Tinh 6n dinh ctia Anh xa da tri sao chinh quy Milyutin
duéi nhiéu Lipschitz

TOM TAT

Bai bao nghién citu tinh én dinh ctia mot anh xa da tri sao chinh quy Milyutin bi nhiéu bdi mot anh xa
Lipschitz trong ngt canh céac khai niém chinh quy Milyutin v& sao chinh quy Milyutin dugc phéng lai cho phu
hop v6i mot sé tinh hudng trong thyc tién.
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The stability of star Milyutin regularity multifunctions

under Lipschitz perturbation

ABSTRACT

The paper investigates the stability of a star Milyutin regular set-valued mapping perturbed by a Lipschitz

mapping in the context of the concepts of Milyutin regularity and star Milyutin regularity that have been

adapted to be suitable for some practical situations.
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1. INTRODUCTION

First  discovered from classical results:
Lyusternik-Graves Theorem, which is formed from
two independent results by L. A. Lyusternik (1934)
and L. M. Graves (1950), Banach Open Map-
ping Theorem by Rudin (1973), and Classical Im-
plicit Function Theorem by Cauchy, Dini (1980s),...
until now, the local metric regularity for single-
valued mappings has been studied and expanded
by many mathematicians such as: Borwein, Iloffe,
Penot, Frankowska, Aubin,... to set-valued map-
pings in nonlinear case of high order or in nonlocal
forms in works by Arutyunov!, Gfrerer?, Frankowska
3, Mordukhovich and Ouyang?,

Penot®, Ioffe®7”, Ngai, Tron, and Théra®, Ivanov

and Quicampoix

and Zlateva?, etc. In the most recent paper by Tron,
Han, and Ngai'®, models of nonlocal metric regu-
larity of multivalued mappings are considered on
an arbitrary subset of product metric space. And
then, the infinitesimal characteristics for these mod-
els as well as the stability of Milyutin regular under
perturbation are also established.

Besides, in the process of expansion of Aubin
property to the fixed set situiation, Ioffe® led to a

weak version of metric regularity which is called star
metric reqularity. Recall that star metric regularity
of a set-valued mapping is the metric regularity of
the mapping whose images is the ones of original
mapping truncated by the project of the considered
set on the target space, i.e., a set-valued mapping
T between metric spaces is said to be star metric
regularity on U x V if there exists 7 > 0 such that

d(u, T™(v)) < 7d(v, T(u) N V),

for all (u,v) €U xV and 0 < 7d(v, T(u)NV) < §(u),
where ¢ is a gauge function that takes positive val-
ues on U. In also®, Toffe has shown that there exist
set-valued mappings that satisfy star metric regular-
ity but are not metric regularity. And so, star metric
regularity is claimed to be weaker than metric reg-
ularity. Then, for the such mappings, the use of the
Milyutin perturbation theorems as mentioned in'®
with the metric regularity assumption of the original
set-valued mapping may be not useful. Consequently,
the purpose of this article is to consider the stabil-
ity of Milyutin regular when the initial mapping just
satisfies star Milyutin regularity.

The paper is organized as follows. In Section 2
we introduce some basic notations and preliminar-



ies. Further we recall the related results by Tron,
Han and Ngai'®. In Section 3 we prove stability theo-
rems of perturbed star Milyutin regularity set-valued
mappings.

2. PRELIMINARIES

Throughout the article, we shall mainly be work-
ing in the setting of a metric space X, endowded with
a metric d. For v € X, we denote by d(u, A) the
distance from u to A C X, d(u, A) = inf{d(u,t) |
t € A}. By B(C,p), B(C,p) we denote respectively
an open and a closed neighborhood of C' with ra-
dius p € (0,400). A set-valued mapping (or a mul-
tifunction) between metric spaces X,Y denoted by
T : X == Y is a correspondence associates every
u a set T'(u), possibly empty. For every set-valued
mapping T : X == Y, we associate two sets, the
graph of T and the domain of T, are defined by
GraphT = {(u,v) € X xY | v € F(u)} and
Dom 7T = {u € X | T(u) # 0}. The inverse
of T is the mapping T7' : Y = X defined by
T Y(v)={u € X |v e F(u)}. Then,

(u,v) € Graph T <= (v,u) € Graph T~ .

2.1 Some basic notations and notions

In view of variational analysis, stability theory
is closely related to the basic notion of metric regu-
larity. The versions of this key property are recalled
below, and for more details and further references,
the reader is referred to the works!!:12.

