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TÓM TẮT

Bài báo nghiên cứu tính ổn định của ánh xạ đa trị chính quy∗ Milyutin bị nhiễu bởi một ánh xạ Lipschitz
trong ngữ cảnh các khái niệm chính quy Milyutin và chính quy∗ Milyutin được phỏng lại cho phù hợp với một
số tình huống trong thực tiễn.

Từ khóa: Tính chính quy mêtric, tính chính quy∗ mêtric, độ dốc mạnh, tính ổn định nhiễu, tính pseudo-
Lipschitz∗.
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ABSTRACT

The paper investigates the stability of a star Milyutin regular set-valued mapping perturbed by a Lipschitz
mapping in the context of the concepts of Milyutin regularity and star Milyutin regularity that have been
adapted to be suitable for some practical situations.
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1. INTRODUCTION

First discovered from classical results:
Lyusternik-Graves Theorem, which is formed from
two independent results by L. A. Lyusternik (1934)
and L. M. Graves (1950), Open Mapping Theorem
by Rudin (1973), and Implicit Function Theorem by
Cauchy, Dini (1980s),... until now, the local metric
regularity for single-valued mappings has been stud-
ied and expanded by many mathematicians such as:
Borwein, Ioffe, Penot, Frankowska, Aubin,... to set-
valued mappings in nonlinear case of high order or
in nonlocal forms in works by Arutyunov1, Gfrerer2,
Frankowska and Quicampoix3, Mordukhovich and
Ouyang4, Penot5, Ioffe6,7, Ngai, Tron, and Théra8,
Ivanov and Zlateva9, etc. In the most recent pa-
per by Tron, Han, and Ngai10, models of nonlocal
metric regularity of multivalued mappings are con-
sidered on an arbitrary subset of product metric
space. And then, the infinitesimal characterization
for these models as well as the stability of Milyutin
regular under perturbation are also established.

Besides, in the process of expansion of Aubin
property to the fixed set situation, Ioffe6 led to a
weak version of metric regularity which is called star

metric regularity. Recall that star metric regularity
of a set-valued mapping on fixed subsets of the form
U ×V is the metric regularity of the mapping whose
images are the ones of the original set-valued map-
ping truncated by V, i.e., a set-valued mapping T

between metric spaces is said to be star metric reg-
ularity on U × V if there exists τ > 0 such that

d(u, T−1(v)) ≤ τd(v, T (u) ∩ V),

for all (u, v) ∈ U ×V and 0 < τd(v, T (u)∩V) ≤ δ(u),
where δ is a gauge function that takes positive val-
ues on U . In also6, Ioffe has shown that there exist
set-valued mappings that satisfy star metric regular-
ity but are not metric regularity. And so, star metric
regularity is claimed to be weaker than metric reg-
ularity. Then, for the such mappings, the use of the
Milyutin perturbation theorems as mentioned in10

with the metric regularity assumption of the original
set-valued mapping may not useful. Consequently,
the purpose of this article is to consider the stabil-
ity of Milyutin regular when the initial mapping just
satisfies star Milyutin regularity.

The paper is organized as follows. In Section 2

we introduce some basic notations and preliminar-
ies. Further we recall the related results by Tron,
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Han and Ngai10. In Section 3 we prove stability theo-
rems of perturbed star Milyutin regularity set-valued
mappings.

2. PRELIMINARIES

Throughout the article, we shall mainly be work-
ing in the setting of a metric spaceX, endowded with
a metric d. For u ∈ X, we denote by d(u,A) the
distance from u to A ⊆ X, d(u,A) := inf{d(u, t) |
t ∈ A}. By B(C, ρ), B(C, ρ) we denote respectively
an open and a closed neighborhood of C with ra-
dius ρ ∈ (0,+∞). A set-valued mapping (or a mul-
tifunction) between metric spaces X,Y denoted by
T : X ⇒ Y is a correspondence which associates
every u a set T (u), possibly empty. For every set-
valued mapping T : X ⇒ Y , we associate two
sets, the graph of T and the domain of T , are de-
fined by GraphT := {(u, v) ∈ X × Y | v ∈ F (u)}
and Dom T := {u ∈ X | T (u) ̸= ∅}. The inverse
of T is the mapping T−1 : Y ⇒ X defined by
T−1(v) = {u ∈ X | v ∈ F (u)}. Then,

(u, v) ∈ GraphT ⇐⇒ (v, u) ∈ GraphT−1.

