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TÓM TẮT

Chúng tôi xét một biến ngẫu nhiên rời rạc X chỉ nhận các giá trị nguyên không âm. Ký hiệu miền

giá trị của X và hàm khối xác suất của X lần lượt bởi RX và pX(x). Mục đích của bài báo này nhằm

đưa ra một phương pháp biến đổi được dùng để biến đổi hàm pX(x) thành một hàm khối xác suất của

một biến ngẫu nhiên rời rạc X̃ với miền giá trị là RX̃ = {k ∈ N : k ≥ minRX}. Chúng tôi tìm thấy

một biểu diễn cho hàm đặc trưng của X̃ theo hàm đặc trưng của X. Ngoài ra, tính bảo toàn phân phối

của phép biến đổi được chỉ ra trong một số trường hợp cụ thể.

Từ khóa: Hàm khối xác suất, biến ngẫu nhiên rời rạc, phép biến đổi, hàm đặc trưng.
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ABSTRACT Let us consider a discrete random variable X that takes only non-negative

integer values. Let RX and pX(x) denote the range of X and the probability mass

function of X, respectively. The aim of this paper is to provide a transformation method

used to transform pX(x) into a probability mass function of a discrete random variable

X̃ whose range is RX̃ = {k ∈ N : k ≥ minRX}. We obtain a representation of the

characteristic function of X̃ in terms of the characteristic function of X. Moreover, the

distribution-preserving property of the transformation is shown in some specific cases.

Keywords: Probability mass function, discrete random variable, transformation, characteristic func-
tion.

1. INTRODUCTION

In probability theory, a probability distribu-
tion is the mathematical function that gives the
probabilities of occurrence of different possible
outcomes for a random experiment. It is a math-
ematical description of a random phenomenon
in terms of its sample space and the probabil-
ities of events (subsets of the sample space).1;2

The sample space, often denoted by Ω, is the set

of all possible outcomes of a random experiment
being observed.

In order to classify probability distributions,
we need to define discrete and continuous ran-
dom variables. A random variable is a function
whose domain is a sample space Ω and whose
range (i.e., the set of values that it can obtain)
is a subset of the real numbers, R. In other
words, a random variables assigns real numbers
to the outcomes in its sample space. Random
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variables which take on values from a discrete
set of numbers (i.e., whose range is either finite
or countably infinite) are called discrete random
variable.3 Otherwise, a random variable is called
continuous if it ranges over a continuous set of
numbers that contains all real numbers between
two limits.3 In other words, a continuous ran-
dom variable is one that takes an uncountably
infinite number of possible values. For instance,
a random variable that represents the time be-
tween two successive arrivals to a queueing sys-
tem, or that represents the temperature in a nu-
clear reactor, is an example of a continuous ran-
dom variable.3 It is easy to see that all random
variables defined on a discrete sample space must
be discrete. However, random variables defined
on a continuous sample space may be discrete or
continuous. From this, probability distributions
can be classified into discrete distributions and
continuous distributions. A discrete distribution
examines the probability that a discrete random
variable takes on different values. A continuous
distribution presents the probability that a con-
tinuous random variable takes on different val-
ues. Examples of theoretical discrete probability
distributions include the Binomial distribution,
the Poisson distribution and the Negative Bino-
mial distribution. We will introduce these distri-
butions and several other discrete distributions
in more detail in Section 3. For continuous dis-
tributions, the most popular example is the nor-
mal distribution. This is also referred to as the
Gaussian distribution. Some important continu-
ous distributions are often used to build mod-
els and to test hypotheses about random vari-
ables, such as the student’s t-distribution, the
chi-squared distribution and the F-distribution.

The key difference between a discrete prob-
ability distribution and a continuous probabil-
ity distribution is that in a discrete distribution
we are able to compute the probability that a
random variable can take on a particular value,

therefore the probabilities of individual values
can be tabulated. Discrete random variables, or
discrete distributions, can be completely charac-
terized by their probability mass functions. The
probability mass function (frequently abbrevi-
ated to pmf ) for a discrete random variable X,
gives the probability that the value obtained by
X on the outcome of a probability experiment
is equal to x (x ∈ R).3. In the present paper,
we denote it by pX(.). The formal definition of
the probability mass function for a discrete ran-
dom variable is given in Section 2. Sometimes the
term discrete density function is used in place
of probability mass function. Since a continu-
ous random variable takes an uncountably in-
finite number of possible values, the probability
that it is exactly equal to any one of the infi-
nite possible values is zero. For this reason, the
method mentioned above to describe a discrete
random variable will not work in the case of a
continuous random variable, and then we have
to consider the probability of a continuous ran-
dom variable taking values in an interval. Con-
tinuous random variables, or continuous distri-
butions, can be completely characterized by their
probability density functions (frequently abbrevi-
ated to pdf ). Because the purpose of this study is
to concentrate only on discrete distributions, in
the article we will ignore the definitions or con-
cepts associated with continuous random vari-
ables, and we refer the reader to1;2;4 for more
details.

