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Tinh 6n dinh cta anh xa da tri sao chinh quy Milyutin
duéi nhiéu Lipschitz

TOM TAT

Bai béo nghién eiiu tinh én dinh ciia mat dnh xa da tri sao chinh quy Milyutin bi nhidu bdi mat dnh xa
Lipschitz trong ngit canh céc khai niém chinh quy Milyutin v& sao chinh quy Milyutin duge phong lai cho phit

hgp vai mot s6 tinh hudng trong thie tién.

Tit khéa: Tinh chinh quy métric, tinh sao chinh quy métric, dé déc manh, tinh on dinh nhiéu, tinh sao

pseudo-Lipschitz.




q‘he stability of star Milyutin regularity set-valued

mappings under Lipschitz perturbation

ABSTRACT

2
The paper investigates the stability of a star Milyutin regular set-valued mapping perturbed by a Lipschitz

mapping in the context of the concepts of Milyutin regularity and star Milyutin regularity that have been

adapted to be suitable for some practical situations.

Keywords: Metric reqularity, star metric reqularity, strong slope, perturbation stability, star pseudo-Lipschitz

1. INTRODUCTION

First  discovered from classical results:
Lyusternik-Graves Theorem, which is formed from
two independent results by L. A. Lyusternik (1934)
and L. M. Graves (1950), Banach Open Map-
ping Theorem by Rudin (1973), and Classical Im-
plicit Function Theoregpy Cauchy, Dini (1980s),...
until now, the local %ric regularity for single-
valued mappings has been studied and expanded
by many mathematicians such as: Borwein, lotfe,
Penot, Frankowska, Aubin,... to set-valued map-
pings in nonlinear case of high order or in nonlocal
forms in works by Arutyunov!, Gfrerer?, Frankowska
and Quicampoix®, Mordukhovich and Ouyang®,
Penot®, Ioffe®7, Ngai, Tron, and Théra®, Ivanov
and Zlateva®, etc. In the most recent paper by Tron,
Han, and Ngai'’, models of nonlocal metric regu-
larity of multivalued mappings are considered on
an arbitrary subset of product metric space. And
then, the infinitesimal characteristics for these mod-
els as well as the stability of Milyutin regular under
perturbation are also established.

Besides, in the process of expansion of Aubin
property to the fixed set situiation, Ioffe® led to a

weak version of metric regularity which is called star
ric reqularity. Recall that star metric regularity

ﬂh set-valued mapping is the metric regularity of
the mapping whose images is the ones of original
mapping truncated by the project of the considered
set on the target space, i.e., a set-valued mapping
T betweeilinetric spaces is said to be star metric
regularity on I x V if there exists 7 > 0 such that
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d.(LT_I(’y)) < rd(y, T(z) N V),

gr all@By) e UxVand 0 < 7d(y, T(x)NV) < ~(x),
where the gange function + is positive on . In also®,
loffe has shown that there exist set-valued mappings
that satisfy star metric regularity but are not metric
regularity. And so, star metric regularity is claimed
to be weaker than metric regularity. Then, for the
such mappings, the use of the Milyutin perturbation
theorems as mentioned in'" with the metric regu-
larity assumption of the original set-valued mapping
may be not useful. Consequently, the purpose of this
article is to consider the stability of Milyutin regular
when the initial mapping just satisfies star Milyutin

r(‘g@t}“
e paper is organized as follows. In Section 2
we introduce some basic notations and preliminar-




ies. Further we recall the related results by Tron,
Han and Ngai'”. In Section 3 we prove stability theo-
rems of perturbed star Milyutin regularity set-valued
mappings.

2. PRELIMINARIES

mhe sequel, we shall mainly be working in the
ng of a space X, endowded with a met-
ric d. For = € X, we denote by d(z, (') the distance
fromz toC'C X, d(z,C) :=inf{d(z,u) | u € C}. By
B(C,r), B(C,r) we denote respectively an open and
losed neighborhood of C' with radius r € (0, +00).
The symbol F: X = Y means “F is a set-valued
mapping (or a multifunction) between metric spaces
X,Y7, that is a correspondence associates every x
set F(z), possibly empty. For every set-valued
mapping F = Y, we associate two sets, the
graph of F and the domain of F', are defined by
gaph}?:: {(z,y) EXXY|JEF )} and
om F := {zr € X | F(z) # (0}. The inverse
Y = X defined by
} Then,

of F is the mapping F~1!
Fllyg={zrecX|yecF(z

(z,y) € Graph F <= (y.z) € Graph F '

2.1 Some basic notations and notions

In view of variational analysis, stability theory
is closely related to the basic notion of metric regu-
larity. The versions of this key property are recalled
below, and for more details and further references,

the er is referred to the works!! 12,

Let X,Y be metric spaces, T : X = Y be a
set-valued mapping, ﬁ,@) € Graph T

Definition 1. 12 4 set-valued mapping T is said

M) be metrically reqular around (z,y) € Graph T with

modulus k = 0 if there erists a neighborhood U x V
T,9) such that

dlz, T Y(y)) < kd(y, T(x)), for all (z,y) €U x V.