Let X,Y be metric spaces, T : X = Y be a
multifunction, (4,?) € GraphT.

Definition 1. 'V12 A multifunction T is called met-
rically regular around (@, v) € Graph T with modulus
Kk > 0 if there exists a neighborhood U x V of (u, )
such that

d(u, T7'(v)) < kd(v,T(u)), for all (u,v) € U x V.

We denoted by reg T(@, ) the infimum of all modu-
lus Kk above.

Ioffe'% suggested a nonlocal regularity model
of set-valued mapping T : X = Y associated to a
gauge function v as follows. Let Y C X,V C Y and
v: X — RU{+oc0} be positive on U.

Definition 2. %12 A multifunction T : X = Y is
called v-metrically regular on U XV if there is a real
number k > 0 such that

d(u, T~ (v)) < kd(v, T(u)), (2.1)

provided that w € U, v € V, and 0 < kd(v,T(u)) <
y(u). Denote by reg. T(U|V) the lower bound of
the k satisfying (2.1). If no such k exists, set
reg., T(U[V) = oo.

Furthermore, in the work'® by Tron, Han and
Ngai, a different version of y-metric regularity which
is extended to an arbitrary set WW C X x Y suggested
as follows.

Definition 3. '° Let T : X = Y be a multifunction
and W be a subset of X xY . T is called v-metrically
reqular on W with constant k if there is a real number
r > 0 such that

d(u, T7'(v)) < kd(v,T(u)), (2.2)

for all (u,v) € W with 0 < rd(v,T(u)) < y(u). The
lower bound reg ., T(W) of k in (2.8) is the modulus
of v-metric regularity of T on W. If no such k exists,
set reg ., T(W) = oc.

The above definition covers the case where the
parameters k and 7 coincide, which is known as the
concept of y-metric regularity in the sense of Ioffe,
as shown in the following definition.

Definition 4. '© Let X, Y be metric spaces, W be a
subset of X XY andletT : X =Y be a set-valued
mapping. T is called y-metrically regular on W if
there is kK > 0 such that

d(u, T~ (v)) < kd(v, T (u))
for all (u,v) € W with 0 < kd(v, T (u)) < v(u).

Next, we recall a weaker version of metric regu-
larity, star metric regularity, introduced by Ioffe in
alsoS.

Definition 5. ¢ Set T, (u) = T(u)NV. A multifunc-
tion T is said to be y-regular® (or star y-regular) on
U XV if Ty is y-regular on U x V. Specifically, T is
called ~vy-regular® on U x V if there is a k > 0 such
that

d(u, T~ (v)) < kd(v, T(u) V)

forallueU,veV and 0 < kd(v, T(u)NV) < v(u).



In order to convenient in some applications, in
this paper, we propose an improved version of the
above definition in which the parameters “x” in the
regularity inequality and the gauge condition could
be distinguished.

Definition 6. A multifunction T : X =Y s called
~v-metrically reqular® onU xV C X XY with constant
K if there is a real number r > 0 such that

d(u, T~ (v)) < kd(v,T(u) NV), (2.3)

for all (u,v) € UV with 0 < rd(v, T (u)NV) < v(u).
The lower bound reg’ T(U[V) of k in (2.8) is the
modulus of y-metric regularity” of T onU x V. If no
such k exists, set reg> T(U|V) =

Remark 7. In case of r = K, Definition 6 leads to
the version of y-metric reqularity™ on U X V in the
sense of loffe as in Definition 5.

y-openness® and ~y-pseudo-Lipschitz* of set-
valued mappings are equivalent properties of the reg-
ularity™® stated as follows.

Definition 8. A multifunction T : X =2 Y is ~-
open® on U X V with constant k if there is a real
number p > 0 such that

B(T(u)NV,pt) NV C T(B(u,x 'pt)), (2.4)

whenever u € U, 0 < t < 7y(u). The upper bound
sury T(UIV) of k in (2.4) is the modulus of -
surjection” of T on U x V. If no such k exists, set
sury T(U[V) = 0.

Definition 9. A multifunction T~ : Y = X is -

pseudo-Lipschitz* on V x U with constant r if there
is a real number p > 0 such that

d(u, T (v)) < kd(v,w), (2.5)

provided that uw € T~(w) NU, v,w € V and 0 <
pd(v,w) < ~(x). The lower bound lip] T~ (U[V) of
K in (2.5) is the y-pseudo-Lipschitz* modulus of T~!
onV xU. If no such r exists, set lip}, T~ (U x V) =
00.

