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TÓM TẮT 

Dự báo quá trình giám sát kinh doanh là một nhiệm vụ dạng chuỗi thời gian đầy thách thức do bản chất phức 

tạp và biến thiên của các quy trình kinh doanh, liên quan đến việc dự đoán các trường hợp đang diễn ra như hoạt động 

tiếp theo, hậu tố hoạt động và dự đoán thời gian còn lại trong một quy trình kinh doanh. Quá trình điểm thời gian được 

sử dụng rộng rãi để mô hình hóa chuỗi các sự kiện xảy ra ở các khoảng thời gian không đồng đều, để mô hình hóa 

thời gian xảy ra và nắm bắt các phụ thuộc thời gian giữa các sự kiện. Với những tiến bộ gần đây trong mạng nơ-ron 

sâu, Quá trình điểm thời gian sâu đã nổi lên như một cách tiếp cận đầy hứa hẹn để nắm bắt các mẫu phức tạp trong 

chuỗi sự kiện với dấu thời gian. Do đó, Quá trình điểm thời gian sâu có thể là một cách tiếp cận tiềm năng để dự đoán 

quá trình giám sát kinh doanh. Trong bài báo này, chúng tôi thử nghiệm và xem xét hiệu quả của các nghiên cứu gần 

đây trong Quá trình điểm thời gian sâu đối với vấn đề giám sát quy trình kinh doanh dự đoán. Kết quả của chúng tôi 

cho thấy rằng các phương pháp Quá trình điểm thời gian sâu có tiềm năng trong hoạt động tiếp theo và dự đoán thời 

gian còn lại trong dự đoán quy trình giám sát kinh doanh. Những phát hiện này có thể hữu ích cho các chuyên gia và 

nhà nghiên cứu quan tâm đến việc phát triển các hệ thống dự đoán giám sát cho các quy trình kinh doanh. 

Từ khoá: Giám sát quá trình kinh doanh, Quá trình điểm thời gian, Mạng nơ-ron sâu. 
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ABSTRACT 

Predictive business process monitoring is a challenging time series task due to the complex and dynamic nature 

of business processes, which involves predicting the ongoing cases in terms of the next activity, activity suffix, and 

remaining time prediction on a business process. Temporal point processes (TPPs) are widely used to model sequences 

of events happening at irregular intervals, to model the occurrence times of events, and to capture the temporal 

dependencies among them. With the recent advances in deep neural networks, deep TPPs have emerged as a promising 

approach for capturing complex patterns in event sequences with occurrence timestamps. Hence, deep TPPs can be a 

potential approach to tackle business predictive monitoring tasks. In this paper, we experiment and review the 

effectiveness of recent research on deep TPPs on the predictive business process monitoring problem. Our results 

suggest that TPP methods have the potential in the next activity and remaining time prediction in the predictive 

business process monitoring problem. The findings can be helpful to practitioners and researchers interested in 

developing predictive monitoring systems for business processes. 

Keywords: Business Process Monitoring, Temporal Point Process, Deep Neural Network. 

 

1. INTRODUCTION 

A business process is a collection of tasks 

performed asynchronously by various resources, 

such as humans, software, or hardware, to achieve 

a specific goal.1 The execution of these tasks is 

tracked and documented in an event log, which 

records details such as the identifier of the case, 

the event performed, and the timestamp of the 

event.2 There may also be optional case attributes, 

which are shared by events of the same case, or 

event attributes that are unique to each event. 

Business process mining is the discipline 

concerned with the analysis of these logs, tackling 

it from different perspectives such as discovering 

the underlying process model from the log, 

checking that the executions registered in the log 

are conformant with the process model, or 

extracting or inferring analytics that enhances the 

description of what has happened in the process 

executions.3 Predictive monitoring is a process 

mining technique that predicts how an ongoing 

process case will unfold using the event log's 

information. The ability to make predictions is 

beneficial for anticipating issues before they arise, 

enabling the reallocation of resources before they 

are wasted, and providing recommendations.4 

Studying the temporal distribution of events 

and discovering the relationships among different 

types of events is a great scientific approach for 

predictive monitoring and understanding the 

dynamics and mechanism of events occurrence.5–9 

One of its choices is the Temporal Point Process 

(TPP), the stochastic process with marked events 

on the continuous domain of time, which can 

naturally capture the clustering or self-correcting 

phenomena of such sequences of events.10,11 

Often, the rate of event occurrence, known as 

conditional intensity, is modeled as a function of 

time based on the prior observation of events to 

capture the dynamics of the process. Given that the 

conditional intensity function (CIF) entirely 

governs the distribution of such a process, 

statistical prediction and inference can all be 

performed via the CIFs. 

Despite significant advancements in TPP, 

especially in models based on deep neural 

networks (DNNs), most of these models use 

different history encoders to embed historical 

events and various forms of intensity functions 

that are parameterized by the embedded historical 

sequence of events.12–17 Also, to our knowledge, 

no experiment has been conducted on the 

efficiency of TPP in monitoring the business 

process.18 Hence, in this paper, we compare 

different combinations of TPP methods regarding 

the history encoders and CIFs.  

Hence, in this paper, our contribution is to 

define a data preprocessing procedure for the 

business process monitoring data set to suit the 

deep TPP models. We experiment to evaluate the 

capability and ability of deep TPP models on the 

predictive business process monitoring datasets. 

2. BACKGROUND 



This section provides an overview of the key 

concepts and techniques used in the study, 

including predictive business process monitoring 

and TPPs. It lays the foundation for understanding 

the experiments and results. 