The infimum of all modulus k is denoted by
reg T(z. ).

loffe!% suggested a nonlocal regularity model
of set-valued mapping T : Y associated to a
gange function + as follows. Let &4/ € X,V C Y and

7:X = RU{+oc} be positive on U.

finition 2. %2 A set-valued mappingT: X = Y
lly regular on U x V if there is
such that

18 said to be vy -met
a real number k >

d(z. T"'(y)) < kd(y.T(z)). (2.1)

provided that T € U, y € V, and 0 < kd(y, T(x)) <
V) the lower bound of
no such k erists, set

7(z). Denote by reg. T
the k satisfying (2.1).
reg. T(UV) =

Furthermore, in the work!” by Tron, Han ﬂ
Ngai, a diffe
is extended
as follows.

t version of 4-metric regularity which
o a general set W € X x YV suggested
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Definition 3. ! T:X =Y be set-valued map-
g and W be a subset of X x Y. T is said to be
etrically reqular on W with constant  if there is
a real number r > 0 such that

(W) < rd(y. T (x)). (2.2)

%a!! ,y) with 0 < rd(y, T(z) N W) < v(x).
e lowe ﬂ.d reg., T(W) of & in (2.3) is the mod-
ulus of v-metric regularity of T on W. If no such s
exists, set reg . T(W) = oo,

The above definition covers the case where the
parameters £ and r coincide, which is known as the
concept of y-metric regularity in the sense of loffe,

: shown in the following definition.

finition 4. 'Y Let X,V be metric spaces, W be a
subset of X 1 Y and let T : X = Y be a set-valued

ing. T 18 said to be y-metrically reqular on W
if there is & > 0 such that

d(z, T (y)) <rd(y, T(x))
for all (z,y) € W with 0 < kd(y. T(x)) < v(z).
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Next, we recall a weaker version of metric regu-
larity, star metric regularity, introduced by loffe in
alsa®.

ition 5. % Set Ty(z) = T(gﬂv. We say that
T s ~v-regular* (or star v-reqular) on U x V if Ty
egular on U x V. Specifically, T is said to be

~-reqular® g id x V if there is a k > 0 such that

d(z, T (y)) < kd(y, T(z) NV)
gf allzeld, yeV and 0 < rd(y, T(z)NV) < y(x).




In order to convenient in some applications, in
this paper, we propose an improved version of the
above definition in which the parameters “£” in the
regularity inequality and the gauge condition could
be distinguished.

finition 6. A set-valued mapping T : X = Y s

p id to be y-metrically reqular® onUd xV C X x Y

with constant k if there is a real number r > 0 such
that

d(z, T (y)) < wd(y. Tla) N V), (2.3)

armf! (z,y) € UxV with( < rd(;@'(x)rﬂ)) < (z).

The lower bound reg! T(U[V) of & in (2.3) is the

modulus of v-metric reqgularity* of T onld x V. If no
such k exists, set reg’ T(UV) =

Remark TEn case of r = k, Definition 6 leads to
the version of ~v-metric reqularity® on U x V in the
sense of Ioffe as in Definition 5.
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The equivalent versions of the regularity* such
as y-openness* and y-pseudo-Lipschitz* of set-valued
mappings are as I 'S

inition 8. A set-valued mapping T : X = Y is
~-open* on U x V with constant s if there is a real

number, 0 such that

B(L(z)nV,rt) NV C T(B(x, k" 'rt)), (2.4)

glenwer x el 0 <t <(z). pper bound
surl T(UIV) of & in (2.4) is the modulus of ~-
surjection® of T on U x V. If no such k exists, set
surd TU|V) =

finition 9. A set-valued mapping T-! : Y = X
p'-pseudo-Lépschéfz* on V x U with constant r if
T

ere is a real ber r = 0 such that

d(z, T7(y)) < gdly,v), (2.5)

provided that # € T 1)U, y,v € V and 0 <
rd(y,v) < v(x). The lower bound lip], T~ {U|V) of &
in (2.5) is the y-pseudo-Lipschitz* modulus of T71
onV xU. If no such  erists, set lipl T (U x V) =
0o,

@e following propositon shows the equivalence
of the above three sta.mgula.r concepts.

