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TÓM TẮT 
Dự báo quá trình giám sát kinh doanh là một nhiệm vụ dạng chuỗi thời gian đầy thách thức do bản chất phức 

tạp và biến thiên của các quy trình kinh doanh, liên quan đến việc dự đoán các trường hợp đang diễn ra như hoạt động 
tiếp theo, hậu tố hoạt động và dự đoán thời gian còn lại trong một quy trình kinh doanh. Quá trình điểm thời gian được 
sử dụng rộng rãi để mô hình hóa chuỗi các sự kiện xảy ra ở các khoảng thời gian không đồng đều, để mô hình hóa 
thời gian xảy ra và nắm bắt các phụ thuộc thời gian giữa các sự kiện. Với những tiến bộ gần đây trong mạng nơ-ron 
sâu, Quá trình điểm thời gian sâu đã nổi lên như một cách tiếp cận đầy hứa hẹn để nắm bắt các mẫu phức tạp trong 
chuỗi sự kiện với dấu thời gian. Do đó, Quá trình điểm thời gian sâu có thể là một cách tiếp cận tiềm năng để dự đoán 
quá trình giám sát kinh doanh. Trong bài báo này, chúng tôi thử nghiệm và xem xét hiệu quả của các nghiên cứu gần 
đây trong Quá trình điểm thời gian sâu đối với vấn đề giám sát quy trình kinh doanh dự đoán. Kết quả của chúng tôi 
cho thấy rằng các phương pháp Quá trình điểm thời gian sâu có tiềm năng trong hoạt động tiếp theo và dự đoán thời 
gian còn lại trong dự đoán quy trình giám sát kinh doanh. Những phát hiện này có thể hữu ích cho các chuyên gia và 
nhà nghiên cứu quan tâm đến việc phát triển các hệ thống dự đoán giám sát cho các quy trình kinh doanh. 

Từ khoá: Giám sát quá trình kinh doanh, Quá trình điểm thời gian, Mạng nơ-ron sâu. 
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ABSTRACT 
Predictive business process monitoring is a challenging time series task due to the complex and dynamic nature 

of business processes, which involves predicting the ongoing cases in terms of the next activity, activity suffix, and 
remaining time prediction on a business process. Temporal point processes (TPPs) are widely used to model sequences 
of events happening at irregular intervals, to model the occurrence times of events, and to capture the temporal 
dependencies among them. With the recent advances in deep neural networks, deep TPPs have emerged as a promising 
approach for capturing complex patterns in event sequences with occurrence timestamps. Hence, deep TPPs can be a 
potential approach to tackle business predictive monitoring tasks. In this paper, we experiment and review the 
effectiveness of recent research on deep TPPs on the predictive business process monitoring problem. Our results 
suggest that TPP methods have the potential in the next activity and remaining time prediction in the predictive 
business process monitoring problem. The findings can be helpful to practitioners and researchers interested in 
developing predictive monitoring systems for business processes. 

Keywords: Business Process Monitoring, Temporal Point Process, Deep Neural Network. 

 

1. INTRODUCTION 

A business process is a collection of tasks 
performed asynchronously by various resources, 
such as humans, software, or hardware, to achieve 
a specific goal.1 The execution of these tasks is 
tracked and documented in an event log, which 
records details such as the identifier of the case, 
the event performed, and the timestamp of the 
event.2 There may also be optional case attributes, 
which are shared by events of the same case, or 
event attributes that are unique to each event. 
Business process mining is the discipline 
concerned with the analysis of these logs, tackling 
it from different perspectives such as discovering 
the underlying process model from the log, 
checking that the executions registered in the log 
are conformant with the process model, or 
extracting or inferring analytics that enhances the 
description of what has happened in the process 
executions.3 Predictive monitoring is a process 
mining technique that predicts how an ongoing 
process case will unfold using the event log's 

information. The ability to make predictions is 
beneficial for anticipating issues before they arise, 
enabling the reallocation of resources before they 
are wasted, and providing recommendations.4 

Studying the temporal distribution of events 
and discovering the relationships among different 
types of events is a great scientific approach for 
predictive monitoring and understanding the 
dynamics and mechanism of events occurrence.5–9 
One of its choices is the Temporal Point Process 
(TPP), the stochastic process with marked events 
on the continuous domain of time, which can 
naturally capture the clustering or self-correcting 
phenomena of such sequences of events.10,11 
Often, the rate of event occurrence, known as 
conditional intensity, is modeled as a function of 
time based on the prior observation of events to 
capture the dynamics of the process. Given that the 
conditional intensity function (CIF) entirely 
governs the distribution of such a process, 
statistical prediction and inference can all be 
performed via the CIFs. 



Despite significant advancements in TPP, 
especially in models based on deep neural 
networks (DNNs), most of these models use 
different history encoders to embed historical 
events and various forms of intensity functions 
that are parameterized by the embedded historical 
sequence of events.12–17 Also, to our knowledge, 
no experiment has been conducted on the 
efficiency of TPP in monitoring the business 
process.18 Hence, in this paper, we compare 
different combinations of TPP methods regarding 
the history encoders and CIFs.  

Hence, in this paper, our contribution is to 
define a data preprocessing procedure for the 
business process monitoring data set to suit the 
deep TPP models. We experiment to evaluate the 
capability and ability of deep TPP models on the 
predictive business process monitoring datasets. 

