a non-zero z ∈ B. Then there ex-
ists a unique sequence in F ′′, (an,z)

∞
n=1, such

that for all λ ∈ C

f̂(λz) =
∞∑
n=0

an,zλ
n.

Since f̂(0) = f(0) = a0,z it follows that
a0,z ∈ F. Now suppose that (aj,z)

n
j=0 ⊂ F.

When |λ| ≤ 1, f̂(λz) = f(λz) ∈ F. Hence, if
λ ∈ C, 0 < |λ| < 1, then

f̂(λz)−
∑n

j=0 aj,zλ
j

λn+1
=

∞∑
j=n+1

aj,zλ
j−n−1 ∈ F.

Since F is complete we see, on letting λ tend
to 0, that an+1,z ∈ F. By induction an,z ∈ F

for all n and hence f̂(λz) ∈ F for all λ ∈ C
and all z ∈ B. Since f̂ is continuous and F is
a closed subspace of (F ′

bor)
′
β (see 24 [Lemma

2.1]) we have shown that f̂ : V → F is holo-
morphic.
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Hence, the series
∑

n≥1 Pn is convergent
on V to f.

The proof of the case (a) is complete here.
We continue the last step for the proof of the
case (b) as follows:

(iii) Step 3: Let {Un}n≥ be a decreasing
basis of neighbourhoods of 0 ∈ E. By K(E)

we denote the family of all balanced convex
compact subsets of E. By the case (b’) in Step
2, for each K ∈ K(E) there exists εK > 0

such that f is uniformly convergent on εKK.

Put
W =

⋃
K∈K(E)

εKK.

Obviously, f is convergent on W. It remains
to check that W is a neighbourhood of 0 ∈ E.

Assume the contrary, that W is not a neigh-
bourhood of 0 ∈ E. Then for each n ≥ 1 there
exists xn ∈ Un \W. Put

K0 := conv{0, x1, x2, . . .}.

By 25 [Corollary 6.5.4] we can find K1 ∈
K(E), K0 ⊂ K1, such that K0 is relatively
compact in EK1 . It implies that xn → 0 in
EK1 . Thus there exists n0 ≥ 1 such that for
all n ≥ n0 we have xn ∈ εK1K1 ⊂ W. This
is incompatible with xn being disjoint from
W.

4. ALEXANDER’S THEOREM FOR

FRÉCHET-VALUED FORMAL
POWER SERIES

We will present the proof of Theorem 1.2 in
this section. Our work requires some extra
results concerning to Vitali’s theorem for a
sequence of Fréchet-valued holomorphic func-
tions.

Remark 4.1. In exactly the same way, The-
orem 2.1 in 26 is true for the Fréchet-valued
case.

Lemma 4.1. Let E,F be Fréchet spaces,
D ⊂ E be an open set. Let f : D → F be

a locally bounded function such that φ ◦ f is
holomorphic for all φ ∈ W ⊂ F ′, where W is
separating. Then f is holomorphic.

The proof of Lemma runs as in the proof
of Theorem 3.1 in 26, but here we use Vitali’s
theorem in 27 [Proposition 6.2] which states
for a sequence of holomorphic functions on
an open connected subset of a locally convex
space.

Lemma 4.2. Let D be a domain in a Fréchet
space E and f : D → F be holomorphic,
where F is a barrelled locally convex space.
Assume that D0 = {z ∈ D : f(z) ∈ G} is
not nowhere dense in D, where G is a closed
subspace of F. Then f(z) ∈ G for all z ∈ D.

Proof. (i) We first consider the case G = {0}.
On the contrary, suppose that f(z∗) ̸= 0 for
some z∗ ∈ D \ D0. By the Hahn-Banach
theorem, we can find φ ∈ F ′ such that
(φ ◦ f)(z∗) ̸= 0. Let z0 ∈ (intD0) ∩ D and
let W be a balanced convex neighbourhood
of 0 ∈ E such that z0 + W ⊂ D0. Then by
the continuity of f we deduce that f = 0

on z0 + W. Hence, it follows from the iden-
tity theorem (see 27 [Proposition 6.6]) that
f = 0 on D. This contradicts above our claim
(φ ◦ f)(z∗) ̸= 0.

(ii) For the general case, consider the quo-
tient space F/G and the holomorphic func-
tion ω ◦ f : D → F/G where ω : F → F/G

is the canonical map. Then ω ◦ f ≡ 0 on D0.

By the case (i), ω ◦ f ≡ 0 on D. This means
that f(z) ∈ G for all z ∈ D.

Proposition 4.3. Let E,F be Fréchet spaces
and D ⊂ E a domain. Assume that (fn)n≥1

is a locally bounded sequence of holomorphic
functions on D with values in F. Then the
following assertions are equivalent:

(i) The sequence (fn)n≥1 converges uni-
formly on all compact subsets of D to
a holomorphic function f : D → F ;

11



(ii) The set D0 = {z ∈ D :

lim
n

fn(z) exists} is not nowhere dense
in D.

Proof. It suffices to prove the implication (ii)
⇒ (i) because the case (i) ⇒ (ii) is trivial. De-
fine f̃ : D → ℓ∞(N, F ) by f̃(z) = (fn(z))n≥1,

where ℓ∞(N, F ) is the Fréchet space with
the topology induced by the system of semi-
norms

|||x|||k = |||(xi)i≥1|||k = sup
i

∥xi∥k, ∀k,

∀x = (xi)i≥1 ∈ ℓ∞(N, F ).

