

QNUJS-B2411. Duy

By Quy Nhon University Journal of Science

WORD COUNT

1499

TIME SUBMITTED

11-APR-2024 08:37PM

PAPER ID

108205899

4

Nghiên cứu về ảnh hưởng của hàm lượng xi măng đến khả năng chịu lực của cọc xi măng đất để xử lý đất sét yếu ở khu đô thị sông Hà Thanh, thành phố Quy Nhơn

TÓM TẮT

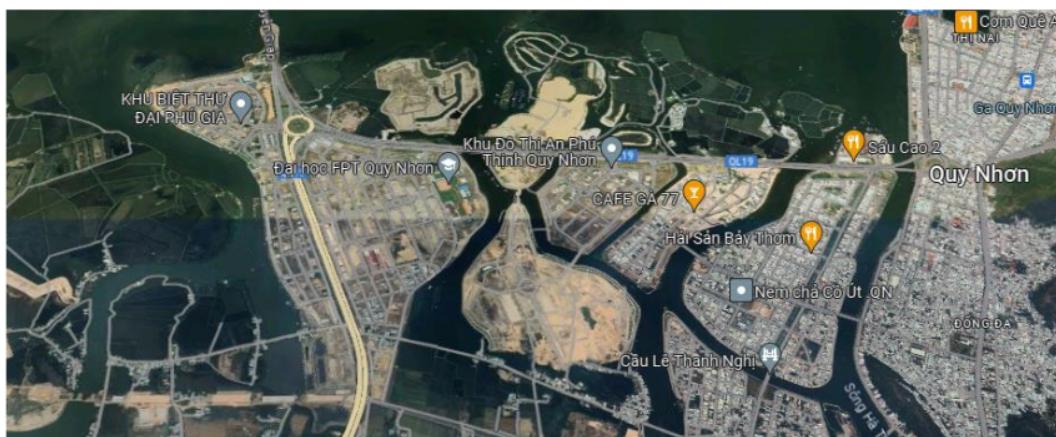
4 Trong thực tiễn hiện tại của các tòa nhà xây dựng được đặt trên đất mềm ở Việt Nam, công nghệ cọc xi măng được sử dụng ngày càng rộng rãi vì những lợi thế nổi bật của nó. Cọc xi măng đất là cọc được làm từ đất địa phì trộn với một lượng xi măng và phụ gia nhất định tùy thuộc vào đặc tính địa kỹ thuật của đất trong khung dự án. Mục đích chính của nghiên cứu này là xác định hàm lượng xi măng tối ưu cho cọc xi măng đất. Có nhiều yếu tố ảnh hưởng đến cường độ của cọc xi măng đất, trong đó hàm lượng xi măng được sử dụng đóng một vai trò quan trọng và cần được nghiên cứu cẩn thận. Nghiên cứu này nhằm mục đích cung cấp thông số hàm lượng cát phôi xi măng phù hợp cho các cọc xi măng đất được áp dụng cho các dự án xây dựng ở khu vực đất yếu của sông Hà Thanh, thành phố Quy Nhơn. Các mẫu được tạo ra bằng cách trộn đất với hàm lượng xi măng thay đổi từ 5% đến 25%. Nhóm tác giả tiến hành xác định ứng suất dọc trực của các cọc xi măng đất ở thời điểm 7 ngày tuổi và 28 ngày tuổi bằng thí nghiệm nén một trục nở hông. Kết quả cho thấy hàm lượng xi măng tối ưu cho cọc xi măng đất đạt được từ 12% đến 15% đối với đất sét yếu khu đô thị Hà Thanh, thành phố Quy Nhơn, tỉnh Bình Định.

8

Từ khóa: cọc xi măng-đất, sức chịu tải của cọc, đất yếu, xử lý nền đất yếu.