2. BACKGROUND 

This section provides an overview of the key 
concepts and techniques used in the study, 
including predictive business process monitoring 
and TPPs. It lays the foundation for understanding 
the experiments and results. 

2.1. Predictive business process monitoring 

The input of business process mining techniques 
is an event log, usually composed of events with 
at least a case identifier, an activity, and a 
timestamp, and, optionally, case attributes, which 
are values shared by all the events of the same 
case, and event attributes, which are specific of 
each event.19,20 A sample log from the Helpdesk 
data set is shown in Table 1, part of a real-life help 
desk event log from an Italian Company.21 This 
event log provides information about each event's 
case identifier, activity, timestamp, and resource. 

Given a certain event prefix of a running 
case, predictive monitoring is concerned with 
forecasting how different aspects of the next event 
or sequence of events will unfold until the end of 
the case. There are several prediction targets, such 
as next activity, next activity suffix, next 

timestamp, next remaining time, next outcome, 
next attributes, and next attribute suffix.22 In this 
paper, our interest is the next activity and the next 
timestamp prediction. 

Formally, 𝑚!, 𝑡!, 𝑒! is the activity, 
timestamp, and event. Let ℎ𝑑"(𝜎) be an event 
prefix such as ℎ𝑑"(𝜎)  = + 𝑒#,   … ,  𝑒"  .. Two 
tackled problems can be defined as the following 
functions Ω using the newly predicted activities as 
new inputs for the next prediction until the dummy 
activity representing the end of the case 
(“[EOC]”) is reached: 

• The next activity prediction problem: 
Ω$ 0ℎ𝑑"(σ)2 = 𝑚%&#

' . 
• The next timestamp prediction problem: 

Ω( 0ℎ𝑑"(σ)2 = 𝑡%&#' . 

2.2. Temporal point processes (TPPs) 

2.2.1. Definition 

Marked TPP is a random process representing as 
an event sequence 𝑋 = {(𝑡#, 𝑚#), … , (𝑡) , 𝑚))} 
with the increasing arrival times of events 
{𝑡!}#*!*) and markers {𝑚!}#*!*), such that 𝑡! ∈
[0, 𝑇), 𝑡! < 𝑡!&#, ∀𝑖	 ≥ 1 where 𝑁 is the number of 
events. 

The mark is equivalent to the event's 
activity within the context of the business process. 
Thus, both terms can be used interchangeably 
afterwards. The inter-event time τ! = 𝑡! − 𝑡!+# is 
also considered due to their convenience in 
computing.15 

Categorical marks ℳ = {1,2, … , 𝐾} 
occurring in the time interval [0, 𝑡) of the type-𝑘 
event. The history ℋ(𝑡) = {H𝑡" , 𝑚"I, 𝑡" < 𝑡} 
which can be considered the event prefix ℎ𝑑"(σ) 
in the business monitoring context. 

The task of TPP models is to parameterize 
the 𝐾 conditional intensity function (CIF) λ%∗ (𝑡), 
which can be characterized as follows: 

Case ID Activity Resource Timestamp 
Case 1 Assign seriousness Value 1 2012/10/09 14:50:17 
Case 1 Take in charge ticket Value 1 2012/10/09 14:51:01 
Case 1 Take in charge ticket Value 2 2012/10/12 15:02:56 
Case 1 Resolve ticket Value 1 2012/10/25 11:54:26 
Case 1 Closed Value 3 2012/11/09 12:54:39 
Case 2 Assign seriousness Value 4 2012/04/03 08:55:38 
Case 2 Take in charge ticket Value 4 2012/04/03 08:55:53 
Case 2 Resolve ticket Value 4 2012/04/05 09:15:52 
Case 2 Closed Value 5 2012/05/19 09:00:28 

Table 1. Excerpt of a Helpdesk’s business process log 



λ%∗ (𝑡) = λ%H𝑡Kℋ(𝑡)I

= lim
-.→0!

𝑃𝑟( event	of	type	𝑘	in	[𝑡, 𝑡 + Δ𝑡) ∣∣ ℋ𝓉 )
Δ𝑡

 

which is defined as the expected instantaneous rate 
of happening events given the history. The ∗ 
symbol indicates the conditioning on the history 
ℋ(𝑡). 

Due to the TPP modeling the distribution of 
the next timestamp 𝑡! or inter-event τ! time under 
the history ℋ(𝑡!), the next timestamp prediction 
task is equivalent to considering the next 
timestamp 𝑡! given ℋ(𝑡!) denoted as follows: 

Ω(Hℋ(𝑡)I = 𝑃!∗(𝑡) 

Given the CIF, the distribution 𝑃!∗(𝑡) can be 
represented by any following functions:12,15,16,23,24 

1. Probability density function (PDF): 𝑓!∗(𝑡) 
2. Cumulative distribution function (CDF): 

𝐹!∗(𝑡) = ∫ 𝑓!∗(𝑢)𝑑𝑢
."
0  

3. Survival function: 𝑆!∗(𝑡) = 1 − 𝐹!∗(𝑡) 
4. Hazard function: ϕ!∗(𝑡) = 𝑓!∗(𝑡)/𝑆!∗(𝑡) 
5. Cumulative hazard function (CHF): 

Φ!
∗(𝑡) = ∫ ϕ!∗(𝑢)𝑑𝑢

.
0  

Here, we pick the PDF of the type-𝑘 event 
at time 𝑡 as the parametric form, which is defined 
as: 

𝑓%∗(𝑡) = λ%∗ (𝑡) exp f−g λ%∗ (𝑢)𝑑𝑢
.