The following propositon shows the equivalence
of the above three star regular concepts.

Proposition 10. LetT : X =Y be set-valued map-
ping and U C X,V C Y. The following statements
are equivalent:

(i) T is~y-open* onU xV with modulus not smaller

than k~1;

(i) T is ~y-reqular® on U x V with modulus not
greater than k;

(iii) T~ is y-pseudo-Lipschitz* on V xU with mod-
ulus not greater than k.

Proof. To show (i) = (i7), let (u,v) € U x V
be with 0 < pd(v,T(u) N V) < ~(u). Then, for all
e > 0, take 7 = p(d(v,T(u) N'V) + €) such that
0 < pd(v,T(w)NV) <7 < 7y(u). Then, u € U,0 <
7 <v(u) and v € B(T(u)NV, p~tr)NV. By (i), v €
T(B(u,kp~'7)). So, there exists z € B(u,rp 17)
such that v € T(2). It follows that d(u,T~!(v)) <
d(u,2) < kp~tr = k(d(v,T(u) N V) +€). Let € | 0,
one gets d(u, T~(v)) < kd(v, T'(u) N V).

The implication (i) = (4i%) is obvious. For
(t91) = (i). Let w € U, 0 < 7 < 7(u), and let
v € B(T(w)NV,p~tr)N V. Then u € U and there
exists w € T'(u) NV such that 0 < d(v,w) < p~17. It
follows u € T~ (w) NU, v,w € V and 0 < pd(v, w) <
7 < y(u). By (iii), d(u, T~ (v)) < kd(v,w) < kp~17.
This means that there is z € T~ !(v) such that
d(u,z) < kp~ 11, that is v € T(B(u,kp~'7)). So,

B(T(w)NV,p~'r)NV C T(B(u,kp~'7)).

The proof is complete.

2.2 Auxiliary results

Now, we recall the concept of (strong) slope

which is considered as an infinitesimal tool in metric
spaces, first introduced in 1980 by De Giorgi, Marino,
and Tosques'3.
Definition 11. 3% Let X be a metric space and
f: X = RU{+o0} be a given function. The symbol
[f(z)]+ stands for max(f(z),0) and Dom f := {z €
X | f(z) < 400} denotes the domain of f.

(i) The quantity defined by |Vf|(z) =0 if x is a
local minimum of f; otherwise

[V f](z) = limsup f(@) = f(u)

U— T, UFT (‘Ta u)

s called the local slope of the function [ at
z € Dom f.



(ii) The quantity

[f(x) — f(u)l+
IDf|(2) = sup ~—— ——~"—
utz d(z,u)
18 called the nonlocal slope of the function [ at
z € Dom f.

For x ¢ Dom f, we set |Vf|(z) = |T'f|(z) = +o0.
Obviously, |V f|(z) < |Tf|(x) for all z € X.

In case of X being a normed space and f being
Fréchet differentiable function at x then the slope of
f coincides with the norm of the derivative Vf at
the point. For a fuller treatment of slope, we refer
the reader tol3:15:16,17,18,19

To establish infinitesimal characterizations for
regularity, an effective tool that has been used is the
lower semicontinuous envelop of the distance func-
tion associated to a set-valued mapping 7': X = Y
defined by
@Z(x) = liminf d(v,T(u)) := liminf d(y, T(u)).

(u,0) = (z,y) u—

The following theorem established by Tron, Han,
Ngail® gives the necessary/ sufficient conditions for
the metric regularity via nonlocal slope of the func-
tion gpg. Now, let be given a subset W of X x Y,
we associate every v € Y to set W, = {u € X :
(u,v) € W}, and every u € X toset W, ={veY:
(u,v) € W}. Then, denoted by PxW := U,ey W,
and PyW := UuexW,. In particular, in the case
where the form of W is a box U x V, the sets W,
(with v € V), PxW are identical to U and the sets
W, (with u € U), PyW are identical to V.