2.1 Some basic notations and notions

In view of variational analysis, stability theory
is closely related to the basic notion of metric regu-
larity. The versions of this key property are recalled
below, and for more details and further references,
readers refer to the works11,12.

Let X,Y be metric spaces, T : X ⇒ Y be a
multifunction, (ū, v̄) ∈ GraphT .

Definition 1. 11,12 A multifunction T is called met-
rically regular around (ū, v̄) ∈ GraphT with modulus
κ > 0 if there exists a neighborhood U × V of (ū, v̄)
such that

d(u, T−1(v)) ≤ κd(v, T (u)), for all (u, v) ∈ U × V.

We denoted by reg T (ū, v̄) the infimum of all modu-
lus κ above.

Ioffe11,6 suggested a nonlocal regularity model
of set-valued mapping T : X ⇒ Y associated to a
gauge function γ as follows. Let U ⊂ X,V ⊂ Y and
γ : X → R ∪ {+∞} be positive on U .

Definition 2. 6,12 A multifunction T : X ⇒ Y is
called γ-metrically regular on U ×V if there is a real
number κ > 0 such that

d(u, T−1(v)) ≤ κd(v, T (u)), (2.1)

provided that u ∈ U , v ∈ V, and 0 < κd(v, T (u)) <

γ(u). Denote by reg γ T (U|V) the lower bound of
the κ satisfying (2.1). If no such κ exists, set
reg γ T (U|V) = ∞.

Furthermore, in the work10 by Tron, Han and
Ngai, a different version of γ-metric regularity which
is extended to an arbitrary set W ⊂ X×Y suggested
as follows.

Definition 3. 10 Let T : X ⇒ Y be a multifunction
and W be a subset of X×Y . T is called γ-metrically
regular on W with constant κ if there is a real number
r > 0 such that

d(u, T−1(v)) ≤ κd(v, T (u)), (2.2)

for all (u, v) ∈ W with 0 < rd(v, T (u)) < γ(u). The
lower bound reg γ T (W) of κ in (2.3) is the modulus
of γ-metric regularity of T on W. If no such κ exists,
set reg γ T (W) = ∞.

The above definition covers the case where the
parameters κ and r coincide, which is known as the
concept of γ-metric regularity in the sense of Ioffe,
as shown in the following definition.

Definition 4. 10 Let X,Y be metric spaces, W be a
subset of X × Y and let T : X ⇒ Y be a set-valued
mapping. T is called γ-metrically regular on W if
there is κ > 0 such that

d(u, T−1(v)) ≤ κd(v, T (u))

for all (u, v) ∈ W with 0 < κd(v, T (u)) < γ(u).

Next, we recall a weaker version of metric regu-
larity, star metric regularity, introduced by Ioffe in
also6.

Definition 5. 6 Set TV(u) = T (u)∩V. A multifunc-
tion T is said to be γ-regular∗ (or star γ-regular) on
U × V if TV is γ-regular on U × V. Specifically, T is
called γ-regular∗ on U × V if there is a κ > 0 such
that

d(u, T−1(v)) ≤ κd(v, T (u) ∩ V)

for all u ∈ U , v ∈ V and 0 < κd(v, T (u)∩V) < γ(u).
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In order to be convenient in some applications,
in this paper, we propose an improved version of the
above definition in which the parameters “κ” in the
regularity inequality and the gauge condition could
be distinguished.

Definition 6. A multifunction T : X ⇒ Y is called
γ-metrically regular∗ on U×V ⊂ X×Y with constant
κ if there is a real number r > 0 such that

d(u, T−1(v)) ≤ κd(v, T (u) ∩ V), (2.3)

for all (u, v) ∈ U×V with 0 < rd(v, T (u)∩V) < γ(u).
The lower bound reg ∗

γ T (U|V) of κ in (2.3) is the
modulus of γ-metric regularity∗ of T on U ×V. If no
such κ exists, set reg ∗

γ T (U|V) = ∞.

Remark 7. In case of r = κ, Definition 6 leads to
the version of γ-metric regularity∗ on U × V in the
sense of Ioffe as in Definition 5.