4 Research on the influence of cement content on the bearing capacity of the soil-cement pile to treat soft clay in the Ha Thanh River urban area, Quy Nhon City

ABSTRACT


In the current practice of building foundations placed on soft soil in Vietnam, cement-soil pile technology is increasingly widely used because of its outstanding advantages. The cement-soil pile is a pile made from local soil mixed with a certain amount of cement and additives depending on the geotechnical characterization of the soil in the project area. The main purpose of this study is to propose the optimal cement content for cement-soil piles. Many factors affect the compressive strength of cement-soil piles, in which the cement content used plays an important role and needs to be carefully studied. This study aims to provide appropriate cement gradation content parameters for cement-soil piles applied to construction projects in the soft soil area of Ha Thanh River, Quy Nhon City. In the paper, the samples were created by mixing soil with cement content varying from 5% to 25%. The authors determined the axial stress of soil-cement pile samples at 7 days old and 28 days old using the unconfined compressive test. The results show that the optimal cement content for cement-soil piles ranges from 12% to 15% for soft clay in the Ha Thanh urban area, Quy Nhon City, Binh Dinh province.

Keywords: soil-cement pile, bearing capacity, soft soil, soft soil treatment method.

1 INTRODUCTION

The continuous development and progress of society, especially in the coastal and lagoon areas of Quy Nhon City, Binh Dinh province, and the construction of high-rise buildings, ports, and roads on weak foundations is extremely urgent. In this process, the soft soil treatment method will encounter more and more complex problems, thus creating opportunities for developing new soft soil foundation treatment technologies. Therefore, reasonable and effective treatment of soft soil foundations has become a key issue in

engineering buildings. Among them, the cement-soil pile method is widely used for industrial and civil buildings, docks, and highways. In this study, the survey location was located at the An Phu Thinh social housing apartment building project at land lot B1 - 32, An Phu Thinh new urban area, location: Dong Da ward, Quy Nhon City, Binh Dinh province as shown in Figure 1. Soil stratification of the survey location is illustrated in Figure 1.

Figure 1. Location of the An Phu Thinh social housing apartment building project at land lot B1 - 32, An Phu Thinh new urban area, location: Dong Da ward, Quy Nhon City, Binh Dinh province.

1

2. METHODOLOGY

2.1. The geological structural conditions in the survey area.

The survey area has relatively flat terrain because it has been partially leveled with river bottom materials. Regarding geomorphology, the area belongs to agglomeration morphology, the

geological formations are river and lake sediments with many types of heterogeneous materials. Conduct drilling and take soil and water samples and bring them to the laboratory to determine physical and mechanical criteria. The geotechnical parameters of the soft clays are shown in Table 1.

Table 1. Geotechnical parameters of soft clays in the An Phu Thinh social housing apartment building project at land lot B1 - 32, An Phu Thinh new urban area, Dong Da ward, Quy Nhon City, Binh Dinh province.

Depth(m)	Sample test	Description								SPT (N-Value)
10-52m	Soft clay	Soft, blue-gray, dark gray, organic content of 13.1%, low plasticity								<3
Mechanical consistency of soft clay										
γ kN/m ³	c kN/m ²	ϕ °	G_s	W %	W_L %	W_P %	I_P	I_L	e_0	
16.3	27.01	7	2.72	69.9	40.9	22.4	63.3	1.28	1.843	

2.2. Stabilization of soft soil- The soil cement column method (TCVN 9403:2012)

2

In this study, the group of authors used the dry mixing method to cast sample tests. The process includes mechanically loosening the soil in the field and mixing dry cement powder with soil with or without additives. The method of creating soil-cement samples was followed TCVN9403:2012.⁸ Water and cement in the required amount were mixed manually until there

was obtained homogeneous state of "laitance". The amount of cement is determined by the weight ratio of dry soil. After the cement mortar was mixed with soil which is specific humidity. The obtained mixture was mixed to a homogeneous mass over 5 minutes in cylinders with dimensions h=100 mm and d=50 mm. The samples were pulled from the blocks on the second day and they were retained period till the test when 7 days and 28 days.⁸ The Parameters of test samples are presented in Table 2.