2.1. Predictive business process monitoring 

The input of business process mining techniques 

is an event log, usually composed of events with 

at least a case identifier, an activity, and a 

timestamp, and, optionally, case attributes, which 

are values shared by all the events of the same 

case, and event attributes, which are specific of 

each event.19,20 A sample log from the Helpdesk 

data set is shown in Table 1, part of a real-life help 

desk event log from an Italian Company.21 This 

event log provides information about each event's 

case identifier, activity, timestamp, and resource. 

Given a certain event prefix of a running 

case, predictive monitoring is concerned with 

forecasting how different aspects of the next event 

or sequence of events will unfold until the end of 

the case. There are several prediction targets, such 

as next activity, next activity suffix, next 

timestamp, next remaining time, next outcome, 

next attributes, and next attribute suffix.22 In this 

paper, our interest is the next activity and the next 

timestamp prediction. 

Formally, 𝑚𝑖, 𝑡𝑖, 𝑒𝑖 is the activity, 

timestamp, and event. Let ℎ𝑑𝑗(𝜎) be an event 

prefix such as ℎ𝑑𝑗(𝜎)  = ⟨ 𝑒1,   … ,  𝑒𝑗 ⟩. Two 

tackled problems can be defined as the following 

functions Ω using the newly predicted activities as 

new inputs for the next prediction until the dummy 

activity representing the end of the case 

(“[EOC]”) is reached: 

• The next activity prediction problem: 

Ω𝑀 (ℎ𝑑𝑗(σ)) = 𝑚𝑘+1
′ . 

• The next timestamp prediction problem: 

Ω𝑇 (ℎ𝑑𝑗(σ)) = 𝑡𝑘+1
′ . 

2.2. Temporal point processes (TPPs) 

2.2.1. Definition 

Marked TPP is a random process representing as 

an event sequence 𝑋 = {(𝑡1, 𝑚1), … , (𝑡𝑁, 𝑚𝑁)} 

with the increasing arrival times of events 

{𝑡𝑖}1≤𝑖≤𝑁 and markers {𝑚𝑖}1≤𝑖≤𝑁, such that 𝑡𝑖 ∈
[0, 𝑇), 𝑡𝑖 < 𝑡𝑖+1, ∀𝑖 ≥ 1 where 𝑁 is the number of 

events. 

The mark is equivalent to the event's 

activity within the context of the business process. 

Thus, both terms can be used interchangeably 

afterwards. The inter-event time τ𝑖 = 𝑡𝑖 − 𝑡𝑖−1 is 

also considered due to their convenience in 

computing.15 

Categorical marks ℳ = {1,2, … , 𝐾} 

occurring in the time interval [0, 𝑡) of the type-𝑘 

event. The history ℋ(𝑡) = {(𝑡𝑗, 𝑚𝑗), 𝑡𝑗 < 𝑡} 

which can be considered the event prefix ℎ𝑑𝑗(σ) 

in the business monitoring context. 

The task of TPP models is to parameterize 

the 𝐾 conditional intensity function (CIF) λ𝑘
∗ (𝑡), 

which can be characterized as follows: 

λ𝑘
∗ (𝑡) = λ𝑘(𝑡|ℋ(𝑡))

= lim
Δ𝑡→0+

𝑃𝑟( event of type 𝑘 in [𝑡, 𝑡 + Δ𝑡) ∣∣ ℋ𝓉 )

Δ𝑡
 

which is defined as the expected instantaneous rate 

of happening events given the history. The ∗ 

symbol indicates the conditioning on the history 

ℋ(𝑡). 

Due to the TPP modeling the distribution of 

the next timestamp 𝑡𝑖 or inter-event τ𝑖 time under 

the history ℋ(𝑡𝑖), the next timestamp prediction 

task is equivalent to considering the next 

timestamp 𝑡𝑖 given ℋ(𝑡𝑖) denoted as follows: 

Ω𝑇(ℋ(𝑡)) = 𝑃𝑖
∗(𝑡) 

Given the CIF, the distribution 𝑃𝑖
∗(𝑡) can be 

represented by any following functions:12,15,16,23,24 

1. Probability density function (PDF): 𝑓𝑖
∗(𝑡) 

Case ID Activity Resource Timestamp 

Case 1 Assign seriousness Value 1 2012/10/09 14:50:17 

Case 1 Take in charge ticket Value 1 2012/10/09 14:51:01 

Case 1 Take in charge ticket Value 2 2012/10/12 15:02:56 

Case 1 Resolve ticket Value 1 2012/10/25 11:54:26 

Case 1 Closed Value 3 2012/11/09 12:54:39 

Case 2 Assign seriousness Value 4 2012/04/03 08:55:38 

Case 2 Take in charge ticket Value 4 2012/04/03 08:55:53 

Case 2 Resolve ticket Value 4 2012/04/05 09:15:52 

Case 2 Closed Value 5 2012/05/19 09:00:28 

Table 1. Excerpt of a Helpdesk’s business process log 



2. Cumulative distribution function (CDF): 

𝐹𝑖
∗(𝑡) = ∫ 𝑓𝑖

∗(𝑢)𝑑𝑢
𝑡𝑖

0
 

3. Survival function: 𝑆𝑖
∗(𝑡) = 1 − 𝐹𝑖

∗(𝑡) 

4. Hazard function: ϕ𝑖
∗(𝑡) = 𝑓𝑖

∗(𝑡)/𝑆𝑖
∗(𝑡) 