."#$
h	 (1) 

where exp 0−∫ λ%∗ (𝑢)𝑑𝑢
.
."#$

2 is an exponential 
term where the exponent is the negative integral 
from 𝑡!+# (the time of the last event before 𝑡, 
namely 𝑖 − 1 = 𝑎𝑟𝑔 𝑚𝑎𝑥"*2{𝑡" , 𝑡" < 𝑡}) to 𝑡 of 
the CIF. This integral represents the expected 
number of type-𝑘 events at time 𝑢, which happens 
in the time interval (𝑡!+#, 𝑡]. The exponential of 
the negative of this value penalizes the presence of 
other events in the interval, making it less likely 
for a new event to occur at time 𝑡. The product of 
these two parts gives the probability density of an 
event of type 𝑘 occurring strictly at time 𝑡. Note 
that we must integrate this density over that 
interval to obtain the probability of an event 
occurring within a specific time interval. By 
aiming to parameterize a model to fit the 
timestamp distribution, the TPP can infer PDF or 
CIF for timestamp prediction, including the next 
event's timestamp and activity prediction. 

2.2.2. Conditional Intensity Formulation (CIF) 

The CIF with parameters Θ%(𝑡) is written as 
λ%H𝑡; Θ%(𝑡)Kℋ(𝑡)I. The parameter Θ%(𝑡) is 
considered a piece-wise function of 𝑡 as: 

Θ%(𝑡) = χ%(ℎ!) 

where 𝑡 ∈ [𝑡!+#, 𝑡!). The formula means that the 
new occurrence of the type-𝑘 event changes the ℎ! 
and thus updates the Θ%(𝑡).  

The choice of the family of CIF functions to 
approximate the target CIF is critical because the 
function's ability to approximate accurately 
determines the TPP's performance in fitting the 
distribution. Additionally, Equation (1) indicates 
that the integral term is unavoidable if we 
maximize the likelihood of the observed sequence 
of events. Hence, the challenge in computing the 
log-likelihood is the high computational cost due 
to the integral term. The closed form of this 
integral term, such as cumulative hazard function, 
can make the computation of likelihood 
feasible.15,23,24 In conclusion, the goal of 
approximating the target CIF is to choose a family 
of functions in the closed integral form with 
powerful expressivity. 

2.2.3. Modeling the marks 

In the business monitoring context, where 
multiple event types exist, the next activity 
prediction task is determining the most probable 
event type based on historical data, which can be 
dealt with as the categorical classification task. It 
is generally achieved by first converting the 
historical encoding to logit scores of a discrete 
distribution, as shown in the following equation: 

κ(ℎ!) = logit(𝑚3s) (2) 

where logit(𝑚3s) ∈ 𝑅4, κ: 𝑅5 → 𝑅4.  

Then, we apply a softmax function to 
transform logit scores into the categorical 
distribution, which is the solution to the next 
activity prediction task as follows: 

Ω$Hℋ(𝑡)I = PrH𝑚3s = 𝑘Kℋ(𝑡)I	

= softmaxHlogit(𝑚3s)I% 	

where softmaxHlogit(𝑚3s)I% is to choose the 𝑘-th 
mark from its output. By forming the loss of 
activities as the logit scores, the cross-entropy loss 
for categorical classification is added to the log-
likelihood loss given the actual activity 𝑚 of the 𝑖-
th event to maximize the joint likelihood of the 
next timestamp and activity, which is considered 
independent. Several works on maximizing joint 
likelihood in conditional forms are proposed, such 
as time conditioned on marks25,26 and marks 



conditioned on time15, which can capture the 
dependencies between timestamp and activity and 
leverage the TPP models performance in 
predicting the timestamp and activity 
simultaneously. In our experiment, we utilize the 
idea of using the joint negative log-likelihood 
(NLL) under the independence between the next 
timestamp and activity, with the type-𝑘 mark for a 
single sequence 𝑋 for categorical marks computed 
as: 

− log 𝑝 (𝑋)

=||−PrH𝑚3s = 𝑘Kℋ(𝑡)I
4

%6#

)

!6#

+|𝑓%∗(𝑡)
4

%6#

 

(3) 

 

3. CLASSIFICATION OF TPP MODELS 

This section introduces the classification of TPP 
models to solve the predictive business process 
monitoring problem. As illustrated in Figure 1, our 
procedure considers two essential parts of a deep 
TPP: the history encoder and the CIF. 
Table 2. The classification of all options for each 
component by history encoder, mixture distribution, 
and prediction target. 