Proposition 10. LetT : X = Y be set-valued map-
ping and d C X, V C Y. The following statements
are equivalent:

(i) T 1s~y-open* onld xV with modulus not smaller
thagw~!;

(1i) T is y-regular® on U x V with modulus not
greaterglian K

(iii) T=' is y-pseudo- Lipschitz* on ¥V x U with mod-
wlus not greater than k.

7 Proof. To show (i) = (ii), let (z,y) € U x V
such that 0 <y( y, T(x) nV) < v(x). Then, for
all > 0, take r(d(y, T(x) NV) + n) such that
<rd(y,()ﬂV)<t ~(z). Then, = € U,0 <
t < ~4(z) and y € () N V,r—tt) V. By (i),
T(B(x, kr—tt)). Thus, there is u € B(x, kr ')
such that y € T(u). ff follows that d(z,7 (y)) <
d(z,u) = .«:(ﬁy, T(x)nV)+mn) Let 5 | 0,
one get'ﬂ Ty)) d(y, T(z)NV).
The 1mp tion g = (iii) is obvious. For
(#id) tr € U, 0 <t < (), and let
y € B(T ? _lt MV. Then x € U and there
exists v € T'(z that 0 < d(y,v) < v~ It
follows z € T~ (1»] ﬂbf yov € Vand 0 < rd(y,v) <
t<n(z). B i), dz, T (y)) < wd(y,v) < kr 't
s means that there exists v € T7'(y) such that
ﬂ,u) ﬁ_lt, that is y € T(B(z, kr1)). So,
24
B(T(z)nV,r %)nV c T(B(x,xr 't)).

The proof is complete.

2.2 Auxiliary results

Now, we recall the concept of (strong) slope
which is corqlered as an infinitesimal tool in metric

spaces, first mtroduced in 1980 by De Giorgi, Marino,

and Tosques!3,

inition 11, 1314 g!f X be a metric space and let
X — RU {+o0} be a given function. The symbol
)|+ stands for max(f(z),0) and Dom f:= {z €
| flz) < +0c} denotes the domain of f.

(i) The quantity defined by |V f|(z)

local minimum of f; otherwise

|Vﬁ(z) = limsup K

W UFEE Ixﬂ')

=0izisa

is called the local slope 9 the function f at
r € Dom f.




(ii) The quantity

. ﬂr — flu
L f|(z) := sup ble) = fw))s _ )
5 uFEe d[_?:,u)
15 called the nonlocal slope of the function f at
x € Dom f.

or r & Dom f, we set |Vf|) = |[I'f|(z) = +o00.
Obviously, |V f|(z) < |Iﬂ(r) orallz € X.

In case of X being a normed space and [ being

et differentiable function at = then the slope of

f coincides with the norm of the derivative Vf at
the point. For a fuller treatment of slope, we refer

2 15.16 s
the reader tol3 1516171819

To establish infinitesimal characterizations for
regularity, an effective tool that has been used is the
lower semicontinuous envelop of the distance fune-
tion associated to a set-valued mapping T : X = Y
defined by
el'(x) == liminf d(v,T(u)) := liminfd(y, T(u)).

Y (,v)—+{z,y) u—bz
The following theorem established by Tron, Han,
Ngai'! gives the necessary/ sufficient conditions for

the metrigegularity via nonlocal slope of the func-
T
ery y € Y, we associate it to set W, = {xr € X :

(z,y) € W}, and for every z € X, we associate it

tio iven now a subset W of X = VY, for ev-

to g W, ={y € Y: (z,y) € W}. Then, denoted
by q:: Uyey Wy, and PyW := UyexWa. Obvi-
ously, when W = U x V, the sets Wy (with y € V),

Py W coincide with U and the sets W, (with =z € ),
Py W coincide with V',

Th m 12. (Tron-Han-Ngai'") Let X be a com-
plete metric space and Y be a metric space, W C
X x Y be a nonempty subset. Let T : X = Y be a
closed set-valued mapping. Let v: X — Ry U {+0c}
be a gauge function. Then,

(i) Assume that v is @Wer semicontinuous. If W
is open and T is y-metrically reqular on W
1 th constant k., i.e., there exists a real v > ()
such that for every (z,y) € W, with 0 <

rd(y, T(x)) < ~(z),
d(z. T (y)) < rd(y, T(x)).
then for each (z.y) € W, with 0 < rlpg(a:) <

~(x), one has l
. T )
Loy |(x) = K

w

(ii) Conversely, assume E‘rther thaty : X — R, 1s
Lipschitz continuous function with constant
. If there are a positive real & such that

tim ([T |(2) < d(z, W) < 7(2), y € Py W,

0< lp;"(:c) < §y(z) =kt
then T is v-metrically regular on W with con-
stant k.

