ng dung Qua trinh diém th&i gian trong giam sat qua trinh
kinh doanh

TOM TAT

Dy béo qua trinh giam sat kinh doanh 1a mot nhiém vu dang chudi thoi gian day thach thic do ban chat phirc
tap va bién thién ciia cac quy trinh kinh doanh, lién quan dén viéc dy doén cac truong hop dang dién ra nhu hoat dong
tiép theo, hau td hoat dong va dy doan thoi gian con lai trong mot quy trinh kinh doanh. Qué trinh diém thoi gian duoc
sir dung rong rai dé mo hinh hoa chudi cac sy kién xay ra & cac khoang thoi gian khong df)ng déu, & mé hinh héa
thoi gian xay ra va nam bt cac phu thudc thoi gian gitra cac su kién. V6i nhing tién bé gan day trong mang no-ron
sau, Qua trinh diém thoi glan sau di ndi 1én nhu mot cach tlep can day htra hen dé nam bat cac mau phte tap trong
chudi su kién voi dau thoi gian. Do d6, Qua trinh diém thoi gian sau c6 thé 1a mot cach tiép can tiém ning dé dy doan
qua trinh giam sat kinh doanh. Trong bai bao ndy, ching t6i thir nghiém va xem xét hiéu qua cua cac nghién ctiru gan
day trong Qua trinh diém thoi gian sau ddi voi van dé giam sat quy trinh kinh doanh dy doan. Két qua cua chung toi
cho thay rang cic phuong phap Qué trinh diém thoi gian séu ¢6 tiém ning trong hoat dong tiép theo va du doan thoi
gian con lai trong du doén quy trinh giam sat kinh doanh. Nhitng phat hién nay c¢6 thé hitu ich cho cac chuyén gia va
nha nghién ctru quan tim dén viéc phat trién cac hé théng du doan giam sat cho cac quy trinh kinh doanh.

Tir khoa: Gidm sdt qud trinh kinh doanh, Qud trinh diém thoi gian, Mang no-ron sau.



Temporal point processes for business process monitoring

ABSTRACT

Predictive business process monitoring is a challenging time series task due to the complex and dynamic nature
of business processes, which involves predicting the ongoing cases in terms of the next activity, activity suffix, and
remaining time prediction on a business process. Temporal point processes (TPPs) are widely used to model sequences
of events happening at irregular intervals, to model the occurrence times of events, and to capture the temporal
dependencies among them. With the recent advances in deep neural networks, deep TPPs have emerged as a promising
approach for capturing complex patterns in event sequences with occurrence timestamps. Hence, deep TPPs can be a
potential approach to tackle business predictive monitoring tasks. In this paper, we experiment and review the
effectiveness of recent research on deep TPPs on the predictive business process monitoring problem. Our results
suggest that TPP methods have the potential in the next activity and remaining time prediction in the predictive
business process monitoring problem. The findings can be helpful to practitioners and researchers interested in

developing predictive monitoring systems for business processes.

Keywords: Business Process Monitoring, Temporal Point Process, Deep Neural Network.

1. INTRODUCTION

A business process is a collection of tasks
performed asynchronously by various resources,
such as humans, software, or hardware, to achieve
a specific goal.! The execution of these tasks is
tracked and documented in an event log, which
records details such as the identifier of the case,
the event performed, and the timestamp of the
event.2 There may also be optional case attributes,
which are shared by events of the same case, or
event attributes that are unique to each event.
Business process mining is the discipline
concerned with the analysis of these logs, tackling
it from different perspectives such as discovering
the underlying process model from the log,
checking that the executions registered in the log
are conformant with the process model, or
extracting or inferring analytics that enhances the
description of what has happened in the process
executions.® Predictive monitoring is a process
mining technique that predicts how an ongoing
process case will unfold using the event log's
information. The ability to make predictions is
beneficial for anticipating issues before they arise,
enabling the reallocation of resources before they
are wasted, and providing recommendations.*

Studying the temporal distribution of events
and discovering the relationships among different
types of events is a great scientific approach for
predictive monitoring and understanding the
dynamics and mechanism of events occurrence.>*
One of its choices is the Temporal Point Process

(TPP), the stochastic process with marked events
on the continuous domain of time, which can
naturally capture the clustering or self-correcting
phenomena of such sequences of events. 10!
Often, the rate of event occurrence, known as
conditional intensity, is modeled as a function of
time based on the prior observation of events to
capture the dynamics of the process. Given that the
conditional intensity function (CIF) entirely
governs the distribution of such a process,
statistical prediction and inference can all be
performed via the CIFs.