3.1. Historical Event Encoders 

Since CIF or PDF is a function of 𝑡 and historical 
events before 𝑡, namely ℋ(𝑡), we have to encode 
the history sequence of each event H𝑡" , 𝑚"I as a 
feature vector 𝑒" to formulate the CIF or PDF of 
the occurrence of different events to model the 
process. For the 𝑖-th event's history, ℋ(𝑡!), 𝑗-th 
event in the history set is embedded in a high-
dimensional space including time and mark 
features, as follows: 

𝑒" = ~ωH𝑡"I; 𝐸(7%� 

where: 

• ω represents the time feature that 
transforms one-dimension temporal 
information 𝑡" (or inter-event time τ") into 
a high-dimension vector directly or via its 
logarithm16,26 or trigonometric 
functions12,27.  

• 𝐸 represents the mark feature, an 
embedding matrix for marks, and 𝑚" is 
the one-hot encoding of mark 𝑚". 

A historical encoder 𝐻 can be obtained via 
concatenation of the sequence of embedding 
{𝑒#, 𝑒8, … , 𝑒!+#} into a vector space of dimension 
𝐷 under the following formula: 

ℎ! = 𝐻({𝑒#; 𝑒8; … ; 𝑒!+#}) 

𝐻 can be chosen as Recurrent-based 
encoders, Attention-based encoders, or Fourier 
transform encoders, and ℎ! is utilized for the CIF 
parameterization. 

3.1.1. Recurrent-based encoders 

Recurrent-based encoders, including RNN units, 
GRU, and LSTM, can be used as history 
encoders.14–16 Their CIF can be formulated as 
follows: 

ℎ0 = 0;	 ℎ! = RNN(𝑒!+#, ℎ!+#) 

where the initial state of the history encoder, ℎ0, is 
set as zero. For each subsequent time step 𝑖, the 
new state, ℎ!, is updated based on the previous 
state, ℎ!+#, and the previous event, 𝑒!+#, through 
the RNN function. The RNN takes as inputs the 
previous state and the previous event and outputs 
the new state. This state represents the RNN's 
memory, encoding information about past events 
that it can use to predict future events. 

The advantage of using recurrent-based 
encoders as the history encoder is that it requires 
low storage space due to the capability of serial 
computing. The states and events are processed 
one at a time, meaning that the RNN does not need 
to store all of them at once, which can be 
beneficial in situations where storage space is 
limited. 

However, there are also disadvantages to 
this approach. The serial computing nature of 
RNNs can limit their computational speed in both 
the forward and backward processes.28 
Additionally, RNNs can suffer from issues such as 
the gradient vanishing effect, where the gradients 
used in learning become very small, making 
learning slow or even impossible.29 They can also 
suffer from long-term memory loss, struggling to 
retain information about events that occurred long 

History Encoder Mixture Distribution Prediction 

Recurrent neural 
network (RNN) Log-Normal Next 

activity 

Gated recurrent 
unit (GRU) Gompertz Next 

timestamp 

Long short-term 
memory (LSTM) Log-Cauchy  

Attention Exponential decay  

Fourier 
Transformer 

(FNet) 
Weibull  



ago. These issues can potentially compromise the 
performance of the RNN history encoder. 

3.1.2. Attention-based encoders  

Attention-based encoders are part of encoder-
decoder architectures that utilize the concept of 
attention. This mechanism allows models to focus 
on relevant parts of the input sequence when 
generating an output.30 Self-attention is proposed 
as the history encoder in TPPs with fast parallel 
computing and the capability of encoding more 
long-term sequences than recurrent-based 
encoders.12 The attention-based history encoders 
for CIF can be defined as follows: 

ℎ! =
∑ ϕH𝑒" , 𝑒!+#IψH𝑒"I!+#
"6#

∑ ϕH𝑒" , 𝑒!+#I!+#
"6#

 

where ℎ! represents the encoded history at time 𝑖. 
This history is computed as a weighted sum of 
transformed event embeddings ψH𝑒"I, where the 
attention mechanism determines the weights 
ϕH𝑒" , 𝑒!+#I. The attention mechanism ϕ(⋅,⋅) is a 
function that takes two event embeddings as 
inputs and outputs a scalar called the attention 
weight. This weight determines the importance or 
relevance of the event 𝑒" when encoding the 
history at the time 𝑖. The transformation function 
ψ transforms the event embedding 𝑒" into a series 
of 𝐷-dimensional vectors called values. These 
transformed embeddings are then used to compute 
the encoded history. 

While attention-based encoders overcome 
some of the problems with RNNs, their space 
complexity of the attention matrix is 𝑂(𝑁8), 
which can become problematic when dealing with 
very long sequences because the attention 
mechanism computes pairwise interactions 

between all events, leading to a quadratic increase 
in storage requirements as the number of events 
increases.31 This problem can be temporarily 
resolved by limiting the encoder only to access the 
last 𝐿 events {𝑦!+9 , … , 𝑦!+#}, which can reduce the 
time complexity to 𝑂(𝑁𝐿).15 

3.1.3. Fourier transform encoders 

The Fast Fourier Transform (FFT) module was 
generally used in the natural language processing 
(NLP) field32 and recently adopted into the history 
encoder family under the TPP context called FNet, 
which aims to speed up the computation and 
replace the attention mechanism.  

