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ABSTRACT

In this paper, we consider the problem of exponential state estimate for positive discrete-time system with

time delays and disturbances. By using a state transformation, we reformulate a positive discrete-time system with

time delays and disturbances to system without disturbances. By using optimization techniques, we derive the

optimal exponential state estimate for the obtained systems (no noise), from which we also obtain the exponential

state estimate for the original system. Some numerical examples are given to illustate the obtained theoretical

results.
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1. INTRODUCTION

Positive systems are dynamical systems in which
the state vectors are always belong to the nonneg-
ative orthant providing that the initial value func-
tions are nonnegative. This kind of systems has at-
tracted a lot of attention in the mathematics commu-
nity. Due to the positivity requirement, it is much
more complicated and difficult to study on positive
systems than on general systems. On one hand, sim-
ilar to general systems, the time delay appears in
the positive system and it can affect the stability of
the system. On the other hand, different from gen-
eral systems with time delays in which the quadratic
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Lyapunov-Krasovskii functional is used, the co-
positive Lyapunov-Krasovskii functional is applied
to study the stability and the performance of posi-
tive time-delay systems. In the research, ' for the first
time, the stability of linear positive systems with con-
stant delays was considered by using the co-positive
Lyapunov-Krasovskii functional. This result is ex-
tended to linear positive systems with time-varying
delays in the research.> The L -gain and L,-gain are
first mentioned by Briat? where the input-output gain
is represented by linear inequalities. The Lyapunov-
Krasovskii functional method is also a useful tool to
study the problem of a-exponential stability for pos-
itive systems with bounded time-varying delays.*>
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Another approach to study positive systems is based
on the comparison principle. There are many devel-
opments of this approach have been introduced in the
literature, see, e.g: 6.7

In practical time-delay systems, disturbance is
a factor which appears very often and cannot
be avoided. State estimate for time-delay systems
with bounded disturbances is one of the key prob-
lems in control theory. For positive systems, the
main approach for solving this problem is based
on the property of Metzler/Hurwitz/Schur matri-

41213 consider

ces.>¥ ! For discrete-time systems,
the problem of state estimate for positive discrete-
time systems with delays without disturbances. More

specifically,»!

combined the co-positive Lyapunov-
Krasovskii functional method with the solution com-
parison principle to address the exponential state es-
timate for positive systems with time-varying delays.
In the research)? authors combined the solution compa-
rison princple with the expontial state transformation.
By using positive time-delay systems to bound from
above switching sytems, ' derived bounds for state
vectors of switching systems with delays and dis-
turbances. The state estimating problem for positive
discrete-time systems with delays and bounded dis-
turbances has been studied in.!""'>!® In particular,
the disturbances considered in'® are assumed to be
bounded from above and below by some known vec-
tors. In, ! the state bounding problem for positive sin-
gular systems with time-varying delay and bounded
disturbances is addressed. However, it should be
noted that these above state estimates have not yet
been optimized.

Motivated by the above observation, in this pa-
per, we consider the optimization problem of state es-
timates for positive discrete-time systems with delays
and bounded disturbances. This work can be consid-
ered as a counterpart of'® in which the continuous
case was studied. Firstly, a state transformation is
used to reformulate the problem of finding the op-
timized exponential state estimate for a positive dis-
crete time-delay system with bounded disturbances
into the problem of finding the optimized exponen-
tial state estimate for the positive discrete time-delay

system without disturbance. Then, we apply an op-
timization scheme to the method proposed in'' to
obtain a better exponential componentwise estimate
for the state vector of the transformed positive time-
delay system (without disturbance). Consequently,
we receive a more accurate exponential componen-
twise state estimate for the considered perturbed pos-
itive time-delay system.