Table 2. The Parameters of test samples in the axial load test

Sample group	Number of samples	Weight of samples		Size of samples	
		Cement (g)	Soil (g)	Height (mm)	Diameter (mm)
5%	6	74.23	1814.27	100	50
8%	6	118.77	1814.27	100	50
10%	6	148.47	1814.27	100	50

12%	6	178.16	1814.27	100	50
15%	6	222.70	1814.27	100	50
18%	6	267.24	1814.27	100	50
20%	6	296.93	1814.27	100	50
25%	6	371.17	1814.27	100	50

30

2.3. The axial load test

This test method is used to determine the unconfined compressive strength of cohesive soil in the undisturbed, remolded, or compacted condition by using strain-controlled application of the axial load.^{7,8} The equipment used in the unconfined compressive test is the Triplex II advanced as shown in Figure 2. In this test, the

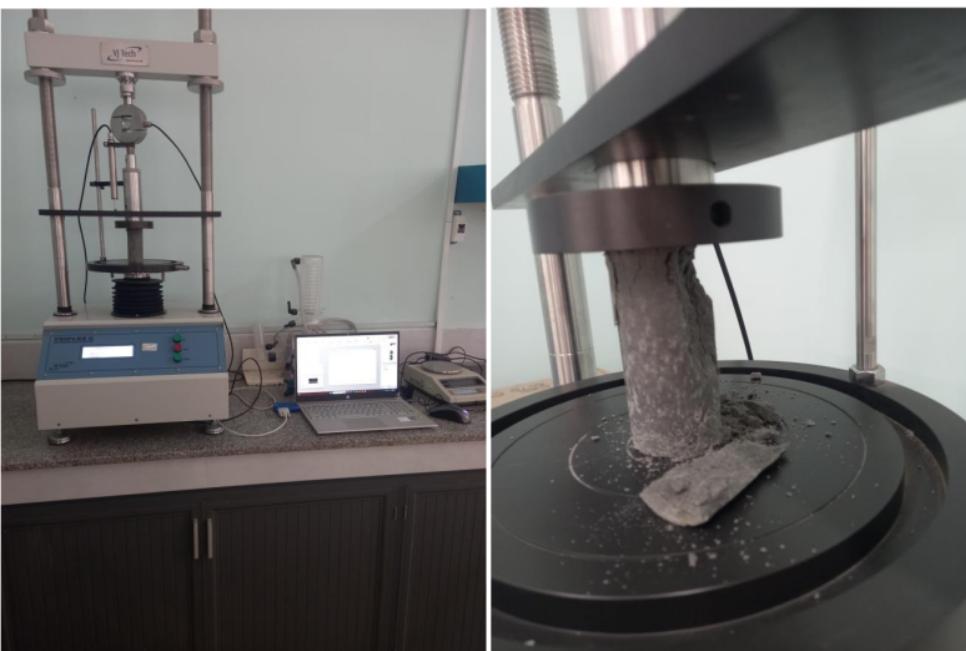


Figure 2: The Triplex II advanced and form of cement-soil piles damage.

2

3. RESULTS AND DISCUSSION

The soil strength is increasing over time. As the cement content of the cement-soil pile increases, the unconfined compressive strength increases shown in Figure 3.^{1,2}

10

The unconfined compressive strengths of cement-soil piles increase rapidly when cement content increases from 12% to 15% as presented in Figure 4.¹ The results of this study are

unconfined compressive strength (q_u) is extracted as the maximum load attained per unit area or the load per unit area at 20% axial strain.⁷

$$q_u = \sigma_1 - \sigma_3 \quad (1)$$

consistent with the results of the authors' research N. Zotsenko, Yu. Vynnykov, and V. Zotsenko.^{1,9}

When the cement content of the samples increases from 12% to 15%, the compressive strength of cement-soil piles increases from 70% to 99% as presented in Figure 4.