Theorem 12. (Tron-Han-Ngai'®) Given X is a
complete metric space, Y s a metric space and W C
X XY is a nonempty subset. Let T : X =Y be a
closed set-valued mapping and v : X — Ry U {400}
be a gauge function. Then,

(i) Suppose that v is lower semicontinuous. If W
is open and T is y-metrically reqular on W
with constant K, i.e., there exists a real v > 0
such that for every (z,y) € W, with 0 <

rd(y, T (z)) < (),
d(x, T~ (y)) < rd(y,T(x)),

then for each (x,y) € W, with 0 < rgoyT(x) <
~v(x), one has

oy l(z) > w71

(ii) Conversely, assume further that vy : X — Ry is
a Lipschitz continuous function with constant
1. If there are a positive real k such that

%%1 inf{[Co} |(x) : d(z,Wy) < 6y(x), y € Py W,

0 <o) (z) <by(x)}>r".
then T is y-metrically reqular on VW with con-
stant K.

Regarding Definition 4, the theorem below in the
work by Tron, Han, Ngail? gives a suficient condition
for the y-metric regularity via the nonlocal slope.

Theorem 13. (Tron-Han-Ngai'®) Let X be a com-
plete metric space and Y be a metric space, W C
X XY be a nonempty subset. Let T : X =2 Y be a
closed set-valued mapping. Suppose that v : X — Ry
is a Lipschitz function with constant 1. If there exists
K > 0 such that

Ty (@) = w71

Ve € Wy)y,y € PV, 0 < kel (z) < ~(x), where
(Wy)~y = Uzew, B(z,v(x)), then one has

d(z, T~ (y)) < kd(y, T(z)),

for all (z,y) € W with 0 < rd(y, T(z)) < y(x).

3. PERTURBATION STABILITY OF
STAR MILYUTIN REGULARITY MULTI-
FUNCTIONS

Let X, Y be metric spaces and W be a nonempty
subset of X x Y. Firstly, we recall the defintiton of
Milyutin regular on W given by Tron, Han and Ngai
in'0,

Definition 14. (Tron-Han-Ngail®) A multifunction
T : X 3Y is called Milyutin reqular on W with
constant k if there is a real number r > 0 such that

AT (y)) < kd(y,T(z)),

for all (z,y) € W with 0 < rd(y, T(z)) < mpyw(z).
The infimum of all above k denoted by reg,, T(W).



Next, we consider the definitions of Milyutin
regular® associated to the gauge function v =
mpyw X — Ry defined by mpow(z) :=
d(xz, X\PxW).

Definition 15. A multifunctionT : X =Y is called
Milyutin reqular® on W with constant k if there is a
real number r > 0 such that

d(T~(y)) < kd(y,T(z) N PxW),

for all (z,y) € W with 0 < rd(y,T(z) N PxW) <
mpyw(x). The infimum of all above k denoted by
reg k. T(W) is the modulus of Milyutin regular™ of T
on W. If the above constant k does not exists, set
reg’ T(W) = cc.

Remark 16. Repeating the above definition and tak-
g v = Kk leads to the definition of Milyutin reqular®
on W in the sense of loffe.

It is easily seen that mpyw(x) is positive on
Px W if and only if PxWV is an open set, which fol-
lows from W is open. And then, the results of Theo-
rem 12 and Theorem 13 are also applied to the func-
tion mp,yy due to Lipschitz property with constant
1 of this one.

In this part, we shall investigate the stability of
Milyutin regular under perturbation by single-valued
mappings and the original set-valued mapping is as-
sumed to be Milyutin regular®.

Theorem 17. Let X be a complete metric space and
Y be a Banach space. Let U C X,V C Y be open
sets. Let a closed set-valued mapping T : X = Y
and a single-valued mapping h : X — Y be Lips-
chitz on U with constant A € (0,k~1). If T is Mi-
lyutin regular™ on U x V with constant k, i.e, there
exists 1 > 0 such that for all (z,y) € U X V with
0<rd(y, T(z)NV) < my(x),

d(z, T (y)) < kd(y, T(x) N V).

Then, for every n > 0, T + h is Milyutin regular on
WA with reg (T + h) (W) < (k=1 — \) 71, where

WA = {(z,9) e X XY | z €U,
B(y — h(z), \pmy () C V}.