Despite significant advancements in TPP,
especially in models based on deep neural
networks (DNNSs), most of these models use
different history encoders to embed historical
events and various forms of intensity functions
that are parameterized by the embedded historical
sequence of events.'>1’ Also, to our knowledge,
no experiment has been conducted on the
efficiency of TPP in monitoring the business
process.’® Hence, in this paper, we compare
different combinations of TPP methods regarding
the history encoders and CIFs.

Hence, in this paper, our contribution is to
define a data preprocessing procedure for the
business process monitoring data set to suit the
deep TPP models. We experiment to evaluate the
capability and ability of deep TPP models on the
predictive business process monitoring datasets.

2. BACKGROUND



This section provides an overview of the key
concepts and techniques used in the study,
including predictive business process monitoring
and TPPs. It lays the foundation for understanding
the experiments and results.

2.1. Predictive business process monitoring

The input of business process mining techniques
is an event log, usually composed of events with
at least a case identifier, an activity, and a
timestamp, and, optionally, case attributes, which
are values shared by all the events of the same
case, and event attributes, which are specific of
each event.*% A sample log from the Helpdesk
data set is shown in Table 1, part of a real-life help
desk event log from an Italian Company.?* This
event log provides information about each event's
case identifier, activity, timestamp, and resource.

Given a certain event prefix of a running
case, predictive monitoring is concerned with
forecasting how different aspects of the next event
or sequence of events will unfold until the end of
the case. There are several prediction targets, such
as next activity, next activity suffix, next
timestamp, next remaining time, next outcome,
next attributes, and next attribute suffix.?? In this
paper, our interest is the next activity and the next
timestamp prediction.

Formally, m;, t;, e; is the activity,
timestamp, and event. Let hd’(o) be an event
prefix such as hd’/(o) =(e, .., e). Two
tackled problems can be defined as the following
functions Q using the newly predicted activities as
new inputs for the next prediction until the dummy
activity representing the end of the case
(“[EOC] ") is reached:

e The next activity prediction problem:
y (ht! (0)) = micys.

e The next timestamp prediction problem:
07 (hd(0)) = tiss.

Table 1. Excerpt of a Helpdesk’s business process log

2.2. Temporal point processes (TPPs)
2.2.1. Definition

Marked TPP is a random process representing as
an event sequence X = {(t;,my), ..., (ty,my)}
with the increasing arrival times of events
{ti}1<i<y @and markers {m;},<;<y, Such that t; €
[0,T),t; < tiyq1, Vi = 1 where N isthe number of
events.

The mark is equivalent to the event's
activity within the context of the business process.
Thus, both terms can be used interchangeably
afterwards. The inter-event time t; = t; — t;_ is
also considered due to their convenience in
computing.®®

Categorical ~marks M ={1,2,...,K}
occurring in the time interval [0, t) of the type-k
event. The history H(t) ={(t;, m;),t; <t}
which can be considered the event prefix hd’ (o)
in the business monitoring context.

The task of TPP models is to parameterize
the K conditional intensity function (CIF) A5 (t),
which can be characterized as follows:

(@) = A (t|H ()
B Pr(eventoftype kin [t, t + At) | H,)

= lim
At—0+ At

which is defined as the expected instantaneous rate
of happening events given the history. The *
symbol indicates the conditioning on the history
H(L).

Due to the TPP modeling the distribution of
the next timestamp ¢; or inter-event t; time under
the history H (t;), the next timestamp prediction
task is equivalent to considering the next
timestamp t; given H (t;) denoted as follows:

Qr(FH®) =P (©)

Given the CIF, the distribution P;"(t) can be
represented by any following functions;!21516.23.24

1. Probability density function (PDF): f;"(t)

Case ID Activity Resource Timestamp

Case 1 Assign seriousness Value 1 2012/10/09 14:50:17
Case 1 Take in charge ticket Value 1 2012/10/09 14:51:01
Case 1 Take in charge ticket Value 2 2012/10/12 15:02:56
Case 1 Resolve ticket Value 1 2012/10/25 11:54:26
Case 1 Closed Value 3 2012/11/09 12:54:39
Case 2 Assign seriousness Value 4 2012/04/03 08:55:38
Case 2 Take in charge ticket Value 4 2012/04/03 08:55:53
Case 2 Resolve ticket Value 4 2012/04/05 09:15:52
Case 2 Closed Value 5 2012/05/19 09:00:28




2. Cumulative distribution function (CDF):
Fr©) = [;' fi Wdu

3. Survival function: S/ (t) = 1 — F/(¢t)

Hazard function: ¢&; (t) = f;"(t)/S; (t)