The starting point of this paper was to
study the Binomial distribution (denoted by
Binom(n, p)). This distribution has two param-
eters: the number of trials , n ∈ N∗, and the
probability of success for a single trial, p ∈ (0, 1).
The outcome from a random variable X obey-
ing the Binomial distribution will always be a
nonnegative integer with an upper bound at n.
By the rules of probability, we can attain that
the probability of the event {X = k} (i.e., the
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probability of k successes in n trials) is equal
to
(
n
k

)
pk(1 − p)n−k. By definition, the quantity(

n
k

)
pk(1 − p)n−k is the value of the probability

mass function of X at k, namely pX(k). Then,
by chance and by intuition, we have found the
following equality:

n∑
k=0

k∑
i=0

(np− i)
(
n

i

)
pi(1− p)n−i = npq,

which can be shortly rewritten as

n∑
k=0

k∑
i=0

(µ− i)pX(i) = σ2, (1)

where µ = np and σ2 = npq.

At first glance, equality (1) was nothing spe-
cial. However, it is worth noticing that the quan-
tities µ = np and σ2 = npq are the mean and
variance of the Binomial random variable X, re-
spectively. Furthermore, the set {0; 1; ...;n} is the
range of X (denoted by RX). The definitions of
the mean and variance of a discrete random vari-
able are given in Section 2. Then, the question
naturally arose in our mind: Whether equality
(1) holds true for an arbitrary discrete random
variable X whose range is a subset of the set of
natural numbers, if its mean and variance are fi-
nite, or not? Motivated by this question, we have
shown that equality (1) remains true for nonneg-
ative integer-valued random variables satisfying
a certain condition. This result is presented in
Lemma 3.2. Combining Lemma 3.2 and Lemma
3.1, we then obtain the first main theorem (Theo-
rem 3.2), which gives a way to transform a prob-
ability mass function of a nonnegative integer-
valued random variable to that of another non-
negative integer-valued random variable. From
this result, we achieve the remaining important
results as shown in Section 3. Up to the present,
there are only a few results on transformations
associated with probability mass functions. For
instances, the pignistic transformation and the
plausibility transformation are introduced in5.

We briefly recall that the two transformations
provide the ways to transform a basic probability
assignment function to a probability mass func-
tion. Notice that a basic probability assignment
function (called also mass function) is not a prob-
ability mass function. For more detail, see5.

The rest of the paper is organized as follows.
In Section 2, we recall some essential definitions
and properties including the definitions of proba-
bility mass function, mean, variance and charac-
teristic function. Section 3 is devoted to present
our main results. Finally, Section 4 contains con-
cluding remarks.

2. PRELIMINARIES

2.1. Probability mass function, Mean

and Variance

From the point of view of understanding the
behavior of a discrete random variable, the im-
portant thing is to know the probabilities that
the random variable takes each value in its range.
Such probabilities are described with a probabil-
ity mass function.

Definition 2.1. 4 Let X be a discrete random
variable. The probability mass function of X, de-
noted by pX(.), is defined as

pX(x) = P (X = x) if x ∈ RX ,
pX(x) = 0 if x /∈ RX ,

where RX is the range of X.

Obviously, the range of pX(.) is a subset of
the interval [0, 1]. Furthermore, by the rules of
probability, one can get that the function values
add to 1.0 when summed over all possible val-
ues of the random variable X. This means that∑
x∈RX

pX(x) = 1.

Definition 2.2. 4 Let X be a discrete random
variable with RX = {xk}k≥0. The expectation or
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the mean of the random variable X, denoted by
EX, is the number

EX =
∑
x∈RX

xpX(x) =

∞∑
k=0

xkpX(xk),

which is defined when
∑∞
k=0 |xk|pX(xk) <∞. If

the later series diverges, the mean is not defined.

In the case where the mean is defined, its
value does not depend on the order of summa-
tion. The mean indicates near which quantity the
values of the random variableX are concentrated
on average. We now present the definitions of
moments and variance.