For each k ∈ N we denote prk :

ℓ∞(N, F ) → F is the k-th projection with
prk((wi)i∈N) = wk. Obviously

W = {φ ◦ prk; φ ∈ F ′, k ∈ N} ⊂ ℓ∞(N, F )′

is separating and

φ ◦ prk ◦ f̃ = φ ◦ prk ◦ (fn)n≥1 = φ ◦ fk

is holomorphic for every k ≥ 1. Then by
Lemma 4.1, f̃ is holomorphic.

Since the space

G = {(wi)i≥1 ∈ ℓ∞(N, F ) : lim
i→∞

wi exists}

is closed, by the hypothesis, f̃(z) ∈ G for
all z ∈ D0. It follows from Lemma 4.2 that
f̃(z) ∈ G for all z ∈ D. Thus f(z) =

limi→∞ fi(z) exists for all z ∈ D. Note that
Φ : G → F given by Φ((yi)i∈N) = limi→∞ yi
defines a bounded operator. Therefore f =

Φ ◦ f̃ is holomorphic.
Finally, in order to prove that (fi)i≥1 con-

verges uniformly on compact sets in D to f,

it suffices to show that (fi)i≥1 is locally uni-
formly convergent in D to f. Since (fi)i≥1

is locally bounded, by 27 [Proposition 6.1],
(fi)i≥1 is equicontinuous at every a ∈ D.

Let a be fixed point of D. Then for every
balanced convex neighbourhood V of 0 in F

there exists a neighbourhood U1
a of a in D

such that

fi(z)−fi(a) ∈ 3−1V, ∀z ∈ U1
a , ∀i ≥ 1. (4.1)

Since lim
i→∞

fi = f in D, we can find i0 ≥ 1

such that

fi(a)− f(a) ∈ 3−1V, ∀i ≥ i0. (4.2)

By the continuity of f, there exists a neigh-
bourhood U2

a of a in D such that

f(a)− f(z) ∈ 3−1V, ∀z ∈ U2
a . (4.3)

From (4.1), (4.2) and (4.3), for all z ∈ Ua =

U1
a ∩ U2

a for all i ≥ i0 we have

fi(z)− f(z) ∈ V. (4.4)

The proof of the proposition is com-
plete.

We now can prove Theorem 1.2 as follows.

Proof of Theorem 1.2. As in the proof of
Theorem 3.1, for each n ≥ 1, define the con-
tinuous linear map Tn : F ′

bor → H(0CN ) given
by

Tn(u) = u ◦ fn, u ∈ F ′
bor.

By Theorem 3.5 in 3, the sequence (Tn(u))n≥1

converges in H(0CN ) for every u ∈ F ′
bor. Since

F ′
bor is barrelled (see 7 [13.4.2]) it follows

that the sequence (Tn)n≥1 is equicontinuous
in L(F ′

bor, H(0CN )) equipped with the strong
topology. As in the proof of Theorem 3.1, by
Theorem 3.2 in 5 we deduce that there exists
a neighbourhood U of 0 ∈ F ′

bor such that⋃
n≥1

Tn(U)

is bounded in H(0CN ). By the regularity
of H(0CN ), we can find r ∈ (0, r0) such
that

⋃
n≥1 Tn(U) is contained and bounded in

H∞(∆N (r)). This yields that (fn)n≥1 is con-
tained and bounded in H∞(∆N (r), F ). Since
for each z ∈ ∆N (r) the sequence (fn

∣∣
ℓz
)n≥1

is convergent in ∆1(r0) ⊂ ℓz, by Remark 4.1,
the sequence (fn(z))n≥1 is convergent for ev-
ery z ∈ ∆N (r). On the other hand, because
(fn)n≥1 is bounded in H∞(∆N (r), F ), by
Proposition 4.3 it follows that the sequence
(fn)n≥1 is convergent in H(∆N (r), F ). □

12



ACKNOWLEDGMENTS

This study is conducted within the frame-
work of science and technology projects at in-
stitutional level of Quy Nhon University un-
der the project code T2023.816.26. The au-
thor gratefully acknowledges the many helpful
suggestions of Professor Thai Thuan Quang
during the preparation of the paper.

REFERENCES

1. B. V. Shabat. An Introduction to Com-
plex Analysis, Part II, translated from
the third (1985) Russian edition by J.
S. Joel, Translations of Mathematical
Monographs, 110, Theory of Probabil-
ity and Mathematical Statistic, 1992.

2. H. Alexander. Volumes of images of va-
rieties in projective spaceand in Grass-
mannians, Transactions of the Ameri-
can Mathematical Society, 1974, 189,
237- 249.

3. T. V. Long, L. T. Hung. Sequences
of formal power series, The Australian
Journal of Mathematical Analysis and
Applications, 2017, 452(1), 218-225.

4. S. Dineen, R. Meise, D. Vogt. Char-
acterization of nuclear Fréchet spaces
in which every bounded set is polar,
Bulletin de la Société Mathématique de
France, 1984, 112, 41-68.

5. D. Vogt. Frecheträume zwischen de-
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