When the cement content of the samples increases from 15% to 20%, the increase in compressive strength of the cement-soil pile decreases from 99% to 15% as presented in Figure 4.

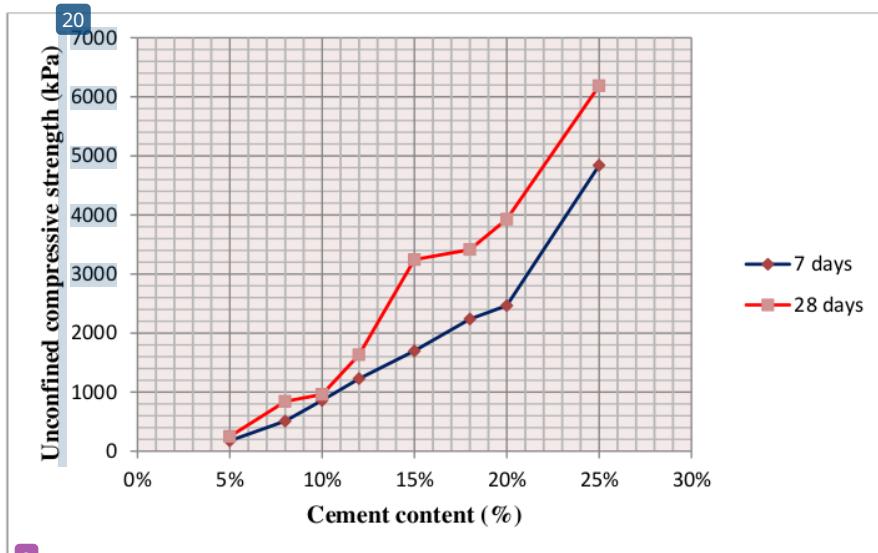


Figure 3. The unconfined compressive strengths of cement-soil piles at 7 days and 28 days.

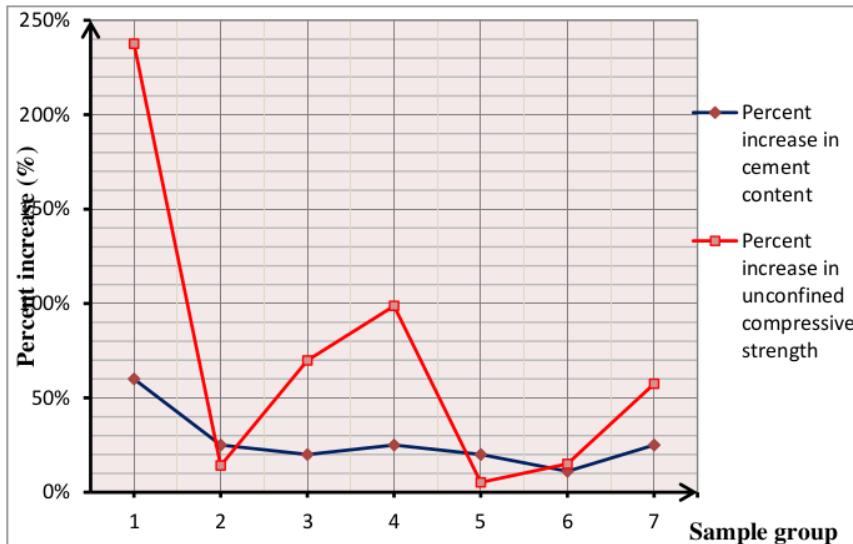


Figure 4. The percent increase in cement content and the percent increase in unconfined compressive strength of the sample groups.

4. CONCLUSIONS

Therefore, the authors suggested reasonable cement content for soft clay in the An Phu Thinh social housing apartment building project at land lot B1 - 32, An Phu Thinh new urban area, Dong

Da ward, Quy Nhon City, Binh Dinh province is from 12% to 15%

The cement-soil pile method is proposed to treat 6 ft clay for 4 to 8-storey buildings, located in the Ha Thanh River urban area, Quy Nhon City.