Definition 2.3. Let X be a discrete random
variable with RX = {xk}k≥0, and let λ > 0 be
a possitive real number (not necessarily integer).
The moment of order λ of X is defined as

αλ = EXλ =

∞∑
k=0

(xk)λpX(xk).

Definition 2.4. 4 Suppose that the mean and
the moment of order 2 of the discrete random
variableX are finite. The variance ofX, denoted
by VarX, is the quantity

VarX = E(X − EX)2

=

∞∑
k=0

(xk − EX)2pX(xk).

The variance characterizes the amount of
variation of the random variable from its mean.
The following property is commonly useful to
compute the variance.

VarX = EX2 − (EX)2.

The expectation and variance of a random vari-
able are two of the foremost notions in proba-
bility theory. For basic properties of expectation
and variance, we refer the reader to1;4;6.

2.2. Characteristic function

In probability theory and mathematical
statistics, characteristic functions always play an
outstanding role in probability theory and math-
ematical statistics by providing a comprehensive
way to describe and analyze probability distri-
butions. They are particularly powerful due to
their unique properties and applications in vari-
ous statistical methodologies.

Definition 2.5. 7 The characteristic function of
the random variable X is defined as

ϕX(t) = E(eitX) =

∞∑
k=0

eitxkpX(xk), (2)

where t is any real number and i =
√
−1.

Since |eitx| is a bounded and continuous func-
tion for all finite real t and x, the characteristic
function always exists. We recall that any char-
acteristic function ϕX(t) satisfies the following
conditions (see7 Theorem 1.1.1):

1. ϕX(t) is uniformly continuous;

2. ϕX(0) = limt→0 ϕX(t) = 1;

3. |ϕX(t)| ≤ 1 for all real numbers t.

In addition, if the moment of order n exists
(where n is a possitive integer) then ϕX(t) is n
times differentiable for all t, and it is related to
the n−th derivative of the characteristic function
by the formula7

αn = (−i)nϕ(n)
X (0). (3)

So, the existence of some moments of a random
variable ensures the existence of the correspond-
ing derivatives of the characteristic function. We
next introduce the following important result
(referred to as the uniqueness theorem), which
shows that a probability distribution is uniquely
determined by its characteristic function.

Proposition 2.1 (7 Theorem 1.1.2). Two prob-
ability distributions are identical if and only if
their characteristic functions are identical.
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For more details on properties of character-
istic functions, interested readers could be refer
to7 and the references therein. Thanks to char-
acteristic functions, we arrive at some interesting
results as shown in Subsection 3.3.

3. MAIN RESULTS

Let X be a discrete random variable with
the range RX ⊆ N (the set RX is either finite
or countably infinite). Throughout the forthcom-
ing, we always assume that the mean and vari-
ance of X exist, and are denoted by µ and σ2

(σ > 0) respectively. We further assume that
pX(x) > 0 for all x ∈ RX .

3.1. Formulation of transformation

Lemma 3.1. For any nonnegative integer k, we
get

k∑
i=0

(µ− i)pX(i) ≥ 0. (4)

Proof. If k ≤ µ, it is clear that the assertion is
true. If k > µ, we then have (µ− i)pX(i) < 0 for
all i > k. Therefore,

k∑
i=0

(µ− i)pX(i) ≥
∞∑
i=0

(µ− i)pX(i)

= µ
∞∑
i=0

pX(i)−
∞∑
i=0

ipX(i)

= µ− µ = 0.

Moreover, due to the above assumption that
pX(x) > 0 for all x ∈ RX , it follows that

k∑
i=0

(µ− i)pX(i) > 0⇔ k ≥ minRX .

If RX is a finite set, but its cardinality is greater
than 1, it is sufficient to consider k satisfying
minRX ≤ k ≤ maxRX − 1.

Lemma 3.2. Assume that

lim
n→∞

n

n∑
i=0

(µ− i)pX(i) = 0. (5)

Then, setting m = minRX , we have

∞∑
k=m

k∑
i=m

(µ− i)pX(i) = σ2. (6)

In the case that RX is finite, equality (6) becomes

M−1∑
k=m

k∑
i=m

(µ− i)pX(i) = σ2, (7)

where M := maxRX .

Proof. For each positive integer n ≥ m, we have

n∑
k=m

k∑
i=m

(µ− i)pX(i)

=
n∑
k=0

k∑
i=0

(µ− i)pX(i) (pX(i) = 0 if i /∈ RX)

=

n∑
i=0

(n+ 1− i)(µ− i)pX(i)

=

n∑
i=0

[(i− µ)2 + n(µ− i) + (1− µ)(µ− i)]pX(i)

=

n∑
i=0

(i− µ)2pX(i) + n

n∑
i=0

(µ− i)pX(i)

+ (1− µ)
n∑
i=0

(µ− i)pX(i). (8)

It is worth noting that, from the definitions of µ
and σ2,

∞∑
i=0

(i− µ)2pX(i) = σ2;

∞∑
i=0

(µ− i)pX(i) = 0.