Regarding Definition 4, the theorem below in the
prk by Tron, Han, Ngail? gives a suficient condition
or the q-metric regularity via the nonlocal slope.

Th m 13. (Tron-Han-Ngait®) Let X be a com-

cte metric space and Y be a metric space, W C
X xY be a nonempty subset. Let T : X = Y be a
closed set-valued mapping. Suppose that v: X — R
is a Lipschitz function with constant 1. If there exists
k> 0 such that

Loy l(x) > w7,
Ve € (Wy)v.y € W0 < upg(;r) < 7y(z), where
(Wy)'y = U::EWU-B(I,’}‘(I?)), then one has

d(z, T (y)) < rd(y, T (z)),

gr all (z,y) € W with 0 < kd(y, T(z)) < v(x).

3. PERTURBATION STABILITY OF
STAR MILYUTIN REGULARITY MULTI-
FUNCTIONS

Let X, Y be metric spaces and W be a nonempty
subset of X x Y. Firstly, we recall the defintiton of
Milyutin regular on W given by Tron, Han and Ngai
=
Befinition 14. (Tron-Han-Ngai*') A set-valued

ing T : X = Y is said to be Milyutin regu-
lar 'on W with constant & if there is a real number
r > 0 such that

d(T~(y)) < kd(y, T(x)).

n; all (z,y) € W with 0 < rd(y, T(x)) < mpow(x).
e infimum of all above k denoted by reg,, T(W).




Next, we consider the definitions of Milyutin
regulargamociated to the gauge function v =
mp,w from X to R and defined by mp,yy () =
d(z, X\ Py W).

finition 15. A set-valued mapping T : X = Y s
mi to be Milyutin reqular® on W with constant r if

€

re is a real number v > 0 such that
d(T™H(y)) < kd(y, T(x) N PxW),

for en(:c,y) €W with 0 < rd(y,T(z) N PxW) <
mp, wl(z). The infimum of all above x denoted by
reg b, TEV) s the modulus of Milyutin reqular® of T
on W. If no such & exists, set reg) T(W) = oc.

Remark 16. Repeating the above definition and tak-
ing r = k& leads to the definition of Milyutin reqular®
on W in the sense of loffe.

It is easily seen that mp,w(r) is positive on
PxW if and only if PxW is an open set, which fol-
lows from W is open. And then, the results of Theo-
rem 12 and Theorem 13 are also applied to the func-
tion mp,yy due to Lipschitz property with constant
1 of this one.
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In this part, we shall Investigate the stability of
Milyutin regular under pern‘ba.tion by single-valued
mappings and the original set-valued mapping is as-

a:ﬂed to be Milyutin regular”.

eorem 17. Let X be a complete metric space and
be a ach space. Let Y € X, V C Y be open

ts. Let a closed set-valued mapping T : X = Y
and ingle-valued mapping h : X — Y be Lips-
chitz on U with comtant € (0,k ). If T is Mi-
lyutin reqular* on U x V with constant r, i.e, there

0 such that for all (z,y) € U x V with
NV) < myl(z),

d(x, T~ (y)) < rd(y, T(z) N V).

exists
0 < rd(y,

Then, for everyn > 0, T + h is Milyutin regular on
W withgsgg ,, (T + h) (W) < (x71 = A) 7!, where
W’\’?:{(I,y)ex xY | reld,

B(y — hiz), dpmy(y) C V}

g‘mof. Let 17 > 0 be given. Based on Theorem 12,
we only need to prove that

limn imf{|[Cpg |(x)  d(z, W)") < Smpyan (@),
y € PyW 0 < \,95”‘(9:) < Bmp oy ()} =670 — A

(3.1)

¢ d
Indeed, choose § such that 13 < min{1,n}, 0 <
- A+1)4
rd < 1, % < An.
) € X x Y such that d(z, W_;\f?) <

1
Let (z,y
)y € PxWM and 0 < h(z) <
).

Smpx WAn

(z
M py yyan (). Then there exists u € W7 such that

d(z,u) < dmp yypan(z) < 5m¢,,£.