5. Cumulative hazard function (CHF):
07 () = [, i (Wdu

Here, we pick the PDF of the type-k event
at time t as the parametric form, which is defined
as:

e

Fe®) = N (0) exp (— f A (u)du) o
t

i-1

where exp (— ftt__l }\;(u)du) is an exponential

term where the exponent is the negative integral
from t;_, (the time of the last event before t,
namely i — 1 = argmax;<,{t; t; <t}) to t of
the CIF. This integral represents the expected
number of type-k events at time u, which happens
in the time interval (t;_4,t]. The exponential of
the negative of this value penalizes the presence of
other events in the interval, making it less likely
for a new event to occur at time t. The product of
these two parts gives the probability density of an
event of type k occurring strictly at time t. Note
that we must integrate this density over that
interval to obtain the probability of an event
occurring within a specific time interval. By
aiming to parameterize a model to fit the
timestamp distribution, the TPP can infer PDF or
CIF for timestamp prediction, including the next
event's timestamp and activity prediction.

2.2.2. Conditional Intensity Formulation (CIF)

The CIF with parameters O, (t) is written as
M (60, (D[ (). The parameter 0 (t) is
considered a piece-wise function of t as:

Ok () = xx(hy)

where t € [t;_q,t;). The formula means that the
new occurrence of the type-k event changes the h;
and thus updates the ©(t).

The choice of the family of CIF functions to
approximate the target CIF is critical because the
function's ability to approximate accurately
determines the TPP's performance in fitting the
distribution. Additionally, Equation (1) indicates
that the integral term is unavoidable if we
maximize the likelihood of the observed sequence
of events. Hence, the challenge in computing the
log-likelihood is the high computational cost due
to the integral term. The closed form of this
integral term, such as cumulative hazard function,
can make the computation of likelihood

feasible.®?24 In conclusion, the goal of
approximating the target CIF is to choose a family
of functions in the closed integral form with
powerful expressivity.

2.2.3. Modeling the marks

In the business monitoring context, where
multiple event types exist, the next activity
prediction task is determining the most probable
event type based on historical data, which can be
dealt with as the categorical classification task. It
is generally achieved by first converting the
historical encoding to logit scores of a discrete
distribution, as shown in the following equation:

K(h;) = logit(m,) @)

where logit(m;,) € RX, k: R - RX,

Then, we apply a softmax function to
transform logit scores into the categorical
distribution, which is the solution to the next
activity prediction task as follows:

Qu(H®) =Pr(m, = k|H (1))
= softmax(logit(fn\l))k

where softmax(logit(71,)), is to choose the k-th

mark from its output. By forming the loss of
activities as the logit scores, the cross-entropy loss
for categorical classification is added to the log-
likelihood loss given the actual activity m of the i-
th event to maximize the joint likelihood of the
next timestamp and activity, which is considered
independent. Several works on maximizing joint
likelihood in conditional forms are proposed, such
as time conditioned on marks?®?® and marks
conditioned on time®, which can capture the
dependencies between timestamp and activity and
leverage the TPP models performance in
predicting the timestamp and activity
simultaneously. In our experiment, we utilize the
idea of using the joint negative log-likelihood
(NLL) under the independence between the next
timestamp and activity, with the type-k mark for a
single sequence X for categorical marks computed
as:

—logp (X)
K

- iz —Pr(, = k|H () ®)

i=1k=1

+

fi (©)

K
=1

k

3. CLASSIFICATION OF TPP MODELS



This section introduces the classification of TPP
models to solve the predictive business process
monitoring problem. As illustrated in Figure 1, our
procedure considers two essential parts of a deep
TPP: the history encoder and the CIF.

Table 2. The classification of all options for each
component by history encoder, mixture distribution,
and prediction target.

History Encoder Mixture Distribution | Prediction
Recurrent neural Log-Normal Next
network (RNN) 9 activity
Gated recurrent Next
unit (GRU) Gompertz timestamp
Long short-term
memory (LSTM) Log-Cauchy
Attention Exponential decay
Fourier
Transformer Weibull
(FNet)

3.1. Historical Event Encoders

Since CIF or PDF is a function of t and historical
events before t, namely 7 (t), we have to encode
the history sequence of each event (t;, m;) as a
feature vector e; to formulate the CIF or PDF of
the occurrence of different events to model the
process. For the i-th event's history, #H (¢t;), j-th
event in the history set is embedded in a high-
dimensional space including time and mark
features, as follows:

ej = [w(t;); ET™]
where:

e ® represents the time feature that
transforms  one-dimension  temporal
information ¢; (or inter-event time t;) into
a high-dimension vector directly or via its
logarithm?626 or trigonometric
functions'??’,

e E represents the mark feature, an
embedding matrix for marks, and m; is
the one-hot encoding of mark m;.