5. Cumulative hazard function (CHF): 

Φ𝑖
∗(𝑡) = ∫ ϕ𝑖

∗(𝑢)𝑑𝑢
𝑡

0
 

Here, we pick the PDF of the type-𝑘 event 

at time 𝑡 as the parametric form, which is defined 

as: 

𝑓𝑘
∗(𝑡) = λ𝑘

∗ (𝑡) exp (− ∫ λ𝑘
∗ (𝑢)𝑑𝑢

𝑡

𝑡𝑖−1

)  (1) 

where exp (− ∫ λ𝑘
∗ (𝑢)𝑑𝑢

𝑡

𝑡𝑖−1
) is an exponential 

term where the exponent is the negative integral 

from 𝑡𝑖−1 (the time of the last event before 𝑡, 

namely 𝑖 − 1 = 𝑎𝑟𝑔 𝑚𝑎𝑥𝑗≤𝑛{𝑡𝑗, 𝑡𝑗 < 𝑡}) to 𝑡 of 

the CIF. This integral represents the expected 

number of type-𝑘 events at time 𝑢, which happens 

in the time interval (𝑡𝑖−1, 𝑡]. The exponential of 

the negative of this value penalizes the presence of 

other events in the interval, making it less likely 

for a new event to occur at time 𝑡. The product of 

these two parts gives the probability density of an 

event of type 𝑘 occurring strictly at time 𝑡. Note 

that we must integrate this density over that 

interval to obtain the probability of an event 

occurring within a specific time interval. By 

aiming to parameterize a model to fit the 

timestamp distribution, the TPP can infer PDF or 

CIF for timestamp prediction, including the next 

event's timestamp and activity prediction. 

2.2.2. Conditional Intensity Formulation (CIF) 

The CIF with parameters Θ𝑘(𝑡) is written as 

λ𝑘(𝑡; Θ𝑘(𝑡)|ℋ(𝑡)). The parameter Θ𝑘(𝑡) is 

considered a piece-wise function of 𝑡 as: 

Θ𝑘(𝑡) = χ𝑘(ℎ𝑖) 

where 𝑡 ∈ [𝑡𝑖−1, 𝑡𝑖). The formula means that the 

new occurrence of the type-𝑘 event changes the ℎ𝑖 

and thus updates the Θ𝑘(𝑡).  

The choice of the family of CIF functions to 

approximate the target CIF is critical because the 

function's ability to approximate accurately 

determines the TPP's performance in fitting the 

distribution. Additionally, Equation (1) indicates 

that the integral term is unavoidable if we 

maximize the likelihood of the observed sequence 

of events. Hence, the challenge in computing the 

log-likelihood is the high computational cost due 

to the integral term. The closed form of this 

integral term, such as cumulative hazard function, 

can make the computation of likelihood 

feasible.15,23,24 In conclusion, the goal of 

approximating the target CIF is to choose a family 

of functions in the closed integral form with 

powerful expressivity. 

2.2.3. Modeling the marks 

In the business monitoring context, where 

multiple event types exist, the next activity 

prediction task is determining the most probable 

event type based on historical data, which can be 

dealt with as the categorical classification task. It 

is generally achieved by first converting the 

historical encoding to logit scores of a discrete 

distribution, as shown in the following equation: 

κ(ℎ𝑖) = logit(𝑚𝑖̂) (2) 

where logit(𝑚𝑖̂) ∈ 𝑅𝐾, κ: 𝑅𝐷 → 𝑅𝐾.  

Then, we apply a softmax function to 

transform logit scores into the categorical 

distribution, which is the solution to the next 

activity prediction task as follows: 

Ω𝑀(ℋ(𝑡)) = Pr(𝑚𝑖̂ = 𝑘|ℋ(𝑡)) 

= softmax(logit(𝑚𝑖̂))
𝑘

 

where softmax(logit(𝑚𝑖̂))
𝑘

 is to choose the 𝑘-th 

mark from its output. By forming the loss of 

activities as the logit scores, the cross-entropy loss 

for categorical classification is added to the log-

likelihood loss given the actual activity 𝑚 of the 𝑖-
th event to maximize the joint likelihood of the 

next timestamp and activity, which is considered 

independent. Several works on maximizing joint 

likelihood in conditional forms are proposed, such 

as time conditioned on marks25,26 and marks 

conditioned on time15, which can capture the 

dependencies between timestamp and activity and 

leverage the TPP models performance in 

predicting the timestamp and activity 

simultaneously. In our experiment, we utilize the 

idea of using the joint negative log-likelihood 

(NLL) under the independence between the next 

timestamp and activity, with the type-𝑘 mark for a 

single sequence 𝑋 for categorical marks computed 

as: 

− log 𝑝 (𝑋)

= ∑ ∑ −Pr(𝑚𝑖̂ = 𝑘|ℋ(𝑡))

𝐾

𝑘=1

𝑁

𝑖=1

+ ∑ 𝑓𝑘
∗(𝑡)

𝐾

𝑘=1

 

(3) 

 

3. CLASSIFICATION OF TPP MODELS 



This section introduces the classification of TPP 

models to solve the predictive business process 

monitoring problem. As illustrated in Figure 1, our 

procedure considers two essential parts of a deep 

TPP: the history encoder and the CIF. 

Table 2. The classification of all options for each 

component by history encoder, mixture distribution, 

and prediction target. 