(9)
Equality (6) follows immediately from (5), (8)
and (9).

If RX is a finite set, by the definition of µ one
can easily see that

∑n
i=m(µ− i)pX(i) = 0 for ev-

ery n ≥ M . Therefore, condition (5) is always
true and we obtain (7).
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Remark 3.1. Lemma 3.2 yields another formula
for the variance of a discrete random variable X
if its range is a subset of the set of natural num-
bers, provided that (5) is satisfied. Furthermore,
from the proof of Lemma 3.2, we notice that (5)
is a necessary and sufficient condition for the va-
lidity of equality (6).

Combining Lemma 3.1 with Lemma 3.2, we
immediately attain the first main theorem.

Theorem 3.2. Assume that (5) holds and set
m = minRX , M = maxRX . Then, there exists
a discrete random variable X̃ such that

RX̃ =

{
{k ∈ N : m ≤ k} if RX is finite;

{k ∈ N : m ≤ k < M} if RX is infinite;
(10)

and its probability mass function is given by

pX̃(k) = P (X̃ = k) =
1

σ2

k∑
i=m

(µ− i)pX(i), (11)

for all k ∈ RX̃ .

Proof. According to Lemma 3.1 and Lemma 3.2,
we have

p̃X(k) > 0 (∀k ∈ RX̃) and
∞∑
k=m

p̃X̃(k) = 1,

which imply immediately the statement of The-
orem 3.2.

Remark 3.3. In other words, Theorem 3.2 or
formula (11) provide a probability transforma-
tion which transforms the probability mass func-
tion pX(.) to another probability mass function,
pX̃(.). Also, one can see that the range of X̃ is
alway a set containing consecutive nonnegative
intergers, and has the same minimum value as
the one of the initial random variable, RX .

Let us now consider the following example to
more understand the use of the transformation.

Example 3.4. Let X be the random variable
with the probability distribution described as fol-
lows:

X 0 4 6 8

pX(x) 1
8

1
8

1
4

1
2

.

By direct calculation, using (11) we get

µ = 6;σ2 = 7;

pX̃(0) = pX̃(1) = pX̃(2) = pX̃(3) =
3

28
;

pX̃(4) = pX̃(5) =
1

7
;

pX̃(6) = pX̃(7) =
1

7
.

Clearly,
∑7
k=0 pX̃(k) = 1 and the corresponding

probability distribution of X̃ is given as

X̃ 0 1 2 3 4 5 6 7

pX̃(k) 3
28

3
28

3
28

3
28

1
7

1
7

1
7

1
7

.

The next example was intended as an at-
tempt to extend the claim of Theorem 3.2 to the
case that X takes (positive) noninteger values.
However, we obtain that the claim is no longer
true.

Example 3.5. Let X be the random variable
with the probability distribution given as

X 0 1
2 1 3

2 2

pX(x) 1
8

2
8

1
8

1
8

3
8

.

From (11), we get

µ =
19

16
; σ2 =

143

256
;

pX̃(0) =
38

143
; pX̃(1/2) =

82

143
;

pX̃(1) =
88

143
; pX̃(3/2) =

78

143
.

We then obtain p̃0 + p̃1/2 + p̃1 + p̃3/2 = 2 6= 1.
Hence, equality (6) does not hold.
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3.2. The characteristic function ϕX̃(.)

As mentioned in Section 1, it will be very use-
ful to obtain an expression for the characteristic
function of X̃. By Proposition 2.1, the fact that
every distribution is uniquely determined by its
characteristic function allows us to be able to de-
termine the distribution type of X̃, without hav-
ing to find the mass probability function pX̃(.).

Theorem 3.6. With the settings of Theorem
3.2, the characteristic function ϕX̃(.) of the ran-
dom variable X̃ is given by

ϕX̃(t) =
µϕX(t) + iϕ′X(t)

σ2(1− eit)
,∀t ∈ R, (12)

where, as before, µ, σ2 and ϕX(.) are respectively
the mean, variance and characteristic function of
the random variable X.