2. NOTATION AND PRELIMINARIES

Notation: N, R" and Rg, are respectively the
set of nonnegative integers, the n-dimensional vec-
tor space and the nonnegative orthant in R"; e =
11 - 17 € R for two vectors x =
(2122 - 2],y = [y1 2 - ya]" in R™, two
n x n-matrices A = [a;;], B = [bij], 2 <y (z 2 y)
means that x; < y; (z; < y;),Vi = 1,--- ;nand
A=< B (A = B) means that a;; < bij (ai]- <
bi;j),Vi,j = 1,---,n; A is a nonnegative matrix if
0<A;2 >y (A> B)meansthaty < z (B =< A);
p(A) = max{|\| : A € o(A)} is the spectral radius
of A; I, is the identity matrix of size n. The maxi-
mum, minimum of a finite set of vectors (of matrices)
are understood componentwise.

Consider the following positive discrete-time
system with time-varying delays and bounded distur-
bances

2t +1) = Agz(t) + Aya(t — hy(t))

+w(t), teN, 1)

2(s) = ¢(s), s € {~h,~h+1,...,0}, (2)
where x(t) is the state vector; hy(t) € {0,1,...,h}
is the time-varying delay; h is a known positive in-
teger; Ao and A; are two known nonnegative ma-
trices; w(t) € ]Ra 4 1s the vector of disturbance;
¢(s) €RG 4, s € {=h,—h+1,...,0},is the initial
value function. Both w(+) and ¢(+) are unknown but

assumed to be bounded by some time-varying func-

tions, 1.e.

0= w(t) 2&(t), teN, 3)
0_<(10(S) @( )7 SE{_hv_h—l_]-u"'vO}? (4)
(s

where w(t), ¢(s) are two known time-varying func-
tions. Let denote by x(t, ¢, w) the unique solution of
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(1) with respect to the initial value function ¢(s) and
the vector of disturbance w(t).

The aim of this paper is to find the smallest possi-
ble exponential estimate with a predefined decay rate
A > 1 of the solution z(t, p,w). More specifically,
we tend to find the two smallest possible vectors [3;
and (3, such that

a(t,p,w) < B+ BATLVEEN.  (5)

Remark 2.1. Since w(t) is a known function, with a
predefined decay rate A, it can be found two nonneg-
ative constant vectors (; and @, such that

ot) 2@+ oA i=01), teN. (6

In this paper, we will assume the existence of i; and
(- satisfying (6).

Remark 2.2. For each positive scalar A > 0, let us
define the matrix

My == Mo + A" A4, (7)

As in,*!! to guarantee the existence of exponential
state estimate for system (5), it must be assumed
that M), is a nonnegative and a Schur matrix, i.e.
p(My) < L.

An exponential state estimate under the form (5)
for system (1) is obtained via a solution comparison
with the following system

y(t+1) = Agy(t) + Ary(t — ha(t)) + d(t),t € N,

(®)
where d(t) is a vector of disturbance which will be
defined later.

The next lemma give us some useful facts related
to systems (1) and (8) which will be needed in next

parts of the paper.
Lemma 2.3. (i) Systems (1) and (8) are nonneg-
ative;

(ii) With two initial value functions 0 < ¢;(s) <
or(s), s € {—h,...,0}, and two vectors of
disturbance 0 < w;(t) < w,(t), t € N, we
then have

ﬂ?(t, (pl,CUl) j x(t,gpr,Wl),
x(ta@hwl) = .’L‘(t,gmeT),

https://doi.org/10.52111/qnjs.2024.18102

$(t,<,0r,wr)

j y(t7 g07”7 w’r‘)a
y(t, or,wi) 2y

(t>()0l>w7”)'

Proof. The proof of this lemma can be conducted
similarly as in.’ 0

3. EXPONENTIAL STATE ESTIMATE
FOR POSITIVE DISCRETE-TIME SYS-
TEMS WITH DELAYS (WITHOUT DIS-
TURBANCE)

Let us consider the following positive discrete-time
system (without disturbance)
2(t+1) = Apz(t) + Ar12(t — hi(t)), t €N, (9)
Z(S) = ¢(5)7 s€ {_hv —h+ ]-7 R 0}7 (10)
where the initial value function ¢(-) is unknown but

assumed to be upper bounded by a known time-
varying function ¢(-), i.e.,

0=<¢(s) < @(s), s€ {-h,—h+1,...,0}. (11)