3.1. Historical Event Encoders 

Since CIF or PDF is a function of 𝑡 and historical 

events before 𝑡, namely ℋ(𝑡), we have to encode 

the history sequence of each event (𝑡𝑗, 𝑚𝑗) as a 

feature vector 𝑒𝑗 to formulate the CIF or PDF of 

the occurrence of different events to model the 

process. For the 𝑖-th event's history, ℋ(𝑡𝑖), 𝑗-th 

event in the history set is embedded in a high-

dimensional space including time and mark 

features, as follows: 

𝑒𝑗 = [ω(𝑡𝑗); 𝐸𝑇𝑚𝑗] 

where: 

• ω represents the time feature that 

transforms one-dimension temporal 

information 𝑡𝑗 (or inter-event time τ𝑗) into 

a high-dimension vector directly or via its 

logarithm16,26 or trigonometric 

functions12,27.  

• 𝐸 represents the mark feature, an 

embedding matrix for marks, and 𝑚𝑗 is 

the one-hot encoding of mark 𝑚𝑗. 

A historical encoder 𝐻 can be obtained via 

concatenation of the sequence of embedding 

{𝑒1, 𝑒2, … , 𝑒𝑖−1} into a vector space of dimension 

𝐷 under the following formula: 

ℎ𝑖 = 𝐻({𝑒1; 𝑒2; … ; 𝑒𝑖−1}) 

𝐻 can be chosen as Recurrent-based 

encoders, Attention-based encoders, or Fourier 

transform encoders, and ℎ𝑖 is utilized for the CIF 

parameterization. 

3.1.1. Recurrent-based encoders 

Recurrent-based encoders, including RNN units, 

GRU, and LSTM, can be used as history 

encoders.14–16 Their CIF can be formulated as 

follows: 

ℎ0 = 0;  ℎ𝑖 = RNN(𝑒𝑖−1, ℎ𝑖−1) 

where the initial state of the history encoder, ℎ0, is 

set as zero. For each subsequent time step 𝑖, the 

new state, ℎ𝑖, is updated based on the previous 

state, ℎ𝑖−1, and the previous event, 𝑒𝑖−1, through 

the RNN function. The RNN takes as inputs the 

previous state and the previous event and outputs 

the new state. This state represents the RNN's 

memory, encoding information about past events 

that it can use to predict future events. 

The advantage of using recurrent-based 

encoders as the history encoder is that it requires 

low storage space due to the capability of serial 

computing. The states and events are processed 

one at a time, meaning that the RNN does not need 

to store all of them at once, which can be 

beneficial in situations where storage space is 

limited. 

However, there are also disadvantages to 

this approach. The serial computing nature of 

RNNs can limit their computational speed in both 

the forward and backward processes.28 

Additionally, RNNs can suffer from issues such as 

the gradient vanishing effect, where the gradients 

used in learning become very small, making 

learning slow or even impossible.29 They can also 

suffer from long-term memory loss, struggling to 

retain information about events that occurred long 

History Encoder Mixture Distribution Prediction 

Recurrent neural 

network (RNN) 
Log-Normal 

Next 

activity 

Gated recurrent 

unit (GRU) 
Gompertz 

Next 

timestamp 

Long short-term 

memory (LSTM) 
Log-Cauchy  

Attention Exponential decay  

Fourier 

Transformer 

(FNet) 

Weibull  



ago. These issues can potentially compromise the 

performance of the RNN history encoder. 

3.1.2. Attention-based encoders  

Attention-based encoders are part of encoder-

decoder architectures that utilize the concept of 

attention. This mechanism allows models to focus 

on relevant parts of the input sequence when 

generating an output.30 Self-attention is proposed 

as the history encoder in TPPs with fast parallel 

computing and the capability of encoding more 

long-term sequences than recurrent-based 

encoders.12 The attention-based history encoders 

for CIF can be defined as follows: 

ℎ𝑖 =
∑ ϕ(𝑒𝑗 , 𝑒𝑖−1)ψ(𝑒𝑗)𝑖−1

𝑗=1

∑ ϕ(𝑒𝑗, 𝑒𝑖−1)𝑖−1
𝑗=1

 

where ℎ𝑖 represents the encoded history at time 𝑖. 
This history is computed as a weighted sum of 

transformed event embeddings ψ(𝑒𝑗), where the 

attention mechanism determines the weights 

ϕ(𝑒𝑗, 𝑒𝑖−1). The attention mechanism ϕ(⋅,⋅) is a 

function that takes two event embeddings as 

inputs and outputs a scalar called the attention 

weight. This weight determines the importance or 

relevance of the event 𝑒𝑗 when encoding the 

history at the time 𝑖. The transformation function 

ψ transforms the event embedding 𝑒𝑗 into a series 

of 𝐷-dimensional vectors called values. These 

transformed embeddings are then used to compute 

the encoded history. 

While attention-based encoders overcome 

some of the problems with RNNs, their space 

complexity of the attention matrix is 𝑂(𝑁2), 

which can become problematic when dealing with 

very long sequences because the attention 

mechanism computes pairwise interactions 

between all events, leading to a quadratic increase 

in storage requirements as the number of events 

increases.31 This problem can be temporarily 

resolved by limiting the encoder only to access the 

last 𝐿 events {𝑦𝑖−𝐿, … , 𝑦𝑖−1}, which can reduce the 

time complexity to 𝑂(𝑁𝐿).15 

3.1.3. Fourier transform encoders 

The Fast Fourier Transform (FFT) module was 

generally used in the natural language processing 

(NLP) field32 and recently adopted into the history 

encoder family under the TPP context called FNet, 

which aims to speed up the computation and 

replace the attention mechanism.  