Proof. For simplicity of notations, throughout
the proof, pk and p̃k stands for pX(k) and pX̃(k),
respectively. From (11) and by grouping the
terms appropriately, we attain

Sn(t) :=
n∑
k=0

eitkp̃k

=
1

σ2

n∑
k=0

[
eitk

k∑
j=0

(µ− j)pj
]

=
1

σ2
(µ− 0)p0

n∑
k=0

eitk +
1

σ2
(µ− 1)p1

n∑
k=1

eitk

+
1

σ2
(µ− 2)p2

n∑
k=2

eitk + ...+
1

σ2
(µ− n)pne

itn

=
1

σ2

n∑
j=0

[
(µ− j)pj

n∑
k=j

eitk
]

=
1

σ2
(S1,n(t)− S2,n(t)) , (13)

where

S1,n(t) :=
n∑
j=0

[
(µ− j)pj

n∑
k=0

eitk
]
; (14a)

S2,n(t) :=

n∑
j=1

[
(µ− j)pj

j−1∑
k=0

eitk
]
. (14b)

On the other hand, by definition,

ϕX̃(t) = lim
n→∞

Sn(t), (15)

we are thus left with the task of determining the
limits of S1,n(t) and S2,n(t) as n tends to ∞.

To find the limit of S1,n(t) defined as (14a),
it is worth pointing out that

0 < |S1,n(t)| =

∣∣∣∣∣
n∑
k=0

eitk

∣∣∣∣∣
∣∣∣∣∣∣
n∑
j=0

(µ− j)pj

∣∣∣∣∣∣
≤

∣∣∣∣∣∣n
n∑
j=0

(µ− j)pj

∣∣∣∣∣∣ .
From (5) and the Squeeze Theorem, it immedi-
ately follows that

lim
n→∞

S1,n(t) = 0. (16)

In order to arrive at the remaining limit, we first
rewrite Sn,2(t), given by (14b), as follows

S2,n(t) =
1

1− eit
n∑
j=1

(µ− j)pj(1− eitj)

=
1

1− eit
n∑
j=0

(µ− j)pj(1− eitj)

=
1

1− eit
[ n∑
j=0

(µ− j)pj − µ
n∑
j=0

pje
itj

+
n∑
j=0

jpje
itj
]
. (17)

Letting n tend to ∞ in the both sides of (17),
we obtain

lim
n→∞

S2,n(t) =
1

1− eit
[
− µϕX(t) +

ϕ′X(t)

i

]
,

(18)
owing to the following simple equalities,

∞∑
j=0

(µ− j)pj = 0;

∞∑
j=0

pje
itj = ϕX(t);

∞∑
j=0

jpje
itj =

1

i
ϕ′X(t).

From (13), (15), (16) and (18), the proof of The-
orem 3.6 is completed.
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3.3. Distribution-preserving property

The work of this section contains descriptions
of some different well-kown discrete distributions
used in probability. By the method of charac-
teristic functions, our aim is to verify whether
the random variables X and X̃ are able to be-
long to the same family of distributions (in other
words, whether the distribution family of X can
be preserved by the formulated transformation)
for each considered case.

• Binomial distribution

Binomial distributions correspond to ran-
dom variables that count the number of suc-
cesses among n independent trials having the
same probability of success. Such trials are
called Bernoulli trials. The probabilistic model of
Bernoulli trials is applicable in many situations,
where it is reasonable to assume independence
and constant success probability.

Definition 3.1. 6;8 A random variable X is said
to have a Binomial distribution with parameters
n and p (where n ∈ N∗, 0 < p < 1) if

P (X = k) =

(
n

k

)
pk(1− p)n−k, (19)

for all k = 0, 1, ..., n . We write X ∼ Binom(n, p).

If X ∼ B(n, p), the mean and variance are6

µ = np, σ2 = np(1− p), (20)

and the corresponding characteristic function is
given by7

ϕX(t) = (1− p+ peit)n. (21)

From (20), (21) and (12), we have

ϕX̃(t) = (1− p+ peit)n−1, (22)

which immediately implies that, for n ≥ 2,

X̃ ∼ Binom(n− 1, p).

• Poisson distribution

Poisson distributions are applied when the
random variables under consideration count the
number of events occurring in a specified time
period or a spatial area, and the observed pro-
cesses satisfy the primary conditions of time
(or space) homogeneity, independent increments,
and no memory of the past.

Definition 3.2. 6;8 A random variable X is said
to have a Poisson distribution with unique pa-
rameter λ > 0 if

P (X = k) =
e−λλk

k!
, k = 0, 1, 2, ... (23)

We then write X ∼ Pois(λ).