33%

SIMILARITY INDEX

PRIMARY SOURCES

- 1 Le Thi The Buu. "Factors Affecting the Working Motivation of Office Staff at Export Wood Processing Enterprises in Binh Dinh Province", VNU JOURNAL OF ECONOMICS AND BUSINESS, 2022 60 words — 4%

Crossref
- 2 "Geotechnics for Sustainable Infrastructure Development", Springer Science and Business Media LLC, 2020 53 words — 3%

Crossref
- 3 Xiaoyi Jiang, Qingrui Lu, Shijun Chen, Renhui Dai, Jinhe Gao, Ping Li. "Research progress of soft soil foundation treatment technology", IOP Conference Series: Earth and Environmental Science, 2020 48 words — 3%

Crossref
- 4 tailieu.vn 37 words — 2%

Internet
- 5 ebin.pub 35 words — 2%

Internet
- 6 businessdocbox.com 26 words — 2%

Internet
- 7 lib.buet.ac.bd:8080 25 words — 2%

Internet

8 Ton Duc Thang University 23 words — 1%
Publications

9 "Proceedings of the 4th Congrès International de Géotechnique - Ouvrages -Structures", Springer Science and Business Media LLC, 2018 16 words — 1%
Crossref

10 Yingwei Hong, Xiaoping Wu, Peng Zhang. 16 words — 1%
"Construction Technology and Mechanical Properties of a Cement-Soil Mixing Pile Reinforced by Basalt Fibre", Advances in Materials Science and Engineering, 2017
Crossref

11 www.ctu.edu.vn 14 words — 1%
Internet

12 qlkh.humg.edu.vn 13 words — 1%
Internet

13 repository.uma.ac.id 13 words — 1%
Internet

14 www.mtu.edu.vn 12 words — 1%
Internet

15 jstf.hufi.edu.vn 11 words — 1%
Internet

16 ojs.ksu.edu.kz 11 words — 1%
Internet

17 portal.ptit.edu.vn 11 words — 1%
Internet

18 upslide.site 11 words — 1%
Internet

19 danhba.diachivang.com Internet 10 words – 1%

20 gyan.iitg.ernet.in Internet 9 words – 1%

21 vi.wikipedia.org Internet 9 words – 1%

22 www.researchgate.net Internet 9 words – 1%

23 Ba Huy Vo, Hoai Luan Dinh, Ngoc Loi Dang. "Materials Characteristics of Soil-cement Samples under Various Maintenance Conditions", IOP Conference Series: Materials Science and Engineering, 2023 8 words – < 1%
Crossref

24 Nguyễn Sỹ Hùng, Vương Hoàng Thạch. "Gia cường nồng đất yếu có cát san lấp bằng cọc xi măng - đất", Tạp chí Khoa học Công nghệ Xây dựng (KHCNXD) - ĐHXD, 2019 8 words – < 1%
Crossref

25 repository.sdum.uminho.pt Internet 8 words – < 1%

26 worldwidescience.org Internet 8 words – < 1%

27 www.danhkhoi.com.vn Internet 8 words – < 1%

28 www.hocthue.net Internet 8 words – < 1%

29 Ping Jiang, Yewen Chen, Na Li, Lin Zhou, Shaoyun Pu, Wei Wang. "Strength properties and microscopic mechanism of lime and fly ash modified expandable poly styrene lightweight soil reinforced by polypropylene fiber", Case Studies in Construction Materials, 2022

Crossref

30 Qassun Sa'ad Al-Deen Mohammed Shafiqu, Ruba Hanna Sa'ur. "Data Base for Dynamic Soil Properties of Seismic Active Zones in Iraq ", Journal of Engineering, 2016

Publications

EXCLUDE QUOTES OFF
EXCLUDE BIBLIOGRAPHY OFF

EXCLUDE SOURCES OFF
EXCLUDE MATCHES OFF