γ-openness∗ and γ-pseudo-Lipschitz∗ of set-
valued mappings are equivalent properties of the reg-
ularity* stated as follows.

Definition 8. A multifunction T : X ⇒ Y is γ-
open∗ on U × V with constant κ if there is a real
number ρ > 0 such that

B(T (u) ∩ V, ρt) ∩ V ⊂ T (B(u, κ−1ρt)), (2.4)

whenever u ∈ U , 0 < t < γ(u). The upper bound
sur∗γ T (U|V) of κ in (2.4) is the modulus of γ-
surjection∗ of T on U × V. If no such κ exists, set
sur∗γ T (U|V) = 0.

Definition 9. A multifunction T−1 : Y ⇒ X is γ-
pseudo-Lipschitz∗ on V × U with constant κ if there
is a real number ρ > 0 such that

d(u, T−1(v)) ≤ κd(v, w), (2.5)

provided that u ∈ T−1(w) ∩ U , v, w ∈ V and 0 <

ρd(v, w) < γ(x). The lower bound lip∗γ T
−1(U|V) of

κ in (2.5) is the γ-pseudo-Lipschitz∗ modulus of T−1

on V ×U . If no such κ exists, set lip∗γ T
−1(U ×V) =

∞.

The following propositon shows the equivalence
of the above three star regular concepts.

Proposition 10. Let T : X ⇒ Y be set-valued map-
ping and U ⊂ X, V ⊂ Y . The following statements
are equivalent:

(i) T is γ-open∗ on U×V with modulus not smaller
than κ−1;

(ii) T is γ-regular∗ on U × V with modulus not
greater than κ;

(iii) T−1 is γ-pseudo-Lipschitz∗ on V×U with mod-
ulus not greater than κ.

Proof. To show (i) ⇒ (ii), let (u, v) ∈ U × V
be with 0 < ρd(v, T (u) ∩ V) < γ(u). Then, for all
ϵ > 0, take τ = ρ(d(v, T (u) ∩ V) + ϵ) such that
0 < ρd(v, T (u) ∩ V) < τ < γ(u). Then, u ∈ U , 0 <

τ < γ(u) and v ∈ B(T (u)∩V, ρ−1τ)∩V. By (i), v ∈
T (B(u, κρ−1τ)). So, there exists z ∈ B(u, κρ−1τ)

such that v ∈ T (z). It follows that d(u, T−1(v)) ≤
d(u, z) ≤ κρ−1τ = κ(d(v, T (u) ∩ V) + ϵ). Let ϵ ↓ 0,
one gets d(u, T−1(v)) ≤ κd(v, T (u) ∩ V).

The implication (ii) ⇒ (iii) is obvious. For
(iii) ⇒ (i). Let u ∈ U , 0 < τ < γ(u), and let
v ∈ B(T (u) ∩ V, ρ−1τ) ∩ V. Then u ∈ U and there
exists w ∈ T (u)∩V such that 0 < d(v, w) < ρ−1τ . It
follows u ∈ T−1(w)∩U , v, w ∈ V and 0 < ρd(v, w) <

τ < γ(u). By (iii), d(u, T−1(v)) ≤ κd(v, w) < κρ−1τ .
This means that there is z ∈ T−1(v) such that
d(u, z) < κρ−1τ , that is v ∈ T (B(u, κρ−1τ)). So,

B(T (u) ∩ V, ρ−1τ) ∩ V ⊂ T (B(u, κρ−1τ)).

The proof is complete.

2.2 Auxiliary results

Now, we recall the concept of (strong) slope
which is considered as an infinitesimal tool in metric
spaces, first introduced in 1980 by De Giorgi, Marino,
and Tosques13.

Definition 11. 13,14 Let X be a metric space and
f : X → R ∪ {+∞} be a given function. The symbol
[f(x)]+ stands for max(f(x), 0) and Dom f := {x ∈
X | f(x) < +∞} denotes the domain of f .

(i) The quantity defined by |∇f |(x) = 0 if x is a
local minimum of f ; otherwise

|∇f |(x) = lim sup
u→x,u ̸=x

f(x)− f(u)

d(x, u)
.

is called the local slope of the function f at
x ∈ Dom f .
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(ii) The quantity

|Γf |(x) := sup
u̸=x

[f(x)− f(u)]+
d(x, u)

is called the nonlocal slope of the function f at
x ∈ Dom f .