1
o0, u €U, By — hiu), spmy(x)) C V. and since my,
15 Lipschitz with constant 1, it follows that

dz,u) < dmy(u) + dd(z,u).

By the choice of 4, one has

)
d(z,u) < mmu(u) < myy(u) (3.2)
which gives = € U.
Let now {u,} € X be such that w, — r and

T+h

d(y, (T + h)(un)) — ¢, " (x) as n — oo.

Thus, Eere exists ng € ¥ such that for all n = ng,

0 < dly, (T+h)(u.)) < dmelun) (3.3)

and, as u,, — = € U, we have u,, € U due to the
openness of I4. And then, by the choice of § when n
is sufficiently large, we have

0< d(ys(T+ h’)(un)) < r_lmrba'("'n)- (3"1)

Furthermore, for n large enough, we find that
Ay, T(un)) = d(yn, T(u,) NV). Indeed, fixing n €
N*, we take a sequence {a;} C T'(u,) such that

d(y = h(un), ap) = dly — hlun). T(uy,)), b — oo

By (3.2), (3.3) and the continuity of distance func-
tion, we conclude that

< 57}‘1“(?1,1)

< dmy(u) + dd(uy,, u)
62

1—

d(y - h’(”n)s ak}

(3.5)

I

gy (u) +

5w (u)
= %mu(u).




From (3.2), (3.5) and the choice of 5,@0110\&'3 that

for n > no,
d(ag,y —h(u)) < dlar,y— hiu.))
By —

<
< l_é_mu(u)+/\d( )
J

< — -

< g mul@) + A—=my(u)

_(A+1)d

=g "ww

< Anpmuu)
which gives ar € By — h(u), Apmy(u)) < V,
and thus a;, € T(w,) N V. Consequently, d(y —

h’(un)sak) = d(y - h’(”n)xT(”rl) n V)s SO: d(y -
h(un), Tlwy,)) < dly — h(u,), T{u,) NV). And then,
dly — h(un), T(uy)) = dly — h(w,), T(u,) NV) when
n is sufficiently large.

Then from (3.4), we see that
0 < d(y — h(w), T(wn) N V) = d{y — h(w), T(un))
< rmyy(uy,).

Moreover, by (3.2), for n is large enough, we conclude
from the continuity of distance function that

dy — hiuy),y — h(u)) < Ad(gm, v)
< Ad(x,u)

< ,\imu(u)

- 1-4

< Anpmuy (),
wher@he last inequality is followed from the choice
of 4. It follows that

y—hlu,) € Bly — hiu), Mypmy, (u)) C V.

Then from the fact that T is Milyutin regular* on
U x V with constant x, we obtain

dlwn, Ty — h{un))) < rd(y — hun), T{u,) N V)
=d(y — hlu,), T(u,)), ¥n = ng.

Now we choose some z, € T '(y — h(un)) (e,

y— hiu,) € T(z,)) such that
d(un, z0) < (k+ 0 )dy — h(u,), T(un)).  (3.6)

From (3.3) and the choice of 4, for all n = ng, one
has

d(ttn, 2,) < (k8 + 1" ) dmu(un) < mylun).

This yields z,, € U, and thus from the Lipschitz prop-
erty of h on U, we have

d(h{un), h(zn)) < Ad(wun, zn). (3.7)

Since 595'”‘(-1‘)
limy, yee 4, = o, we see that liminf, . d(u,, z,) >
0. Note that d(y—h(u, ), T(z,)) = 0since y—hlu,) €

T(z,), and from (3.6), (3.7), we conclude that

> 0, the closeness of T, and

pTHh(z) — pTHh ()

<) T+hy, = lims p_t,z u n

[y, " l(z) = h}l;rl:;p )

> i sup 20 T+ W)(un)) = d(y, (T + h)(zn))
n—oc d(un,zn)

— hmbllp d(y _ h(un)aT(un)) — d(y — "I(Zn)aT(zn))
noree d(”nsz
. dy — hiun), T(u,)) ﬁ

> lim su _

- 1}1111?5;;3 d(ty, z,)

> lime _N=x"1_ 1

S nt K

This finishes the proof.