    ℎ𝑖 = Top𝑝{FFT([FFT(𝑒1); … ; FFT(𝑒𝑖−1)])} 

where the FFT(⋅) represents the FFT, which 

operates on the events' embedding, then on the 

whole sequence. Then, Top𝑝{⋅} means choosing 

the highest 𝑝 frequencies in the set as the history 

encoding. The dimension of the feature vector 𝑒𝑗 

has to equal 𝐷 dimension. Top-𝑝 needs to be 

chosen due to the unequal event embedding 

history sequence length, so the padding operation 

is required for batch processing as many 

sequences contain the same padding values, which 

contain useless information and lead to low-

frequency values in spectra. Therefore, filtering 

the low frequency can capture and retain more 

information about the historical sequence in the 

high frequency. 

FFT encoder inherits fast computational 

time complexity in 𝑂(𝑁𝑙𝑜𝑔𝑁) and the ability to 

capture long-term patterns due to the global 

property of the sequences' spectrum.33 However, 

one disadvantage of this approach is that the 

backward process of gradient propagation leads to 

significant memory complexity. 

Figure 1. The procedure of TPPs framework for predictive business process monitoring. 



3.2. Mixture Distribution 

The mixture distribution family is the major 

component in TPP that approximates the target 

PDF under CIF. 

3.2.1. Log-normal Mixture 

Log-normal Mixutre is proposed to approximate 

any distribution due to the feasible computation of 

its PDF and cumulative distribution function 

(CDF) in the closed form of CIF and CHF, where 

the mixture form reads as follows:15  

𝑓LNM
∗ (𝑡)

= ∑ 𝑤𝑠

1

𝑡σ𝑠√2π

𝑆

𝑠=1

exp (−
(ln(𝑡 − 𝑡𝑖−1) − μ𝑠)2

2σ𝑠
2 ) 

where 𝑡 ∈ [𝑡𝑖−1, 𝑡𝑖). 𝑆 are mixture distribution 

numbers, {𝑤𝑠}1≤𝑠≤𝑆 are non-negative mixture 

weights and ∑ 𝑤𝑠
𝑆
𝑠=1 = 1, σ𝑠 > 0∀𝑠. 

The distribution of the next timestamp 

λLN
∗ (𝑡) under the log-normal mixture can be 

modeled by different functions such as PDF, CDF, 

survival function, hazard function, or cumulative 

hazard function. Moreover, the preferable 

function to model the distribution λLN
∗ (𝑡) is the 

cumulative hazard function due to its ability to 

compute the NLL in the closed form without 

numerical integration, leading to the loss function 

in Eq. (3) replaces the 𝑓𝑚
∗ (𝑡) by the Φ𝑚

∗ (𝑡). 

Although the CDF has no closed form, the 

approximation of the function has minor deviation 

and permits gradient back-propagation, allowing 

both the forward and backward processes. 

3.2.2.  Gompertz Mixture 

Gompertz Mixture is proposed to predict both 

timestamps and marks of future events without 

any prior knowledge about the hidden functional 

forms of the latent temporal dynamics.14 The CIF 

of Gompertz distribution reads as: 

λ(𝑡) = η exp(β𝑡) 

where η, β >  0. The corresponding PDF can be 

obtained as follows: 

λGP
∗ (𝑡) = exp(β(𝑡 − 𝑡𝑖−1) + 𝑣𝑇ℎ𝑖 + 𝑏𝑡) 

which its PDF reads: 

𝑓GP
∗ (𝑡) = η exp (β(𝑡 − 𝑡𝑖−1)

−
η

β
(exp(β(𝑡 − 𝑡𝑖−1)) − 1)) 

for 𝑡 ∈ [𝑡𝑖−1, 𝑡𝑖), where η = exp(𝑣𝑇ℎ𝑖 + 𝑏𝑡), and 

β >  0. The process 𝑓GP
∗ (𝑡) becomes the Poisson 

distribution when β =  0. The mixture can be 

formulated as follows: 

𝑓GPM
∗ (𝑡) = ∑ 𝑤𝑠

𝑆

𝑠=1

η𝑠 exp (β𝑠(𝑡 − 𝑡𝑖−1)

−
η𝑠

β𝑠
(exp(β𝑠(𝑡 − 𝑡𝑖−1)) − 1)) 

for 𝑡 ∈ [𝑡𝑖−1, 𝑡𝑖), where β𝑠 > 0 and η𝑠 > 0 for any 

𝑠. The parameters are obtained as a function of 

history encoding ℎ𝑖 for 𝑡 ∈ [𝑡𝑖−1, 𝑡𝑖) as follows: 

Θ(𝑡) = {𝑤𝑠(𝑡), β𝑠(𝑡), η𝑠(𝑡)}1≤𝑠≤𝑆 = χ(ℎ𝑖) 

3.2.3. Exp-decay Mixture 

Zhang et al.12 extend the expressivity of the 

multivariate Hawkes Process by the Self-Attentive 

Hawkes Process (SAHP) by adapting the self-

attention mechanism to fit the intensity function of 

the Hawkes processes. This allows the Exp-decay 

mixture to capture longer historical information 

and is more interpretable because the learned 

attention weight tensor shows the contributions of 

each historical event. It models the intensity 

function as the exponential-decaying form like the 

classical Exp-decay Hawkes Process and extends 

with a nonlinear transform 𝑠𝑜𝑓𝑡𝑝𝑙𝑢𝑠 stacked after. 

This is also the cause of unmanageable 

computation of the integral term when dealing 

with long data sequences due to attention weights 

computation for each pair of events in the 

sequence under the self-attention mechanism. 