For x /∈ Dom f , we set |∇f |(x) = |Γf |(x) = +∞.
Obviously, |∇f |(x) ≤ |Γf |(x) for all x ∈ X.

In case of X being a normed space and f being
Fréchet differentiable function at x then the slope of
f coincides with the norm of the derivative ∇f at
the point. For a fuller treatment of strong slope, we
refer the reader to13,15,16,17,18,19.

To establish infinitesimal characterizations for
regularity, an effective tool that has been used is the
lower semicontinuous envelop of the distance func-
tion associated to a set-valued mapping T : X ⇒ Y

defined by

φT
y (x) := lim inf

(u,v)→(x,y)
d(v, T (u)) := lim inf

u→x
d(y, T (u)).

The following theorem established by Tron, Han,
Ngai10 gives the necessary/ sufficient conditions for
the metric regularity via nonlocal slope of the func-
tion φT

y . Now, let be given a subset W of X × Y ,
we associate every v ∈ Y to set Wv = {u ∈ X :

(u, v) ∈ W}, and every u ∈ X to set Wu = {v ∈ Y :

(u, v) ∈ W}. Then, denoted by PXW := ∪v∈Y Wv,

and PY W := ∪u∈XWu. In particular, in the case
where the form of W is a box U × V , the sets Wv

(with v ∈ V ), PXW are identical to U and the sets
Wu (with u ∈ U), PY W are identical to V .

Theorem 12. (Tron-Han-Ngai10) Given X is a
complete metric space, Y is a metric space and W ⊂
X × Y is a nonempty subset. Let T : X ⇒ Y be a
closed set-valued mapping and γ : X → R+ ∪ {+∞}
be a gauge function. Then,

(i) Suppose that γ is lower semicontinuous. If W
is open and T is γ-metrically regular on W
with constant κ, i.e., there exists a real r > 0

such that for every (x, y) ∈ W, with 0 <

rd(y, T (x)) < γ(x),

d(x, T−1(y)) ≤ κd(y, T (x)),

then for each (x, y) ∈ W, with 0 < rφT
y (x) <

γ(x), one has

|ΓφT
y |(x) ≥ κ−1

(ii) Conversely, assume further that γ : X → R+ is
a Lipschitz continuous function with constant
1. If there are a positive real κ such that

lim
δ↓0

inf{|ΓφT
y |(x) : d(x,Wy) < δγ(x), y ∈ PY W,

0 < φT
y (x) < δγ(x)}>κ−1.

then T is γ-metrically regular on W with con-
stant κ.

Regarding Definition 4, the theorem below in the
work by Tron, Han, Ngai10 gives a suficient condition
for the γ-metric regularity via the nonlocal slope.

Theorem 13. (Tron-Han-Ngai10) Let X be a com-
plete metric space and Y be a metric space, W ⊂
X × Y be a nonempty subset. Let T : X ⇒ Y be a
closed set-valued mapping. Suppose that γ : X → R+

is a Lipschitz function with constant 1. If there exists
κ > 0 such that

|ΓφT
y |(x) ≥ κ−1,

∀x ∈ (Wy)γ , y ∈ PyW, 0 < κφT
y (x) < γ(x), where

(Wy)γ = ∪x∈Wy
B(x, γ(x)), then one has

d(x, T−1(y)) ≤ κd(y, T (x)),

for all (x, y) ∈ W with 0 < κd(y, T (x)) < γ(x).

3. PERTURBATION STABILITY OF
STAR MILYUTIN REGULARITY MULTI-
FUNCTIONS

Let X,Y be metric spaces and W be a nonempty
subset of X × Y . Firstly, we recall the defintiton of
Milyutin regular on W given by Tron, Han and Ngai
in10.

Definition 14. (Tron-Han-Ngai10) A multifunction
T : X ⇒ Y is called Milyutin regular on W with
constant κ if there is a real number r > 0 such that

d(T−1(y)) ≤ κd(y, T (x)),

for all (x, y) ∈ W with 0 < rd(y, T (x)) < mPXW(x).
The infimum of all above κ denoted by regm T (W).
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Next, we consider the definitions of Milyutin
regular∗ associated to the gauge function γ ≡
mPXW : X → R+ defined by mPXW(x) :=

d(x,X\PXW).