    ℎ! = Top:{FFT([FFT(𝑒#); … ; FFT(𝑒!+#)])} 

where the FFT(⋅) represents the FFT, which 
operates on the events' embedding, then on the 
whole sequence. Then, Top:{⋅} means choosing 
the highest 𝑝 frequencies in the set as the history 
encoding. The dimension of the feature vector 𝑒" 
has to equal 𝐷 dimension. Top-𝑝 needs to be 
chosen due to the unequal event embedding 
history sequence length, so the padding operation 
is required for batch processing as many 
sequences contain the same padding values, which 
contain useless information and lead to low-
frequency values in spectra. Therefore, filtering 
the low frequency can capture and retain more 
information about the historical sequence in the 
high frequency. 

FFT encoder inherits fast computational 
time complexity in 𝑂(𝑁𝑙𝑜𝑔𝑁) and the ability to 
capture long-term patterns due to the global 
property of the sequences' spectrum.33 However, 
one disadvantage of this approach is that the 
backward process of gradient propagation leads to 
significant memory complexity. 

Figure 1. The procedure of TPPs framework for predictive business process monitoring. 



3.2. Mixture Distribution 

The mixture distribution family is the major 
component in TPP that approximates the target 
PDF under CIF. 

3.2.1. Log-normal Mixture 

Log-normal Mixutre is proposed to approximate 
any distribution due to the feasible computation of 
its PDF and cumulative distribution function 
(CDF) in the closed form of CIF and CHF, where 
the mixture form reads as follows:15  

𝑓LNM∗ (𝑡)

=|𝑤>
1

𝑡σ>√8@

A

>6#

exp f−
(ln(𝑡 − 𝑡!+#) − µ>)8

2σ>8
h 

where 𝑡 ∈ [𝑡!+#, 𝑡!). 𝑆 are mixture distribution 
numbers, {𝑤>}#*>*A are non-negative mixture 
weights and ∑ 𝑤>A

>6# = 1, σ> > 0∀𝑠. 

The distribution of the next timestamp 
λLN∗ (𝑡) under the log-normal mixture can be 
modeled by different functions such as PDF, CDF, 
survival function, hazard function, or cumulative 
hazard function. Moreover, the preferable 
function to model the distribution λLN∗ (𝑡) is the 
cumulative hazard function due to its ability to 
compute the NLL in the closed form without 
numerical integration, leading to the loss function 
in Eq. (3) replaces the 𝑓7∗ (𝑡) by the Φ7

∗ (𝑡). 
Although the CDF has no closed form, the 
approximation of the function has minor deviation 
and permits gradient back-propagation, allowing 
both the forward and backward processes. 

3.2.2.  Gompertz Mixture 

Gompertz Mixture is proposed to predict both 
timestamps and marks of future events without 
any prior knowledge about the hidden functional 
forms of the latent temporal dynamics.14 The CIF 
of Gompertz distribution reads as: 

λ(𝑡) = η exp(β𝑡) 

where η, β > 	0. The corresponding PDF can be 
obtained as follows: 

λGP∗ (𝑡) = exp(β(𝑡 − 𝑡!+#) + 𝑣(ℎ! + 𝑏.) 

which its PDF reads: 

𝑓GP∗ (𝑡) = η exp �β(𝑡 − 𝑡!+#)

−
η
β
HexpHβ(𝑡 − 𝑡!+#)I − 1I� 

for 𝑡 ∈ [𝑡!+#, 𝑡!), where η = expH𝑣(D" + 𝑏.I, and 
β > 	0. The process 𝑓GP∗ (𝑡) becomes the Poisson 

distribution when β = 	0. The mixture can be 
formulated as follows: 

𝑓GPM∗ (𝑡) =|𝑤>

A

>6#

η> exp �β>(𝑡 − 𝑡!+#)

−
η>
β>
HexpHβ>(𝑡 − 𝑡!+#)I − 1I�	

for 𝑡 ∈ [𝑡!+#, 𝑡!), where β> > 0 and η> > 0 for any 
𝑠. The parameters are obtained as a function of 
history encoding ℎ! for 𝑡 ∈ [𝑡!+#, 𝑡!) as follows: 

Θ(𝑡) = {𝑤>(𝑡), β>(𝑡), η>(𝑡)}#*>*A = χ(ℎ!) 

3.2.3. Exp-decay Mixture 

Zhang et al.12 extend the expressivity of the 
multivariate Hawkes Process by the Self-Attentive 
Hawkes Process (SAHP) by adapting the self-
attention mechanism to fit the intensity function of 
the Hawkes processes. This allows the Exp-decay 
mixture to capture longer historical information 
and is more interpretable because the learned 
attention weight tensor shows the contributions of 
each historical event. It models the intensity 
function as the exponential-decaying form like the 
classical Exp-decay Hawkes Process and extends 
with a nonlinear transform 𝑠𝑜𝑓𝑡𝑝𝑙𝑢𝑠 stacked after. 
This is also the cause of unmanageable 
computation of the integral term when dealing 
with long data sequences due to attention weights 
computation for each pair of events in the 
sequence under the self-attention mechanism. 

To solve the infeasible computation, the 
final transformation of non-linearity is removed, 
and the CIF of the defined Exp-decay distribution 
can be obtained as follows:           

λED∗ (𝑡) = η expH−β(𝑡 − 𝑡!+#)I + 	α 

where the first term indicates the impacts of 
historical events decay with an exponential ratio 
added with the α, which is the basic intensity. 