To solve the infeasible computation, the 

final transformation of non-linearity is removed, 

and the CIF of the defined Exp-decay distribution 

can be obtained as follows:           

λED
∗ (𝑡) = η exp(−β(𝑡 − 𝑡𝑖−1)) +  α 

where the first term indicates the impacts of 

historical events decay with an exponential ratio 

added with the α, which is the basic intensity. 

By using the distribution as a component, 

the mixture of Exp-decay distribution reads the 

PDF as follows: 

𝑓EDM
∗ (𝑡) = ∑ 𝑤𝑠(η𝑠 exp(−β𝑠(𝑡 − 𝑡𝑖−1))

𝑆

𝑠=1

+ α𝑠) exp ((
η𝑠

β𝑠

− 1) exp(−β𝑠(𝑡 − 𝑡𝑖−1))

− α𝑠(𝑡 − 𝑡𝑖−1)) 



for 𝑡 ∈ [𝑡𝑖−1, 𝑡𝑖), whose parameters are all 

positive, calculated by χ(ℎ𝑖).   

3.2.4. Weibull Mixture 

Weibull Mixture assumes a population of two or 

more subpopulations with different Weibull 

distributions.34 The Weibull distribution has the 

advantage of high approximating ability due to no 

numerical instability, so the parameter range is not 

limited to a certain range. The parameters of the 

Weibull mixture model can be estimated using the 

maximum likelihood estimation (MLE) or 

Bayesian methods. Its CIF reads: 

λWB
∗ (𝑡) = ηβ(η(𝑡 − 𝑡𝑖−1))

β−1
 

where η, β >  0. CIF will increase when β >  1, 

decrease when β <  1, and be constant when β =
1. 

And its PDF represents: 

𝑓WBM
∗ (𝑡) = ∑ 𝑤𝑠η𝑠β𝑠(η𝑠(𝑡

𝑆

𝑘=1

− 𝑡𝑖−1))
β−1

exp (−(η𝑠(𝑡

− 𝑡𝑖−1)β)) 

3.2.5. Log-Cauchy Mixture 

Log-Cauchy Mixture is utilized because the Log-

Cuachy distribution can model a wide range of 

data due to its flexibility by handling both 

symmetric and asymmetric data and super-heavy-

tailed distributions with no given mean or standard 

deviation.35 The Log-Cauchy distribution is also 

robust to outliers, which is helpful in monitoring 

the business.36 The Log-Cauchy mixture with the 

PDF is written as: 

𝑓LCM
∗ (𝑡) = ∑

𝑤𝑠

(𝑡 − 𝑡𝑖)π

𝑆

𝑠=1

σ

(ln(𝑡 − 𝑡𝑖) − μ)2 + σ2
 

4. EXPERIMENTS 

This section details the experimental setup, 

including the datasets used, the procedure 

followed, and the evaluation metrics employed for 

next activity prediction and next timestamp 

prediction tasks. This section also provides the 

necessary context for interpreting the results. 

4.1. Dataset 

We evaluate two real-time event logs extracted 

from the 4TU Center for Research Data to 

evaluate different combinations of history 

encoders and conditional intensities: Helpdesk21 

and BPI 201237. Table 3 shows relevant statistics 

from these logs, namely, the number of cases, the 

number of different activities, the number of 

events, the average and maximum case length, the 

maximum and mean event duration in days, the 

mean and maximum case duration in days and the 

number of different variants. 

Table 3. Statistics of the event logs used for 

benchmarking. Time-related measures are shown in 

days. 

4.2. Procedure 

Figure 1 shows the procedure of our framework 

from preprocessing the data sets, data splitting, 

and training the history encoder and CIF until 

inferring the timestamps and activities. We 

perform data splitting and evaluate all TPP 

combinations in identical conditions to ensure 

comparable results. The goal is to simulate a 

scenario where past knowledge is utilized for 

training a predictive model, which is then used to 

predict the future. To achieve this, we perform a 

5-fold cross-validation, where every approach is 

tested once per fold. The event log traces are 

sorted by their initial event timestamp and split 

into training, validation, and test sets with a 

distribution of 64%, 16%, and 20%, respectively. 

Timestamps and activities are extracted from each 

fold data set and then encoded into history 

embeddings ℎ𝑖 and sequence embeddings 𝑒𝑖 by a 

chosen history encoder 𝐻. These embeddings are 

modeled under a specific CIF 𝑓∗(𝑡) to extract the 

time distribution and mark logit as the next 

timestamp and activity predictions. Later, we 

utilize the ground truth to compute the joint NLL 

(Eq. (3)) and optimize the parameters for the 

embeddings, the encoder, and the CIF. 

4.3. Metrics 

We use the following metrics to evaluate the TPP 

combinations' performance on the next activity 

prediction and next timestamp prediction tasks, 

along with the goodness-of-fit by NLL as Eq. (3). 

Statistics Helpdesk21 BPI 201237 

Number of cases 4580 13087 

Number of event types 14 36 

Number of events 21348 262200 

Mean case length 4.66 20.04 

Maximum case length 15 175 

Mean event duration 11.16 0.45 

Maximum event duration 59.92 102.85 

Mean case duration 40.86 8.62 

Maximum case duration 59.99 137.22 

Variants 266 4366 



The results are reported as the mean performance 

of each TPP combination on five folds. 

Additionally, our evaluation appends a dummy 

event as an (“[EOC]”) token to the end of every 

log trace, which can reduce the process state and 

provide a clear stopping point for activity 

prediction. 

4.3.1. Next activity prediction 

We use the accuracy metric since the next activity 

prediction task is a classic classification problem. 