Definition 15. A multifunction T : X ⇒ Y is called
Milyutin regular∗ on W with constant κ if there is a
real number r > 0 such that

d(T−1(y)) ≤ κd(y, T (x) ∩ PXW),

for all (x, y) ∈ W with 0 < rd(y, T (x) ∩ PXW) <

mPXW(x). The infimum of all above κ denoted by
reg ∗

m T (W) is the modulus of Milyutin regular∗ of T
on W. If the above constant κ does not exists, set
reg ∗

m T (W) = ∞.

Remark 16. In the above definition, taking r = κ

one obtains the definition of Milyutin regular∗ on W
in the sense of Ioffe.

It is easily seen that mPXW(x) is positive on
PXW if and only if PXW is an open set, which fol-
lows from W is open. And then, the results of Theo-
rem 12 and Theorem 13 are also applied to the func-
tion mPXW due to Lipschitz property with constant
1 of this one.

In this part, we shall investigate the stability of
Milyutin regular under perturbation by single-valued
mappings and the original set-valued mapping is as-
sumed to be Milyutin regular∗.

Theorem 17. Let X be a complete metric space and
Y be a Banach space. Let U ⊂ X, V ⊂ Y be open
sets. Let a closed set-valued mapping T : X ⇒ Y

and a single-valued mapping h : X → Y be Lips-
chitz on U with constant λ ∈ (0, κ−1). If T is Mi-
lyutin regular∗ on U × V with constant κ, i.e, there
exists r > 0 such that for all (x, y) ∈ U × V with
0 < rd(y, T (x) ∩ V) < mU (x),

d(x, T−1(y)) ≤ κd(y, T (x) ∩ V).

Then, for every η > 0, T + h is Milyutin regular on
Wλη with regm(T + h)(Wλη) ≤ (κ−1 − λ)−1, where

Wλη = {(x, y) ∈ X × Y | x ∈ U ,
B(y − h(x), ληmU(x)) ⊂ V}.

Proof. Let η > 0 be given. According to Theorem

12, we only need to prove that

lim
δ↓0

inf{|ΓφT+h
y |(x) : d(x,Wλη

y ) < δmPXWλη (x),

y ∈ PY Wλη, 0 < φT+h
y (x) < δmPXWλη (x)}>κ−1 − λ.

(3.1)

Indeed, choose δ such that
δ

1− δ
< min{1, η}, 0 <

rδ < 1,
(λ+ 1)δ

1− δ
< λη.

Let (x, y) ∈ X × Y such that d(x,Wλη
y ) <

δmPXWλη (x), y ∈ PXWλη and 0 < φT+h
y (x) <

δmPXWλη (x). Then there exists u ∈ Wλη such that

d(x, u) < δmPXWλη (x) ≤ δmU (x).

So, u ∈ U , B(y − h(u), ληmU (x)) ⊂ V, and since mU
is Lipschitz with constant 1, it follows that

d(x, u) < δmU (u) + δd(x, u).

By the choice of δ, one has

d(x, u) <
δ

1− δ
mU (u) < mU (u) (3.2)

which gives x ∈ U .
Let now {un} ⊂ X be such that un → x and

d(y, (T + h)(un)) → φT+h
y (x) as n → ∞.

Thus, there exists n0 ∈ N such that for all n ≥ n0,

0 < d(y, (T + h)(un)) < δmU (un) (3.3)

and, as un → x ∈ U , we have un ∈ U due to the
openness of U . And then, by the choice of δ when n

is sufficiently large, we have

0 < d(y, (T + h)(un)) < r−1mU (un). (3.4)

Furthermore, for n large enough, we find that
d(yn, T (un)) = d(yn, T (un) ∩ V). Indeed, fixing n ∈
N∗, we take a sequence {ak} ⊂ T (un) such that

d(y − h(un), ak) → d(y − h(un), T (un)), k → ∞.

By (3.2), (3.3) and the continuity of distance func-
tion, we conclude that

d(y − h(un), ak) < δmU (un)

≤ δmU (u) + δd(un, u)

≤ δmU (u) +
δ2

1− δ
mU (u)

=
δ

1− δ
mU (u).