The mean, variance and characteristic func-
tion of the Poisson distribution are7

µ = σ2 = λ, (24)

ϕX(t) = exp[λ(eit − 1)]. (25)

First of all, let us prove that assumption (5) is
satisfied. Indeed, by (23) and (24), we get

n∑
k=0

(µ− k)pX(k)

=

n∑
k=0

(λ− k)
e−λλk

k!

= e−λ
[ n∑
k=0

λk+1

k!
−

n∑
k=1

λk

(k − 1)!

]
= e−λ

[ n∑
k=0

λk+1

k!
−
n−1∑
k=0

λk+1

k!

]
= e−λ

λn+1

n!
.

As a result, assumption (5) is equivalent to
λn

n!
−→ 0 as n→∞,

which is true for all λ > 0. So, (5) is valid. By
Theorem 3.6, (24) and (25), it is straightforward
to find the expression for ϕX̃ ,

ϕX̃(t) = exp[λ(eit − 1)] = ϕX(t).

Thus, X̃ ∼ Pois(λ).
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• Negative Binomial distribution

The Negative Binomial distribution is a dis-
crete probability distribution that models the
number of failures in a sequence of independent
and identically distributed Bernoulli trials before
a specified number of successes occurs. In a se-
quence of independent Bernoulli trials, each trial
has two potential outcomes called "success" and
"failure." In each trial the probability of success
is p (0 < p < 1) and of failure is 1 − p. One ob-
serves this sequence until a number r of successes
occurs, where r is a fixed integer.

Definition 3.3. 6;8 Let the random variable X
denote the number of observed failures before the
rth success occurs. Then

P (X = k) =

(
k + r − 1

k

)
(1− p)kpr, (26)

for all k = 0, 1, 2, ...

In this case, the random variable X is said
to have the Negative Binomial distribution with
parameters r and p. We denote by X ∼ NB(r, p).

If X ∼ NB(r, p), then

µ =
r(1− p)

p
, σ2 =

r(1− p)
p2

, (27)

and its characteristic function is given as7

ϕX(t) =

(
p

1− (1− p)eit

)r
, t ∈ R. (28)

From (26) and (27), we first remark that

n∑
k=0

(µ− k)pX(k)

=

n∑
k=0

(rq
p
− k
)
Ckk+r−1q

kpr (q := 1− p)

= rqpr−1 + rpr−1
n∑
k=1

(
Ckk+r−1q

k+1 − Ck−1k+r−1q
kp
)

= rqpr−1 + rpr−1
[ n∑
k=1

(
Ckk+r−1 + Ck−1k+r−1

)
qk+1

−
n∑
k=1

Ck−1k+r−1q
k
]

= rqpr−1 + rpr−1
[ n∑
k=1

Ckk+rq
k+1 −

n−1∑
k=0

Ckk+rq
k+1
]

= rpr−1Cnn+rq
n+1.

Due to 0 < q < 1, it is easy to check that

nCnn+rq
n+1 =

n(n+ 1)...(n+ r)

r!
qn+1 −→ 0

as n→∞. In other words, (5) holds true.

Accordingly, by Theorem 3.6, we attain the
characteristic function of X̃ defined by

ϕX̃(t) =

(
p

1− (1− p)eit

)r+1

,

which concludes that X̃ ∼ NB(r + 1, p).

3.4. • Geometric distribution

Consider independent trials such that a cer-
tain event may happen at any given trial with
probability p. The trials continue until the event
occurs for the first time. The number,X, of trials
performed before the event occurs has a geomet-
ric distribution.6

Definition 3.4. 6 A random variable X is said
to have a geometric distribution with parameter
p, where 0 < p < 1, if its probability mass func-
tion is defined by

P (X = k) = (1− p)kp, (29)

for all k = 0, 1, 2, ... We then write X ∼ Geo(p).

From (29), it is easy to see that the geomet-
ric distribution is the special case of the negative
binomial with r = 1, namely,

X ∼ Geo(p)⇔ X ∼ NG(1, p).

As a consequence, we get that X̃ ∼ NB(2, r) if
X ∼ Geo(p).

10



• Hypergeometric distribution

The hypergeometric distribution is a discrete
probability distribution that models the proba-
bility of obtaining a specific number of successes
in a sample drawn without replacement from a
finite population containing two distinct types
of elements6;8 (i.e., a finite population whose el-
ements can be classified into two categories one
which possesses a certain characteristic and an-
other which does not possess that characteristic).
For instance, suppose an urn contains K white
balls and (N −K) black balls. From this, n balls
are drawn without replacement. The probability
that the sample of size n contains k white balls
and (n − k) black balls can be obtained by hy-
pergeometric distribution.