By using the distribution as a component, 
the mixture of Exp-decay distribution reads the 
PDF as follows: 

𝑓EDM∗ (𝑡) =|𝑤>Hη> expH−β>(𝑡 − 𝑡!+#)I
A

>6#

+ α>I exp��
η>
β>

− 1� expH−β>(𝑡 − 𝑡!+#)I

− α>(𝑡 − 𝑡!+#)� 



for 𝑡 ∈ [𝑡!+#, 𝑡!), whose parameters are all 
positive, calculated by χ(ℎ!).   

3.2.4. Weibull Mixture 

Weibull Mixture assumes a population of two or 
more subpopulations with different Weibull 
distributions.34 The Weibull distribution has the 
advantage of high approximating ability due to no 
numerical instability, so the parameter range is not 
limited to a certain range. The parameters of the 
Weibull mixture model can be estimated using the 
maximum likelihood estimation (MLE) or 
Bayesian methods. Its CIF reads: 

λWB∗ (𝑡) = ηβHη(𝑡 − 𝑡!+#)I
I+# 

where η, β > 	0. CIF will increase when β > 	1, 
decrease when β < 	1, and be constant when β =
1. 

And its PDF represents: 

𝑓WBM∗ (𝑡) = |𝑤>η>β>Hη>(𝑡
A

%6#

− 𝑡!+#)I
I+# exp 0−Hη>(𝑡

− 𝑡!+#)II2 

3.2.5. Log-Cauchy Mixture 

Log-Cauchy Mixture is utilized because the Log-
Cuachy distribution can model a wide range of 
data due to its flexibility by handling both 
symmetric and asymmetric data and super-heavy-
tailed distributions with no given mean or standard 
deviation.35 The Log-Cauchy distribution is also 
robust to outliers, which is helpful in monitoring 
the business.36 The Log-Cauchy mixture with the 
PDF is written as: 

𝑓LCM∗ (𝑡) =|
𝑤>

(𝑡 − 𝑡!)π

A

>6#

σ
(ln(𝑡 − 𝑡!) − µ)8 + σ8

 

4. EXPERIMENTS 

This section details the experimental setup, 
including the datasets used, the procedure 
followed, and the evaluation metrics employed for 
next activity prediction and next timestamp 
prediction tasks. This section also provides the 
necessary context for interpreting the results. 

4.1. Dataset 

We evaluate two real-time event logs extracted 
from the 4TU Center for Research Data to 
evaluate different combinations of history 
encoders and conditional intensities: Helpdesk21 
and BPI 201237. Table 3 shows relevant statistics 
from these logs, namely, the number of cases, the 

number of different activities, the number of 
events, the average and maximum case length, the 
maximum and mean event duration in days, the 
mean and maximum case duration in days and the 
number of different variants. 
Table 3. Statistics of the event logs used for 
benchmarking. Time-related measures are shown in 
days. 

4.2. Procedure 

Figure 1 shows the procedure of our framework 
from preprocessing the data sets, data splitting, 
and training the history encoder and CIF until 
inferring the timestamps and activities. We 
perform data splitting and evaluate all TPP 
combinations in identical conditions to ensure 
comparable results. The goal is to simulate a 
scenario where past knowledge is utilized for 
training a predictive model, which is then used to 
predict the future. To achieve this, we perform a 
5-fold cross-validation, where every approach is 
tested once per fold. The event log traces are 
sorted by their initial event timestamp and split 
into training, validation, and test sets with a 
distribution of 64%, 16%, and 20%, respectively. 
Timestamps and activities are extracted from each 
fold data set and then encoded into history 
embeddings ℎ! and sequence embeddings 𝑒! by a 
chosen history encoder 𝐻. These embeddings are 
modeled under a specific CIF 𝑓∗(𝑡) to extract the 
time distribution and mark logit as the next 
timestamp and activity predictions. Later, we 
utilize the ground truth to compute the joint NLL 
(Eq. (3)) and optimize the parameters for the 
embeddings, the encoder, and the CIF. 

4.3. Metrics 

We use the following metrics to evaluate the TPP 
combinations' performance on the next activity 
prediction and next timestamp prediction tasks, 
along with the goodness-of-fit by NLL as Eq. (3). 

Statistics Helpdesk21 BPI 201237 

Number of cases 4580 13087 

Number of event types 14 36 

Number of events 21348 262200 

Mean case length 4.66 20.04 

Maximum case length 15 175 

Mean event duration 11.16 0.45 

Maximum event duration 59.92 102.85 

Mean case duration 40.86 8.62 

Maximum case duration 59.99 137.22 

Variants 266 4366 



The results are reported as the mean performance 
of each TPP combination on five folds. 
Additionally, our evaluation appends a dummy 
event as an (“[EOC]”) token to the end of every 
log trace, which can reduce the process state and 
provide a clear stopping point for activity 
prediction. 

4.3.1. Next activity prediction 

We use the accuracy metric since the next activity 
prediction task is a classic classification problem. 
The accuracy measures the proportion of correct 
classifications in relation to the number of 
predictions done, which is implemented as 
follows: 

Top-𝑞	ACC({𝑚3s}#*!*) , {𝑚!}#*!*)) 

=
K{𝑚! ∈ TopK{logit(𝑚3s)}: 1 ≤ 𝑖 ≤ 𝑁}K

𝑁
 

 

where logit(𝑚3s) ∈ 𝑅4 is obtained by Eq. (2) to 
measure the predicted discrete probability. 