(3.5)
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From (3.2), (3.5) and the choice of δ, it follows that
for n ≥ n0,

d(ak, y − h(u)) ≤ d(ak, y − h(un))

+ d(y − h(un), y − h(u))

≤ δ

1− δ
mU (u) + λd(un, u)

≤ δ

1− δ
mU (u) + λ

δ

1− δ
mU (u)

=
(λ+ 1)δ

1− δ
mU (u)

≤ ληmU (u)

which gives ak ∈ B(y − h(u), ληmU (u)) ⊂ V,
and thus ak ∈ T (un) ∩ V. Consequently, d(y −
h(un), ak) ≥ d(y − h(un), T (un) ∩ V), So, d(y −
h(un), T (un)) ≤ d(y − h(un), T (un) ∩ V). And then,
d(y − h(un), T (un)) = d(y − h(un), T (un)∩ V) when
n is sufficiently large.

Then from (3.4), we see that

0 < d(y − h(u), T (un) ∩ V) = d(y − h(u), T (un))

< r−1mU (un).

Moreover, by (3.2), for n is large enough, we conclude
from the continuity of distance function that

d(y − h(un), y − h(u)) < λd(un, u)

≤ λd(x, u)

≤ λ
δ

1− δ
mU (u)

≤ ληmU (u),

where the last inequality is followed from the choice
of δ. Consequently,

y − h(un) ∈ B(y − h(u), ληmU (u)) ⊂ V.

Then from the fact that T is Milyutin regular∗ on
U × V with constant κ, we obtain

d(un, T
−1(y − h(un))) ≤ κd(y − h(un), T (un) ∩ V)

= d(y − h(un), T (un)), ∀n ≥ n0.

Now we choose some zn ∈ T−1(y − h(un)) (i.e.,
y − h(un) ∈ T (zn)) such that

d(un, zn) ≤ (κ+ n−1)d(y − h(un), T (un)). (3.6)

From (3.3) and the choice of δ, for all n ≥ n0, one
has

d(un,zn) < (κ+ n−1)δmU (un) < mU (un).

This yields zn ∈ U , and thus from the Lipschitz prop-
erty of h on U , we have

d(h(un), h(zn)) ≤ λd(un, zn). (3.7)

Since φT+h
y (x) > 0, the closeness of T , and

limn→∞ un = x, we see that lim infn→∞ d(un, zn) >

0. Note that d(y−h(un), T (zn)) = 0 since y−h(un) ∈
T (zn), and from (3.6), (3.7), we conclude that

|ΓφT+h
y |(x) ≥ lim sup

n→∞

φT+h
y (x)− φT+h

y (zn)

d(x, zn)

≥ lim sup
n→∞

d(y, (T + h)(un))− d(y, (T + h)(zn))

d(un, zn)

= lim sup
n→∞

d(y − h(un), T (un))− d(y − h(zn), T (zn))

d(un, zn)

≥ lim sup
n→∞

d(y − h(un), T (un))

d(un, zn)
− λ

≥ lim sup
n→∞

1

κ+ n−1
− λ = κ−1 − λ.

This finishes the proof.

The next theorem is a version of the above one in
which the definition of Milyutin regular∗ is replaced
by the definition of Milyutin regular∗ in the sense of
Ioffe.

Theorem 18. Given X is a complete metric space,
Y is a Banach space and U ⊂ X, V ⊂ Y are open
sets. Let a closed set-valued mapping T : X ⇒ Y and
a single-valued mapping h : X → Y be Lipschitz on U
with constant λ ∈ (0, κ−1). If T is Milyutin regular∗

on U × V with constant κ, i.e, for all (x, y) ∈ U × V
with 0 < κd(y, T (x) ∩ V) < mU (x),

d(x, T−1(y)) ≤ κd(y, T (x) ∩ V).

Then, T+h is Milyutin regular on W with regm(T+

h)(W) ≤ (κ−1 − λ)−1, where

W = {(x, y) ∈ X × Y | x ∈ U ,
B(y − h(x), (2κ−1 − λ)mU (x)) ⊂ V}.