Proof. Let 7 > 0 be given. According to Theorem

12, we only need to prove that
%iﬁ’)l inf{\F(pZ+h|(ag) : d(x,WyA") < Ompyyyan (),

y € PyWM 0 < <p$+h(x) < Smppa (2) >k = A

(3.1)
Indeed, choose ¢ such that % < min{1,n}, 0 <
(A+1)6
1, ——— .
rd <1, 15 < A\n

Let (z,y) € X x Y such that d(z,W,") <

Smpewan (), y € PxWM and 0 < <p§+h‘(x) <

Smp,yyan (x). Then there exists u € W such that
d(z,u) < dmpyeyan(x) < omy ().

So, u € U, B(y — h(u), \pmy(z)) C V, and since myy
is Lipschitz with constant 1, it follows that

d(z,u) < omy(u) + dd(z, u).

By the choice of §, one has

d(z,u) < %mz,{(u) < my(u) (3.2)

which gives x € U.
Let now {u,} C X be such that u,, — x and
d(y, (T + h)(un)) — Lpg"’h(:c) as m — 00.
Thus, there exists ng € N such that for all n > ng,

0 <d(y, (T + h)(up)) < omy(uy) (3.3)

and, as u, — x € U, we have u,, € U due to the
openness of Y. And then, by the choice of § when n
is sufficiently large, we have

0 < d(y, (T + h)(un)) < r my(uy). (3.4)

Furthermore, for n large enough, we find that
A(Yn, T (un)) = d(yn, T(uyn) NV). Indeed, fixing n €
N*, we take a sequence {ax} C T(u,) such that

d(y — h(un),ax) = d(y — h(uy), T(uy,)), k — oco.

By (3.2), (3.3) and the continuity of distance func-
tion, we conclude that

d(y - h(un)7 ak) < 5mu(u")
< 5mu(u) + 5d(una u)
2

1-9

(3.5)

< omyy(u) + my(u)



From (3.2), (3
for n > ng,

d(ak,y — h(u)) <

.5) and the choice of ¢, it follows that

d(ak,y — h(un))

+d(y = h(un),y — h(w))

<
< 75w H AT mu(u)
A+1)6
( 1 —6) u(u)
< Ay (u)
which gives ar € B(y — h(u), \spmy(u)) < V,
and thus a; € T(u ) N V. Consequently, d(y —
hun),ax) = d(y = h(un), T(un) O V), So, d(y —

h(un), T'(up)) < d(y — h(un),
d(y = h(un), T(un)) = d(y — h(u

n is sufficiently large.

Then from (3.4), we see that

= d(y — h(u),

< rmy(ug).

T(un)NV). And then,
n)s T'(un) NYV) when

0 < d(y — h(u), T(u,) NV) T'(uy))

Moreover, by (3.2), for n is large enough, we conclude
from the continuity of distance function that

d(y — h(ug),y — h(u)) < Ad(un,u)
< Ad(z,u)
)\%mu( )
< Anmy(u),

where the last inequality is followed from the choice
of §. Consequently,

y — h(un) € By — h(u), \pmy(u)) C V.

Then from the fact that T is Milyutin regular® on
U x V with constant k, we obtain

(y = h(un))) < rd(y — h(un), T (u
=d(y — h(un), T(u

Yy — h(u,)) (ie.,

d(ty, T n) NV

Now we choose some z, € T~
y — h(u,) € T(z,)) such that

1)d(y — h(un), T(uy)).

From (3.3) and the choice of 4, for all n > ng, one
has

A(tn,zn) < (K+n~ (3.6)

At ) < (k40" omy(u,) < my(uy,).

n)), Yn > ng.

This yields z,, € U, and thus from the Lipschitz prop-
erty of h on U, we have

d(h(un), h(zn)) < Ad(un, 2n). (3.7)

Since I*h(z) > 0, the closeness of T, and
lim,, 00 uy, = @, we see that liminf, . d(up, z,,) >
0. Note that d(y—h(uy), T(z,)) = 0 since y—h(u,) €
T(zy), and from (3.6), (3.7), we conclude that

y (@) — o) (z)
ToTth > 1 Y Y n
[Py ™[ (x) 2 lim sup @)
o 40T+ 1)) = d(y. (T + )(z0))
n—00 d(u'ru Zn)
s 40 = A1) T(00) = d(y = h(z). T(z)
n—o00 d(una ZTL)
> lim sup d(y — h(un), T(un)) Y
n—oo d(un7 Zn)
> lim sup — —A=rT1-\
n—oo K

This finishes the proof.