The hypergeometric distribution is charac-
terized by the following parameters:

- N : The total population size.

- K: The number of elements of Type 1 in the
population.

- n: The number of draws without replacement
(the sample size).

Definition 3.5. Let N , K and n be integers
such that N ≥ 1, 0 ≤ K ≤ N , and 1 ≤ n ≤ N .
A random X is said to have a hypergeometric
distribution with parameters (N,K, n), written
as X ∼ HG(N,K, n), if the corresponding prob-
ability mass function is given by

P (X = k) =

(
K
k

)(
N−K
n−k

)(
N
n

) , (30)

where k ∈ Z and

max(0, n+K −N) ≤ k ≤ min(n,K).

If X ∼ HG(N,K, n) , the mean and variance are

µ = n
K

N
, σ2 = n

K(N −K)(N − n)

N2(N − 1)
, (31)

and its characteristic function is given by7

ϕX(t) =

(
N−K
n

)
2F1[−n,−K;N −K − n+ 1; eit](

N
n

) .

(32)
where

2F1[a, b; c; z] = 1+
ab

c

z

1!
+
a(a+ 1)b(b+ 1)

c(c+ 1)

z2

2!
+· · ·

(33)
is the Gaussian hypergeometric function.6

By virtue of the fact that

∂2F1[a, b; c; z]

∂z
=
ab

c
2F1[a+ 1, b+ 1; c+ 1; z],

we then attain

ϕ′X(t) = ieit
nK
(
N−K
n

)
2F1[α, β; γ; eit]

(N −K − n+ 1)
(
N
n

) , (34)

where α := −n + 1, β := −K + 1, and γ :=

N−K−n+2. Unfortunately, at first we couldn’t
find the explicit expression for ϕX̃(t) by means
of formula (12) in Theorem 3.6. Therefore, it is
difficult for us to determine the appropriate dis-
tribution of the random variable X̃.

However, according to the above results and
Theorem 3.2, we have had a reasonable belief
that the random variable X̃ should follow a hy-
pergeometric distribution and, futhermore, its
support set must be {k ∈ Z : max(0, n + K −
N) ≤ k ≤ min(n− 1,K − 1). For this reason, we
aim at proving that

X̃ ∼ HG(N − 2,K − 1, n− 1), (35)

provided that N ≥ 3, K ≥ 1 and n ≥ 2.

To do this, we first note that (35) is equiva-
lent to

ϕX̃(t) =

(
Ñ−K̃
ñ

)
2F1[−ñ,−K̃; Ñ − K̃ − ñ+ 1; eit](

Ñ
ñ

) ,

(36)
where Ñ := N − 2, K̃ := K − 1 and ñ := n− 1.
With the aid of the algebraic computation soft-
ware (MAPLE), we could easily verify that the

11



following identity

ϕX̃(t)− µϕX(t) + iϕ′X(t)

σ2(1− eit)
≡ 0 (∀t ∈ R),

holds true if µ, σ2, ϕX(t), ϕ′X(t), and ϕX̃(t) are
given by (31), (32), (34) and (36), respectively.
Hence, assertion (35) is true.

• Logarithmic Series distribution

The logarithmic series distribution (also
known as the the log-series distribution) is a dis-
crete probability distribution derived from the
Maclaurin series expansion:

ln(1−p) = −p− p
2

2
− p

3

3
−· · · =

∞∑
k=1

−pk

k
, (37)

where 0 < p < 1. From this, we get
∞∑
k=1

−pk

k ln(1− p)
= 1.

So, it is easy to see that

f(k) =
−pk

k ln(1− p)
, k = 1, 2, ...,

defines a probability mass function on the set of
possitive integers.

Definition 3.6. 6 A random variable X is said
to have a logarithmic series distribution with pa-
rameter p, where 0 < p < 1, if its probability
mass function is given as

P (X = k) = − pk

k ln(1− p)
, k = 1, 2, 3, ... (38)

We then write X ∼ LogSeries(p).

The logarithmic series distribution is some-
times used to model the number of items of a
product purchased by a buyer in a specified in-
terval.