Proof. Set (Wy)m := ∪u∈WyB(u,mPXW(u)). Ac-
cording to Theorem 13, now we shall show that
for any x ∈ (Wy)m, y ∈ PY W with 0 < (κ−1 −
λ)−1φT+h

y (x) < mPXW(x),

| ΓφT+h
y | (x) ≥ κ−1 − λ.
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Indeed, take (x, y) ∈ X × Y such that x ∈ (Wy)m,
y ∈ PY W with 0 < (κ−1−λ)−1φT+h

y (x) < mPXU (x).
Then, there is u ∈ Wy such that

d(x, u) < mPXW(u) ≤ mU (u). (3.8)

So, u ∈ U,B(y − h(u), λmU (u)) ⊂ V, and x ∈ U .
Now, we take {un} ⊂ X such that un → x and

d(y, (T +h)(un)) → φT+h
y (x) as n → ∞. Thus, there

exists n0 ∈ N such that for all n ≥ n0,

0 < d(y, (T + h)(un)) ≤ (κ−1 − λ)mPXW(x)

≤ (κ−1 − λ)mU (x)

≤ (κ−1 − λ)mU (un) (3.9)

< κ−1mU (un), (3.10)

and that un ∈ U follows from the openness of U and
un → x ∈ U .

Furthermore, d(y − h(un), T (un)) = d(y −
h(un), T (un) ∩ V) for n large enough. Indeed, fix-
ing n ∈ N∗, we choose a sequence {ak} ⊂ T (un) such
that d(y−h(un), ak) → d(y−h(un), T (un)), k → ∞.
By (3.8), (3.9), and the continuity of the distance
function, we conclude that

d(y − h(un), ak) < (κ−1 − λ)mU (un)

≤ (κ−1 − λ)mU (u) + (κ−1 − λ)d(un, u))

≤ (2κ−1 − λ)mU (u),
(3.11)

which yields ak ∈ B(y − h(un), (2κ
−1 − λ)mU (u)) ⊂

V, and thus ak ∈ T (un) ∩ V. Consequently, d(y −
h(un), ak) ≥ d(y − h(un), T (un) ∩ V). So, d(y −
h(un), T (un)) ≥ d(y − h(un), T (un) ∩ V). This gives
d(y − h(un), T (un)) = d(y − h(un), T (un)∩ V) when
n is sufficiently large.

Then from (3.10), we see that

0 < d(y − h(un), T (un) ∩ V) = d(y − h(un), T (un))

< κ−1mU (un).

Otherwise, by (3.8) and for n large enough, one also
have

d(y − h(un), y − h(u)) ≤ λd(un, u)

≤ λd(un, x) + λd(x, u)

≤ λmU (u)

≤ (2κ−1 − λ)mU (u)

which leads to y−h(un) ∈ B(y−h(u), λmU (u)) ⊂ V.
So, due to the Milyutin regularity∗ of T on U×V

with constant κ, one obtains

d(un, T
−1(y − h(un))) ≤ κd(y − h(un), T (un) ∩ V)

We now choose zn ∈ T−1(y−h(un)) (i.e., y−h(un) ∈
T (zn)) such that

d(un, zn) ≤ (κ+ n−1)d(y − h(un), T (un) ∩ V)
= (κ+ n−1)d(y − h(un), T (un)) (3.12)

≤ (κ+ n−1)κ−1mU (un)

< mU (un),

where the last inequality is obtained when n is large
enough. It follows that zn ∈ U , and thus from the
Lipschitz property of h on U , we have

d(y − h(un), y − h(zn)) ≤ λd(un, zn). (3.13)

Since φT+h
y (x) > 0, the closeness of T , and

limn→∞ un = x, we have lim infn→∞ d(un, zn) > 0.
From (3.12), (3.13), and note that y−h(un) ∈ T (zn),
similar as in the proof of Theorem 17, one concludes
that

| ΓφT+h
y | (x) ≥ lim sup

n→∞

1

κ+ n−1
− λ

= κ−1 − λ.

The proof is completed.

4. CONCLUSIONS

This artical suggests the models of star regular-
ity on an any subset of product metric spaces as well
as established the equivalence of star regular con-
cepts: star openness, star metrically regular and star
pseudo-Lipschitz in the literature. Regarding the star
Milyutin regularity, we have proved that the stabil-
ity of Milyutin regularity under small Lipschitz per-
turbation also attains when the assumption of star
Milyutin regularity is imposed on the original set-
valued mapping.
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