4.3.2. Next timestamp prediction 

Since the time prediction problem is a regression 
task, the metric chosen for measuring the TPP 
performance in the next timestamp prediction task 
is the Mean Absolute Error (MAE). Instead of 
evaluating TPP performance based on the 
normalized value taken directly from the 
distribution under the Mean Absolute Percentage 
Error (MAPE), we alter the normalization step and 
postprocessing step to return the next timestamp 
prediction in days to have a fair comparison with 
our benchmarks. MAE metric has the advantage 
of not over-penalizing the variability in the 
observations, which is important in the time 
prediction in predictive process monitoring, where 
the time between two events in a trace can be 
potentially large. The MAE is defined as follows: 

MAE({𝑡3¥}#*!*) , {𝑡!}#*!*)) =
∑ |𝑡3¥ − 𝑡!|)
!6#

𝑁
 

where 𝑡3¥ is the 𝑖-th predicted timestamp. 

 

Table 4. Experimental results of the next timestamp prediction MAE in days and the next activity accuracy of 
modeling the overall CIF with different combinations of history encoder and family of distribution. The arrows 
↑/↓ indicate that the higher/lower results, the better. The metrics are computed as the mean of the 5-fold cross-
validation. The metrics in bold mean that the model achieves the top-5 performance in the column. 

Methods 
Helpdesk BPI 2012 

NLL ↓ MAE ↓ Top-1 
ACC ↑ 

Top-3 
ACC ↑ NLL ↓ MAE ↓ Top-1 

ACC ↑ 
Top-3 

ACC ↑ 

LogNormMix+RNN -2.046201 279.991608 0.695686 0.814908 -4.419353 19.107306 0.809411 0.934645 

LogNormMix+GRU -2.049259 269.787903 0.696841 0.814715 -4.498922 19.963001 0.811243 0.935909 

LogNormMix+LSTM -1.965748 265.744049 0.698613 0.814715 -4.805172 17.676338 0.810400 0.935561 

LogNormMix+Attention -2.025522 243.183641 0.698927 0.814715 -4.970017 19.699347 0.804081 0.942155 

LogNormMix+FNet -2.088489 354.522430 0.697804 0.814715 -3.997465 17.554281 0.700791 0.924937 

GomptMix+RNN 0.862758 26.262592 0.694530 0.815293 -1.943585 3.082433 0.811463 0.935542 

GomptMix+GRU 0.756814 36.176449 0.698190 0.814522 -1.989259 3.715980 0.814430 0.935689 

GomptMix+LSTM 0.803448 33.733837 0.694915 0.814909 -1.718078 1.786893 0.811939 0.935103 

GomptMix+Attention 0.198063 24.308924 0.798151 0.974923 -2.651078 2.053919 0.810492 0.936513 

GomptMix+FNet 0.922608 26.557230 0.695300 0.812982 -1.338134 1.192549 0.658058 0.919295 

LogCauMix+RNN -0.245449 24.777443 0.697612 0.815100 -2.425044 1.674708 0.809997 0.933234 

LogCauMix+GRU -0.238866 25.448597 0.693374 0.812789 -2.447077 4.090276 0.809778 0.935616 

LogCauMix+LSTM -0.213667 9.497505 0.697034 0.811633 -2.442514 2.642548 0.810345 0.935744 

LogCauMix+Attention -0.572755 20.529713 0.697612 0.812982 -2.426620 1.027533 0.806151 0.928967 

LogCauMix+FNet -0.229975 24.389563 0.698960 0.814137 -2.372896 2.651052 0.698978 0.924735 

WeibMix+RNN -1.920710 354.471039 0.690100 0.814522 -4.106110 17.718061 0.807818 0.933308 

WeibMix+GRU -1.807741 35.020641 0.689137 0.811633 -4.190582 14.316733 0.808514 0.933930 

WeibMix+LSTM -1.856559 295.800934 0.686248 0.811633 -4.111487 15.760619 0.812818 0.935542 

WeibMix+Attention -1.986018 123.920174 0.687982 0.812982 -4.050585 19.363649 0.796498 0.931842 

WeibMix+FNet -1.750751 308.825226 0.683166 0.808166 -3.867040 19.018917 0.694252 0.923929 

ExpDecayMix+RNN 1.778744 67.937225 0.696263 0.814908 1.221636 20.735715 0.811005 0.935011 

ExpDecayMix+GRU 1.889372 117.146721 0.697612 0.815293 -1.230995 20.580959 0.814375 0.935689 

ExpDecayMix+LSTM 1.963200 85.079498 0.696456 0.813367 -1.205069 20.735718 0.812086 0.935231 

ExpDecayMix+Attention 1.447936 354.209351 0.696841 0.814522 -1.521961 20.748582 0.808111 0.934700 

ExpDecayMix+FNet  1.800676 351.875275 0.697997 0.814522 -1.036910 20.735718 0.699857 0.924918 



5. RESULTS 

This section presents the findings from the 
experiments, highlighting the performance of 
different TPP models based on their combinations 
of history sequence encoders and formulations of 
conditional intensity functions. This section 
summarizes the key observations and insights 
gained from the experiments. 

Table 4 evaluates different combinations of 
history encoders and overall conditional 
intensities on two real-world datasets, namely 
Helpdesk and BPI 2012.  