Theorem 18. Let X be a complete metric space and
Y be a Banach space. Let Y € X,V C Y be open
X =Y and
a single-valued mapping h : X — Y be Lipschitz on U
with constant A € (0,x71). If B¥s Milyutin regular*
on U x V with constant k, i.e, for all (z,y) EU x V
with 0 < &%,T(z) ny) < my(x),

d(z, T (y)) < wd(y,T(z)NV).

5. Let a closed set-valued mapping

Then, T+ h is Milyutin reqular on W with reg (T +
RY(W) < (k71 = N1, where

W:{&y)EXxY | zeld,
Bly — h(x), (267" — Nmu(z)) € V}.

Proof. Set (W, ) i= Uuew, Blu, mpw(u)). Ac-
cording to Theorem 13, now we shall show that
for any © € (Wy)m, y € PyW with 0 < (k7' —
N T (@) < mpywlz),

| Tl | (2) > k1 = A

Indeed, take [% € X x Y such that x € (W,),..

ye Py WwithU'< (r;_l—/\)_lpg‘*'h(;r) < mpyulz).
Then, there exist u € W, such that

dz,u) < mpow(u) < my(u). (3.8)




g}, uel, Bly— h(u),/\m?x)) CV,and z € Y.

< X such that u,, — fnd
d{y, (T+h)(u,)) — l,gg,ﬂ"'h(z) as n — oo. Thus, there
exists ng € N such that for all n = ny,

Now, we take {u,}

0 < d(y, (T + h’)(“’n))

<

< (k71 = Nmy(z)

< (k71— Nmy(u,)  (3.9)
< v g (un), (3.10)

and that u,, € U follows from the openness of I and
un — & €U,

Furthermore, d(y — h{u,),T(u,)) = dly —
h(un), T(un) NV) for n large enough. Indeed, fix-
ing n € N*, we choose a sequence {ay} € T(u,) such
that d(y—h(w,), ag) — dmh(un),T(un)), k — oo.
By (3.8), (3.9), and the continuity of the distance
function, we conclude that

d(y - h’(”;l)sak) < ("{'_l - /\)m&a‘(”n)
< (kY = Nymgg(u) + (g — A (uy,, u))
< (2671 = Ay (u),

(3.11)
which yields ax € B(y — h{un), (2671 — Nmg(u)) C
V, and thus a; € T(w,) N V. Consequently, d(y —
h’(un)sak) = d(y - h’(”n)xT(”rl) n V) SO: d(y -
h(un), Tluy,)) = dly — h(u,), T{u,) NV). This gives
d(y — hlwa), T{un)) = dly — h(wn), T(u,) NV) when
n is sufficiently large.

Then from (3.10), we see that

0< d(ii - h’(”n)sT(un) n V) = {f(‘ij - h(un)sT(”n))

< Kk Ymyy ().

Otherwise, by (3.8) and for n large enough, one also

have
dly — h{un),y — h(u)) < Ad(wn, w)
< Ad(un, z) + Ad(z,u)
< Ay (u)
< (2671 = Nmy(u)

which leads togg—h(w,) € B(y—h({w), Amy (u)) C V.

So, due to the Milyutin regularity* of T on U x V
with constant x, one obtains

d(in, Ty — h{un))) < kd(y — h(un), T(u,) NV)

We now choose z, € T y—h(u,)) (ie., y—h(u,) €
T(zn)) such that

(
(

) NY)

d(unazn) = ("C+ n_l)d(y - h(ur )a Uy
= ( ) (3.12)

O, T
K+ n_l)d(y - h’(”n)sT
< (k+n e g ()

< g (n),

where the last inequality is obtained when n is large
enough. It follows that z, € U, and thus from the
Lipschitz property of h on U, we have

d(y - h’(“’n)sy - h(zn)) < /\d(”nszn)- (3'13)

Since 595'”‘(3:)

> 0, the closeness of T, and
limn ee un = x, we have liminf, o d(tn, zn) > 0.
From ( ), (3.13), and note that y—h(u,) € T(z,),
similar as in the proof of Theorem 17, one concludes

that

| I'\,-og"'h | (x) = limsup

o

k+nl

=r"1-A\

The prootf is completed.

4., CONCLUSIONS

This artical suggests the models of star regular-
ity on an any subset of product metric spaces as well
as established the equivalence of star regular con-
cepts: star openness, star metrically regular and star
pseudo-Lipschitz in the literature. Regarding the star
Milyutin regularity, we have proved that the stabil-
ity of Milyutin regularity under small Lipschitz per-
turbation also attains when the assumption of star
Milyutin regularity is imposed on the original set-
valued mapping.
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