In this section, under the assumption that p(M)) < 1,
we present a method to obtain a A-exponential state
estimate for the solution z(¢, ¢) of the system (9). By
Lemma 2.3, one has

2(t,6) < 2(t,9),t € N. (12)

As in,'! if there exist a vector p > 0, a number
d € (0,1) such that

(Ao + Ay)p < dp (13)

and a nonnegative scalar vy such that

o(s) 2 A% s € {—=h,~h+1,...,0}, (14

where A = ¢ h;+11, we then have
2(t,¢) <A teN. (15)

It should be noted that condition (13) is equivalent to
p(M)) < 1 where M) is defined in (7). Combining
two inequalities (12) and (15), we get

2(t,¢) < ypA~h teN. (16)

A vector (p, ) € R’} xRy 4 satisfying the condition
(M) —I)p < 0and (14) can be found as below

36 | Quy Nhon University Journal of Science, 2024, 18(1), 33-41
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-1
:(I—AAJ—A’“L“AT> e, (17)
I S O]
s=h..0  p1

(18)

It can be seen that the factor vector (p, ) of the ex-
ponential state estimate (16) has not been optimized.
,n}, the
exponential estimate of the i-th element of the state

From this inequality, for each i € {1,...

vector z(t, ¢) can be obtained as below
zi(t,0) < yp 't e N. (19)

Foreachi € {1,...,
(p,7) € R x R+ such that the coefficient yp; in

n}, our aim is to find a vector

(19) is minimized.

For simplicity, let us consider the case ¢ = 1.
Since the function ¢(s) is given, for each i €
{1,...,n}, we can define the number

a; = max

l¢i()ll0 z(s)Hoo
20
s€{—h,—h+1,.,08 A7S (20)

Let a = [aj,aq,...,a,]|. Then, condition (14) is
equivalent to vp > a.

Let

Q.- {(p, 7) €RY x Ro 4

(MX_I)p'<07
p = a ’

and f(p,y) := p1.
The smallest factor yp; of the exponential estimate

of the first element in (19) is the optimal value of the
following optimization problem:

min f(p,y) = yp1 such that (p,7) € Q. (OPy)

It should be noted that (OP; ) is a nonconvex opti-
mization problem. Hence, this problem is quite diffi-
cult to be solved. However, (OP; ) can be reformu-
lated under the form of the following linear program-
ming:

min g(u) = uy such thatu € A, (LPy)
where

A={ueR}|(My—Du=<0u>=a}. (21)

It can be seen that the two problems (OP;)
and (LP; ) have the same optimal value.

Similarly, for each i € {2,3,...,n}, by solving
linear programming problems
min g(u) = u; such that u € A, (LP;)

where A is defined in (21), we find the smallest fac-

tor u;, of the i-th element of the exponential state

estimate z;(t, ¢) under the form (19). Combine the

above procedures, we receive the minimized vector
*

up = [uf,ub, ..., us] " of the following exponential

state estimate of the system (9)
2(t,¢) 2 u At EN. (22)

From the above development, the main result of this
section is summarized in the following theorem.

Theorem 3.1. Assume that p(M)) < 1and 0 <
#(s) =< ¢(s). The solution z(t, ¢) of the system (9)
has an exponential state estimate under the form

2t,¢) Lu A tEN (23)

where u, = [uf,uj,...,u*]" is the optimal factor
vector and u;,7 = 1,...,
the problem (LP; ).

n, is the optimal value of

4. EXPONENTIAL STATE ESTIMATE
FOR POSITIVE DISCRETE-TIME SYS-
TEMS WITH DELAYS AND BOUNDED
DISTURBANCES

In this section, we will establish an exponential state
estimate for the positive discrete-time system with
time-varying delays and bounded disturbances sys-
tem (1). Choose A > 1 such that p(M,) < 1. Let us
define two nonnegative vectors

q = - M) '@, (24)
= (I - My) 'w,. (25)