The accuracy measures the proportion of correct 

classifications in relation to the number of 

predictions done, which is implemented as 

follows: 

Top-𝑞 ACC({𝑚𝑖̂}1≤𝑖≤𝑁, {𝑚𝑖}1≤𝑖≤𝑁) 

=
|{𝑚𝑖 ∈ Top𝑞{logit(𝑚𝑖̂)}: 1 ≤ 𝑖 ≤ 𝑁}|

𝑁
 

 

where logit(𝑚𝑖̂) ∈ 𝑅𝐾 is obtained by Eq. (2) to 

measure the predicted discrete probability. 

4.3.2. Next timestamp prediction 

Since the time prediction problem is a regression 

task, the metric chosen for measuring the TPP 

performance in the next timestamp prediction task 

is the Mean Absolute Error (MAE). Instead of 

evaluating TPP performance based on the 

normalized value taken directly from the 

distribution under the Mean Absolute Percentage 

Error (MAPE), we alter the normalization step and 

postprocessing step to return the next timestamp 

prediction in days to have a fair comparison with 

our benchmarks. MAE metric has the advantage 

of not over-penalizing the variability in the 

observations, which is important in the time 

prediction in predictive process monitoring, where 

the time between two events in a trace can be 

potentially large. The MAE is defined as follows: 

MAE({𝑡𝑖̂}1≤𝑖≤𝑁, {𝑡𝑖}1≤𝑖≤𝑁) =
∑ |𝑡𝑖̂ − 𝑡𝑖|𝑁

𝑖=1

𝑁
 

where 𝑡𝑖̂ is the 𝑖-th predicted timestamp. 

 

Table 4. Experimental results of the next timestamp prediction MAE in days and the next activity accuracy of 

modeling the overall CIF with different combinations of history encoder and family of distribution. The arrows 

↑/↓ indicate that the higher/lower results, the better. The metrics are computed as the mean of the 5-fold cross-

validation. The metrics in bold mean that the model achieves the top-5 performance in the column. 

Methods 

Helpdesk BPI 2012 

NLL ↓ MAE ↓ 
Top-1 

ACC ↑ 

Top-3 

ACC ↑ 
NLL ↓ MAE ↓ 

Top-1 

ACC ↑ 

Top-3 

ACC ↑ 

LogNormMix+RNN -2.046201 279.991608 0.695686 0.814908 -4.419353 19.107306 0.809411 0.934645 

LogNormMix+GRU -2.049259 269.787903 0.696841 0.814715 -4.498922 19.963001 0.811243 0.935909 

LogNormMix+LSTM -1.965748 265.744049 0.698613 0.814715 -4.805172 17.676338 0.810400 0.935561 

LogNormMix+Attention -2.025522 243.183641 0.698927 0.814715 -4.970017 19.699347 0.804081 0.942155 

LogNormMix+FNet -2.088489 354.522430 0.697804 0.814715 -3.997465 17.554281 0.700791 0.924937 

GomptMix+RNN 0.862758 26.262592 0.694530 0.815293 -1.943585 3.082433 0.811463 0.935542 

GomptMix+GRU 0.756814 36.176449 0.698190 0.814522 -1.989259 3.715980 0.814430 0.935689 

GomptMix+LSTM 0.803448 33.733837 0.694915 0.814909 -1.718078 1.786893 0.811939 0.935103 

GomptMix+Attention 0.198063 24.308924 0.798151 0.974923 -2.651078 2.053919 0.810492 0.936513 

GomptMix+FNet 0.922608 26.557230 0.695300 0.812982 -1.338134 1.192549 0.658058 0.919295 

LogCauMix+RNN -0.245449 24.777443 0.697612 0.815100 -2.425044 1.674708 0.809997 0.933234 

LogCauMix+GRU -0.238866 25.448597 0.693374 0.812789 -2.447077 4.090276 0.809778 0.935616 

LogCauMix+LSTM -0.213667 9.497505 0.697034 0.811633 -2.442514 2.642548 0.810345 0.935744 

LogCauMix+Attention -0.572755 20.529713 0.697612 0.812982 -2.426620 1.027533 0.806151 0.928967 

LogCauMix+FNet -0.229975 24.389563 0.698960 0.814137 -2.372896 2.651052 0.698978 0.924735 

WeibMix+RNN -1.920710 354.471039 0.690100 0.814522 -4.106110 17.718061 0.807818 0.933308 

WeibMix+GRU -1.807741 35.020641 0.689137 0.811633 -4.190582 14.316733 0.808514 0.933930 

WeibMix+LSTM -1.856559 295.800934 0.686248 0.811633 -4.111487 15.760619 0.812818 0.935542 

WeibMix+Attention -1.986018 123.920174 0.687982 0.812982 -4.050585 19.363649 0.796498 0.931842 

WeibMix+FNet -1.750751 308.825226 0.683166 0.808166 -3.867040 19.018917 0.694252 0.923929 

ExpDecayMix+RNN 1.778744 67.937225 0.696263 0.814908 1.221636 20.735715 0.811005 0.935011 

ExpDecayMix+GRU 1.889372 117.146721 0.697612 0.815293 -1.230995 20.580959 0.814375 0.935689 

ExpDecayMix+LSTM 1.963200 85.079498 0.696456 0.813367 -1.205069 20.735718 0.812086 0.935231 

ExpDecayMix+Attention 1.447936 354.209351 0.696841 0.814522 -1.521961 20.748582 0.808111 0.934700 

ExpDecayMix+FNet  1.800676 351.875275 0.697997 0.814522 -1.036910 20.735718 0.699857 0.924918 



5. RESULTS 

This section presents the findings from the 

experiments, highlighting the performance of 

different TPP models based on their combinations 

of history sequence encoders and formulations of 

conditional intensity functions. This section 

summarizes the key observations and insights 

gained from the experiments. 