If X ∼ LogSeries(p), the mean and variance
are given as

µ = − p

(1− p) ln(1− p)
, (39a)

σ2 = − p2 + p ln(1− p)
(1− p)2(ln(1− p))2

. (39b)

Besides, its characteristic function is as follows7

ϕX(t) =
ln(1− peit)
ln(1− p)

. (40)

Let us now show that assumption (5) is satisfied
when X ∼ LogSeries(p). For any positive integer
n, according to (38) and (39a), we derive

n

n∑
k=1

(µ− k)pX(k)

= A(p)n

n∑
k=1

pk
(

(1− p) ln(1− p) +
p

k

)
= A(p)n

(
ln(1− p)

n∑
k=1

(pk − pk+1) + p

n∑
k=1

pk

k

)

= A(p)n

(
ln(1− p)(p− pn+1) + p

n∑
k=1

pk

k

)
= A(p)

(
−npn+1 ln(1− p) + pnBn(p)

)
, (41)

where

A(p) :=
1

(1− p)(ln(1− p))2
, (42a)

Bn(p) := ln(1− p) +
n∑
k=1

pk

k
. (42b)

Owing to limn→∞ np
n+1 = 0 for all p ∈ (0, 1),

it follows easily from (41) that assumption (5)
holds true if and only if

lim
n→∞

nBn(p) = 0. (43)

To verify (43), it is worth noting that Bn(p) de-
fined as (42b) is exactly equal to the Lagrange
remainder of order n (usually denoted by Rn(.)))
for the Maclaurin series in equation (37). Using
the Lagrange remainder formula? applied for the
function f(x) = ln(1 + x) at x = −p, for each n,
we then attain

Bn(p) =
(−1)n(−p)n+1

(1 + ξn)n+1(n+ 1)

=
−1

n+ 1

(
p

1 + ξn

)n+1

, (44)

12



where ξn is some number (depending on n) be-
tween −p and 0. Thus, owing to (44), limit (43)
is equivalent to

lim
n→∞

(
p

1 + ξn

)n+1

= 0, (45)

which evidently depends on the limit of p
1+ξn

as
n tends to ∞. More specifically, noticing 0 <

1 − p < 1 + ξn and setting c := limn→∞
p

1+ξn
,

if c ∈ [0, 1) then (45) is true. If c = 1, the right
hand side of (45) has the indeterminate form 1∞,
and hence we haven’t been able to draw an exact
conclusion on (45).

Moreover, from the following estimate

0 <
p

1 + ξn
≤ p

1− p
(∀n ∈ N∗),

we easily achieve that (45) holds true for all
p ∈ (0, 1/2). However, we haven’t yet verified
the validity of (45) (equivalently, that of (43))
in the case p ∈ [1/2, 1). We want to emphasize
here that the claims of Lemma 3.2, Theorem 3.2
and Theorem 3.6 are no longer true if (45) does
not hold.

Let p ∈ (0, 1/2). By virtue of Theorem 3.6,
and from (39a), (39b), we get the characteristic
function of X̃ given as

ϕX̃(t) =
q
(
(1− peit) ln(1− peit)− eitq ln q

)
(ln q + p)(1− eit)(1− peit)

,

(46)
where q := 1 − p. We haven’t determined the
probability distribution family corresponding to
the characteristic function defined by (46).

Remark 3.7. By using L’Hospital’s rule, we get
that lim

t→0
ϕX̃(t) = 0 for all p ∈ (0, 1) (not only

for p ∈ (0, 1/2)), where ϕX̃(t) is given as (46).
This means that a basic property of characteris-
tic functions (as presented in Section 2) is satis-
fied for all values of p. In addition, with the aid of
MAPLE, we have checked by direct calculation
that (43) (hence, so is assumption (5)) remains
true for many values of p in [0.5, 1) (such as 0.5,

0.6, 0.65, 0.7, and up to p = 0.78). Therefore, we
can reasonably predict that if X ∼ LogSeries(p),
Theorems 3.2 and 3.6 is then true for every
p ∈ (0, 1). We have been trying to prove this.

4. CONCLUSION

In the present study, we propose a novel
transformation of probability mass functions as-
sociated with nonnegative interger-valued dis-
crete random variables. We also demonstrate
that our proposed transformation preserves some
well-known families of distributions, such as
Poisson distribution, Negative Binomial distri-
bution and Hypergeometric distribution. In the
future, we intend to extend our research in two
directions. The first is to continue determining
the distribution of the resulting random variable
(X̃) when the initial random variable (X) has an-
other discrete distrbution, in addition to the dis-
tributions listed in Section 3. This work aims to
further verify the distribution-preserving prop-
erty of the transformation. Besides, we would
like to discover its useful applications in vari-
ous fields. The second direction, and the more
difficult, is to construct an analogous transfor-
mation of probability density functions in the
case of continuous random variables. One of the
most important aims of probability theory is to
find transformations which can preserve an ini-
tial probability distribution in some sense. Con-
sequencely, such transformations have attracted
a great deal of attention.
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