Let
(s) = max {@(s), @ + A"}, (26)
&(s) == v(s) —q — @A, (27)

d(t) :== @ + @, A7

FATEFLA — N OF 40 (28)
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Then, by comparing with conditions (3), (4), (6), and
noting that b1 (t) < h, A; = 0, it can be verified that

p(s) 2 @(s) 2 U(s), 0 =2 (s) vaw(t) 2 w(t) =
d(t). From Lemma 2.3, one has

z(t, p,w) = z(t,¥,w) 2 y(t, ¥, o) < y(t,¥,d).
(29)

From the above inequalites, we just need to find an
exponential state estimate for the solution y(¢, ), d)
of the system (8).

Set
2(t) = yt) —q— X Tt > ~h. (30)
From (8), we then have
2(t+1)
=ylt+1)—q—g"
= Aoy(t) + Ay (t — ha(t)) +d(t)
—q— QTA_t
= Ao (2(t) + @ + ¢ A ")
A (2= ha() + @+ AT
+d(t) - q - ¢A
= Agz(t) + Az (t — hl(t)) + (AO + A — I)ql
+ AT A4y + N A = D,

-t ()\h+1A1 B )\hl(t)+1A1> g +d(t)

= Apz(t) + A1z (t — hi (1))
+ (M = D)(I - My) 'y
+ATH(My = DI - M),
-t ()\h+1A1 B )\hl(t)+1A1> g +d(1)

= Agz(t) + A1z (t — hy(t)) — @) — W A"
)\t <)\h+1A1 - )\hl(t)-&-lAl) gr +d(t)

= Aoz(t) + A1z (t — hi(2)) .

This means that we obtain the positive discrete-time

system with delay and without disturbance. We then
deduce from (30) that

y(t. v, d) = 2(t,¢) + q + ¢ AT, (31

where, ¢(-) is defined in (27). Combine in-
equalites (29) and (31), one gets

https://doi.org/10.52111/qnjs.2024.18102

2t ow) 2 2(t0) Fa+ AT (32)
From (22) and (32), we have
z(t,p,w) 2 u AT+ g+ A
= g+ (ur + Agr)A "

From this, we obtain an exponential state estimate (5)
for system (1) with factor vectors defined by

Bi=aq, Br = ur + Mgy, (33)

where the vector u, is found as in Theorem 3.1. The
main result of this section is summarized in the fol-
lowing theorem.

Theorem 4.1. Assume that p(M)) < 1, (3) and (4)
hold. The solution x(t, p,w) is estimated via the for-
mula (5) where the vectors By, 5, are found by (33).

5. NUMERICAL EXAMPLES

In this section, we present two numerical examples
to illustrate the results obtained in Theorems 3.1
and 4.1.

Example 5.1. Consider the following time-delay
system

p(t+1) = Agz(t) + A1zt — h(t) teN,

.’L'(S) :¢(8)7 8:_2a_170a
(34)

where, z(t) € R3,hy(t) € {0,1,2}, Ag and A; are
two nonnegative matrices with coefficients

[0.21 0.21 0.12]
Ag = 0.04 0.12 0.14]|,
0.12 0.05 0.26]

[0.32 0.01 0.18]
Ay = 1003 012 0.02],
0.04 0.01 021

the initial value function ¢(-) is unknown and satis-
fies [¢(s)| < ¢(s) where

&(—2):{2 3 0.5}T,

5(—1) = {3.1 2.4 3.2}T,

3(0) = [0.3 0.5 0.1}T.
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By using Remark 4 in the ressearch,* we deduce that
the range of the decay rate A is [1,1.1375].

Let us consider the case A = 1.1. By applying
Theorem 3.1, we receive the following table.

A=1.10

uy ) us

Methods

4.9163 2.4793 2.9091
9.6567 3.2000 5.6305

Our new method

Method in !