Table 4 evaluates different combinations of 

history encoders and overall conditional 

intensities on two real-world datasets, namely 

Helpdesk and BPI 2012.  

• Goodness-of-fit is typically evaluated via 

the NLL result. The choice of history 

encoders such as RNN-based, Attention-

based, and FNet-based methods usually 

does not affect the overall performance of 

TPP models regarding the goodness-of-

fit. Meanwhile, the intensity functions 

used for CIF approximation matter most. 

ExpDecayMix shows the worst fitting 

ability. Besides, LogNormMix and 

WeibMix usually fit the data best due to 

the ability to fit the distribution via the 

NLL. 

• Next timestamp prediction is evaluated 

according to the MAE. The choice of 

intensity function is also crucial, where 

LogCauMix and GomptMix usually 

predict significantly better than others. In 

the Helpdesk dataset, interestingly, the 

LSTM with LogCauMix performs far 

better than any other combinations of TPP 

models.  

• Next activity prediction is evaluated via 

the Top-1 ACC and Top-3 ACC. The 

results show that the history encoder is 

critical because the prediction depends on 

its encodings. Attention-based encoders 

usually have good predictive performance 

because they can capture long-term 

features from historical events. Besides, 

GRU and LSTM also achieve high results 

due to their ability to capture long 

memory. 

To sum up, the NLL and MAE calculated 

by timestamps are predominantly influenced by 

the formulation of intensity and short-term 

influences, which the five history encoders can 

adequately capture. Though FNet is a new 

proposed approach and does not achieve high 

results compared with other history encoders, it 

still shows potential when pairing with suitable 

intensity functions such as LogCauMix. All 

history encoders can sufficiently model the 

dynamics of arrival time, given their minor 

differences. In contrast, Attention-based encoders 

usually surpass other history encoders to model 

the dynamics of the next activity due to the 

capability of capturing the long-term impacts of 

historical events.  

6. DISCUSSION 

The experimental results presented in this study 

provide valuable insights into the performance of 

different TPP models for predictive business 

process monitoring tasks. The findings highlight 

the importance of selecting an appropriate 

combination of history sequence encoders and 

CIFs to achieve optimal results. One key 

observation is that the choice of CIF plays a 

crucial role in the next timestamp prediction task. 

The LogCauMix and GomptMix intensity 

functions consistently outperform other options, 

indicating their suitability for capturing the 

temporal dynamics of business processes. This 

suggests that the formulation of the intensity 

function should be carefully considered when 

designing TPP models for timestamp prediction. 

Another notable finding is the impact of the 

history encoder on the next activity prediction 

task. Attention-based encoders, such as the self-

attention mechanism, demonstrate superior 

performance compared to other encoders. This can 

be attributed to their ability to capture long-term 

dependencies and selectively focus on relevant 

historical events. The results underscore the 

importance of leveraging attention mechanisms to 

effectively model the complex relationships 

between past activities and future predictions. The 

experiments also reveal that the FNet encoder, 

despite being a relatively new approach, shows 

potential when paired with suitable intensity 

functions like LogCauMix. While its performance 

may not surpass other established encoders, the 

FNet's ability to capture temporal patterns 

efficiently makes it a promising direction for 

future research in TPP models for business 

process monitoring. Conclusively, the 

performance of TPP models can vary depending 

on the characteristics of the dataset and the 

specific business process being monitored. The 

Helpdesk and BPI 2012 datasets used in this study 

represent real-world scenarios, but the 

generalizability of the findings to other domains 

and processes should be further investigated. 

Future research could explore the application of 

TPP models to a wider range of business processes 

and datasets to validate the robustness of the 

observed trends. 

Another important aspect to consider when 

applying TPP models in predictive business 



process monitoring is explainability.38 As 

businesses increasingly rely on automated 

decision-making systems, the ability to interpret 

and understand the predictions made by these 

models becomes crucial. Explainability helps to 

build trust in the model's outputs, facilitates 

debugging and error analysis, and enables 

stakeholders to gain insights into the factors 

influencing the predictions.39–41 However, it is 

important to note that achieving explainability in 

TPP models is not without challenges. The 

complexity of the models, the high-dimensional 

nature of the input data, and the temporal 

dependencies can make it difficult to provide 

simple and intuitive explanations. Striking a 

balance between model performance and 

interpretability is an ongoing research challenge. 

Future work in this area could focus on developing 

novel explainability techniques tailored to TPP 

models, as well as conducting user studies to 

assess the effectiveness and usability of these 

explanations in real-world business settings. 

7. CONCLUSION 

In this paper, we evaluate the performance of 

different TPP models via their combinations of the 

history sequence encoder and formulation of CIF 

on the predictive business process monitoring data 

sets. The results show that the formulation of 

intensity influences the next timestamp prediction 

and can be captured by any of the history 

encoders. The next event prediction is dominated 

by the ability to capture long-term impacts from 

historical events, especially attention-based 

encoders. In our future work, we plan to conduct a 

more profound experiment around several aspects 

of TPP models, such as loss computation, history 

embedding's normalization, the relational 

discovery of events, and optimizations. In our 

future work, we extend the capability of TPP 

models on other prediction problems such as 

activity suffix and remaining time prediction, and 

continue research on explainability to bridge the 

gap between model performance and 

interpretability, ultimately leading to more 

effective and user-friendly monitoring systems. 
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