Theorem 18. Given X is a complete metric space,
Y is a Banach space and Y C X,V C Y are open
sets. Let a closed set-valued mappingT : X =Y and
a single-valued mapping h : X — Y be Lipschitz onU
with constant X\ € (0,x~Y). If T is Milyutin reqular®
on U x V with constant k, i.e, for all (z,y) €U x V
with 0 < kd(y, T(x) NV) < my(z),

“(y)) < kd(y,

Then, T+ h is Milyutin reqular on VW with reg
)W) < (k71 =)~

d(z,T T(z)NV).

m(T+
, where

W={(z,y) e X XY | z €U,
B(y — h(x), (267" = N)my(
Proof. Set (Wy)m := Uuew, B(u, mpyw(u)). Ac-
cording to Theorem 13, now we shall show that

for any ¥ € Wy)m, y € PyW with 0 < (k7! —
A)"loy T a) < mpew(),

| F(pTHZ (r) > w1 =\

x)) C V}.

Indeed, take (z,y) € X x Y such that z € Wy)m,
y € PyW with 0 < (1 =X) "ol ™ (2) < mpyy ().
Then, there is u € W, such that

d(z,u) < mpyw(u) < my(u). (3.8)



So, u € U, B(y — h(u), \my(u)) C V, and = € U.
Now, we take {u,} C X such that u, — z and

d(y, (T+h)(un)) — gpg‘*‘h(m) as n — oo. Thus, there
exists ng € N such that for all n > ng,

0 < d(y, (T + h)(un))

my(uy)  (3.9)
< K Ymy(uy), (3.10)

and that u,, € U follows from the openness of U and
u, > x €U.

Furthermore, d(y — h(uy,),T(u,)) = d(y —
h(up), T(u,) N'V) for n large enough. Indeed, fix-
ing n € N*, we choose a sequence {a,} C T'(u,,) such
that d(y—h(un), ar) = d(y—h(uy), T(uy,)), k — .
By (3.8), (3.9), and the continuity of the distance
function, we conclude that

d(y — h(un),ar) < (k71 — Nmy(uy)
< (k7P = Nmy () + (k1 = N d(un, )
< (2671 = Nmy(u),
(3.11)
which yields ax, € B(y — h(uy), (2671 — N)ymyy(u)) C

V, and thus ax € T(u,) N V. Consequently, d(y —
h(un),ar) > d(y — h(un), T(u,) NV). So, d(y —
h(ug), T'(uy)) > d(y — h(uy), T(un) NV). This gives
d(y - h(un)a T(un)) = d(y - h(un)a T(un) N V) when
n is sufficiently large.

Then from (3.10), we see that

0 < d(y — h(un), T(un) NV) = d(y — h(un), T (un))

< K myy(up).

Otherwise, by (3.8) and for n large enough, one also
have

d(y — h(un),y — h(u)) < Ad(un, u)
Ad(Un, ) + Ad(z, w)
Am; ( )

(25

= N)my(u)

which leads to y —h(u,) € B(y—h(u), Amy(u)) C V.

So, due to the Milyutin regularity™ of T on U x V
with constant x, one obtains

<
<
<
<

d(un, T~ (y = h(un))) < wd(y — h(un), T(un) N V)

We now choose 2, € T~ (y—h(uy)) (i.e., y—h(u,) €
T(zy,)) such that

d(tn, zn)

IA
—~
BN
+
&)
E
—
NS

|
=
<
T

(un) NV)

T
T(un)) (3.12)

where the last inequality is obtained when n is large
enough. It follows that z, € U, and thus from the
Lipschitz property of h on U, we have

d(y — h(un),y — h(zn)) < Ad(up, 2n). (3.13)

Since @I*h(z) > 0, the closeness of T, and
lim,, o0 4y, = @, we have iminf,, o d(un, z,) > 0.
From (3.12), (3.13), and note that y—h(uy,) € T(z,),
similar as in the proof of Theorem 17, one concludes
that

Lplth > limsu
| Py | ( ) n—>oop K+n

=k -\

The proof is completed.

4. CONCLUSIONS

This artical suggests the models of star regular-
ity on an any subset of product metric spaces as well
as established the equivalence of star regular con-
cepts: star openness, star metrically regular and star
pseudo-Lipschitz in the literature. Regarding the star
Milyutin regularity, we have proved that the stabil-
ity of Milyutin regularity under small Lipschitz per-
turbation also attains when the assumption of star
Milyutin regularity is imposed on the original set-
valued mapping.
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