• Goodness-of-fit is typically evaluated via 
the NLL result. The choice of history 
encoders such as RNN-based, Attention-
based, and FNet-based methods usually 
does not affect the overall performance of 
TPP models regarding the goodness-of-
fit. Meanwhile, the intensity functions 
used for CIF approximation matter most. 
ExpDecayMix shows the worst fitting 
ability. Besides, LogNormMix and 
WeibMix usually fit the data best due to 
the ability to fit the distribution via the 
NLL. 

• Next timestamp prediction is evaluated 
according to the MAE. The choice of 
intensity function is also crucial, where 
LogCauMix and GomptMix usually 
predict significantly better than others. In 
the Helpdesk dataset, interestingly, the 
LSTM with LogCauMix performs far 
better than any other combinations of TPP 
models.  

• Next activity prediction is evaluated via 
the Top-1 ACC and Top-3 ACC. The 
results show that the history encoder is 
critical because the prediction depends on 
its encodings. Attention-based encoders 
usually have good predictive performance 
because they can capture long-term 
features from historical events. Besides, 
GRU and LSTM also achieve high results 
due to their ability to capture long 
memory. 

To sum up, the NLL and MAE calculated 
by timestamps are predominantly influenced by 
the formulation of intensity and short-term 
influences, which the five history encoders can 
adequately capture. Though FNet is a new 
proposed approach and does not achieve high 
results compared with other history encoders, it 
still shows potential when pairing with suitable 
intensity functions such as LogCauMix. All 
history encoders can sufficiently model the 

dynamics of arrival time, given their minor 
differences. In contrast, Attention-based encoders 
usually surpass other history encoders to model 
the dynamics of the next activity due to the 
capability of capturing the long-term impacts of 
historical events.  

6. DISCUSSION 

The experimental results presented in this study 
provide valuable insights into the performance of 
different TPP models for predictive business 
process monitoring tasks. The findings highlight 
the importance of selecting an appropriate 
combination of history sequence encoders and 
CIFs to achieve optimal results. One key 
observation is that the choice of CIF plays a 
crucial role in the next timestamp prediction task. 
The LogCauMix and GomptMix intensity 
functions consistently outperform other options, 
indicating their suitability for capturing the 
temporal dynamics of business processes. This 
suggests that the formulation of the intensity 
function should be carefully considered when 
designing TPP models for timestamp prediction. 
Another notable finding is the impact of the 
history encoder on the next activity prediction 
task. Attention-based encoders, such as the self-
attention mechanism, demonstrate superior 
performance compared to other encoders. This can 
be attributed to their ability to capture long-term 
dependencies and selectively focus on relevant 
historical events. The results underscore the 
importance of leveraging attention mechanisms to 
effectively model the complex relationships 
between past activities and future predictions. The 
experiments also reveal that the FNet encoder, 
despite being a relatively new approach, shows 
potential when paired with suitable intensity 
functions like LogCauMix. While its performance 
may not surpass other established encoders, the 
FNet's ability to capture temporal patterns 
efficiently makes it a promising direction for 
future research in TPP models for business 
process monitoring. Conclusively, the 
performance of TPP models can vary depending 
on the characteristics of the dataset and the 
specific business process being monitored. The 
Helpdesk and BPI 2012 datasets used in this study 
represent real-world scenarios, but the 
generalizability of the findings to other domains 
and processes should be further investigated. 
Future research could explore the application of 
TPP models to a wider range of business processes 
and datasets to validate the robustness of the 
observed trends. 

Another important aspect to consider when 
applying TPP models in predictive business 



process monitoring is explainability.38 As 
businesses increasingly rely on automated 
decision-making systems, the ability to interpret 
and understand the predictions made by these 
models becomes crucial. Explainability helps to 
build trust in the model's outputs, facilitates 
debugging and error analysis, and enables 
stakeholders to gain insights into the factors 
influencing the predictions.39–41 However, it is 
important to note that achieving explainability in 
TPP models is not without challenges. The 
complexity of the models, the high-dimensional 
nature of the input data, and the temporal 
dependencies can make it difficult to provide 
simple and intuitive explanations. Striking a 
balance between model performance and 
interpretability is an ongoing research challenge. 
Future work in this area could focus on developing 
novel explainability techniques tailored to TPP 
models, as well as conducting user studies to 
assess the effectiveness and usability of these 
explanations in real-world business settings. 

7. CONCLUSION 

In this paper, we evaluate the performance of 
different TPP models via their combinations of the 
history sequence encoder and formulation of CIF 
on the predictive business process monitoring data 
sets. The results show that the formulation of 
intensity influences the next timestamp prediction 
and can be captured by any of the history 
encoders. The next event prediction is dominated 
by the ability to capture long-term impacts from 
historical events, especially attention-based 
encoders. In our future work, we plan to conduct a 
more profound experiment around several aspects 
of TPP models, such as loss computation, history 
embedding's normalization, the relational 
discovery of events, and optimizations. In our 
future work, we extend the capability of TPP 
models on other prediction problems such as 
activity suffix and remaining time prediction, and 
continue research on explainability to bridge the 
gap between model performance and 
interpretability, ultimately leading to more 
effective and user-friendly monitoring systems. 
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