The above table shows that with the decay rate
A = 1.10, the elements of the factor vectors obtained

by our new method is smaller than the ones obtained
by. 11

10 T T T T T T T T T

\ — (1)

ol
\ — 9.6567*1.10"" (Method in [11])

8 +
\ ——4.9163*1.10" (Our new method)

x1(t) and its bound
IS o
/
/

2 0 2 4 6 8 10 12 14 16 18
time (seconds)

Figure 1. z,(¢) and its bounds.

35 T T
\ _xz(t)
3 \ — 3.2000*1.10™" (Method in [11])
——2.4793*1.10" (Our new method)
25 AN —
el
c
=1
o
Ko} 2F
2
el
c
© 15
=
(L
0.5

2 0 2 4 6 8 10 12 14 16 18
time (seconds)

Figure 2. x,(t) and its bounds.

\ — x3(t)
5 \ — 5.6305*1.10" (Method in [11])
\ —2.9091*1.10" (Our new method)
he]
c
3
<]
o
2
xe]
c
©
e
~
~
S~
~
—_—

2 0 2 4 6 8 10 12 14 16 18
time (seconds)

Figure 3. x4(t) and its bounds.

For visual illustration, let us choose hj(t) =
1 + sint. Figures 1-3 give us the trajectories of state
vector z(t, ¢, w) and its bounds. It can be seen that
our new method provides more accurate estimates for
the state vector of the system (34).

Example 5.2. Consider the following positive
discrete-time system with delays and disturbances

z(t+1) = Aoz(t) + Ajz(t — hi(t)) + w(t) t €N,

z(s) = ¢(s), s=-2,-1,0,

(33)

where, z(t) € R3, hy(t) € {0,1,2}, Ag are A; non-
negative matrices with

[0.21 021 0.12]
Ag = 0.04 0.12 0.14|,
0.12 0.05 0.26]

[0.32 0.01 0.18]
Ar= 1003 012 0.02],
0.04 0.01 021

w(t) € Ry, is the vector of disturbance satisfy-
ing 0 < w(t) < w(t),t € N; the initial value
function p(s), s = —2,—1,0, satisfying condition
o(s)] = @(s) with

13 0.6 0.2
o(s)=1 8 |, w@®)=|1]+]03 A"
10.2 0.7 0.5
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By using Remark 4 in,* we find that the range of de-
cay rate is [1,1.1375].

Let us consider the case A = 1.1. By applying
the development in Section 4, we find that

.
6;2[4.1627 2.2965 2.8374} ,

-
ﬂT:[13.0887 9.7035 7.7428} .

This gives us the exponential state estimate for the
positive discrete-time system with delays and distur-
bances (35).

18 T T T T T T T T

_x1(t)
16 1
—4.7781*1.10" (Our new method)

x1(t) and its bound

2 0 2 4 6 8 10 12 14 16 18
time (seconds)

Figure 4. x,(t) and its bounds.

_xz(t)

—2.9146*1.10 (Our new method) ]

J N
i T~
3\1 \

-2 0 2 4 6 8 10 12 14 16 18
time (seconds)

x2(t) and its bound

Figure 5. 7, (t) and its bound.
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—x,(t)

——2.4953*1.10 (Our new method)

x3(t) and its bound

2 0 2 4 6 8 10 12 14 16 18
time (seconds)

Figure 6. x5(t) and its bound.

For visual illustration, let us choose hj(t) =
1 + sint. Figures 4-6 give us the trajectories of state
vector z(t, ¢,w) and its bound obtained by our new
method.

6. CONCLUSION

In this paper, we have considered the problem
of exponential state estimate for positive discrete-
time systems with delays and disturbances. A state
transformation is used to transform positive discrete-
time systems with delays and disturbances to sys-
tems without disturbance. By applying an optimiza-
tion techique, we have found the smallest possible ex-
ponential state estimate for the transfromed systems
from which the estimates for the considered systems
are derived. The approach in this paper can be used
to study some other classes of positive systems com-
prising disturbances.
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