A historical encoder H can be obtained via
concatenation of the sequence of embedding
{eq, ey, ..., €;_1} into a vector space of dimension
D under the following formula:

hi = H({el, €3, . ei_l})

H can be chosen as Recurrent-based
encoders, Attention-based encoders, or Fourier

transform encoders, and h; is utilized for the CIF
parameterization.

3.1.1. Recurrent-based encoders

Recurrent-based encoders, including RNN units,
GRU, and LSTM, can be used as history
encoders.*® Their CIF can be formulated as
follows:

ho =0; h; = RNN(eg;j—1,h;i—1)

where the initial state of the history encoder, hy, is
set as zero. For each subsequent time step i, the
new state, h;, is updated based on the previous
state, h;_, and the previous event, e;_,, through
the RNN function. The RNN takes as inputs the
previous state and the previous event and outputs
the new state. This state represents the RNN's
memory, encoding information about past events
that it can use to predict future events.

The advantage of using recurrent-based
encoders as the history encoder is that it requires
low storage space due to the capability of serial
computing. The states and events are processed
one at a time, meaning that the RNN does not need
to store all of them at once, which can be
beneficial in situations where storage space is
limited.

However, there are also disadvantages to
this approach. The serial computing nature of
RNNs can limit their computational speed in both
the forward and backward processes.?®
Additionally, RNNs can suffer from issues such as
the gradient vanishing effect, where the gradients
used in learning become very small, making
learning slow or even impossible.? They can also
suffer from long-term memory loss, struggling to
retain information about events that occurred long
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Figure 1. The procedure of TPPs framework for predictive business process monitoring.

ago. These issues can potentially compromise the
performance of the RNN history encoder.

3.1.2. Attention-based encoders

Attention-based encoders are part of encoder-
decoder architectures that utilize the concept of
attention. This mechanism allows models to focus
on relevant parts of the input sequence when
generating an output.® Self-attention is proposed
as the history encoder in TPPs with fast parallel
computing and the capability of encoding more
long-term  sequences than recurrent-based
encoders.!? The attention-based history encoders
for CIF can be defined as follows:

=1 (e ei-1)w(ey)
i—10(eei-1)

where h; represents the encoded history at time i.
This history is computed as a weighted sum of
transformed event embeddings (e, ), where the
attention mechanism determines the weights
$(ej, €;-1). The attention mechanism ¢(-,-) is a
function that takes two event embeddings as
inputs and outputs a scalar called the attention
weight. This weight determines the importance or
relevance of the event e; when encoding the
history at the time i. The transformation function
Y transforms the event embedding e; into a series
of D-dimensional vectors called values. These
transformed embeddings are then used to compute
the encoded history.

h'i:

While attention-based encoders overcome
some of the problems with RNNs, their space
complexity of the attention matrix is O(N?),
which can become problematic when dealing with
very long sequences because the attention
mechanism computes pairwise interactions

between all events, leading to a quadratic increase
in storage requirements as the number of events
increases.®! This problem can be temporarily
resolved by limiting the encoder only to access the
last L events {y;_;, ..., ¥;_1}, Which can reduce the
time complexity to O(NL).%®

3.1.3. Fourier transform encoders

The Fast Fourier Transform (FFT) module was
generally used in the natural language processing
(NLP) field®? and recently adopted into the history
encoder family under the TPP context called FNet,
which aims to speed up the computation and
replace the attention mechanism.

hy = Top,{FFT([FFT(ey); ...; FFT(er)])}

where the FFT(-) represents the FFT, which
operates on the events' embedding, then on the
whole sequence. Then, Top,{-} means choosing
the highest p frequencies in the set as the history
encoding. The dimension of the feature vector e;
has to equal D dimension. Top-p needs to be
chosen due to the unequal event embedding
history sequence length, so the padding operation
is required for batch processing as many
sequences contain the same padding values, which
contain useless information and lead to low-
frequency values in spectra. Therefore, filtering
the low frequency can capture and retain more
information about the historical sequence in the
high frequency.

FFT encoder inherits fast computational
time complexity in O(NlogN) and the ability to
capture long-term patterns due to the global
property of the sequences' spectrum.®® However,
one disadvantage of this approach is that the
backward process of gradient propagation leads to
significant memory complexity.



3.2. Mixture Distribution

The mixture distribution family is the major
component in TPP that approximates the target
PDF under CIF.

3.2.1. Log-normal Mixture

Log-normal Mixutre is proposed to approximate
any distribution due to the feasible computation of
its PDF and cumulative distribution function
(CDF) in the closed form of CIF and CHF, where
the mixture form reads as follows:®

fL*Nl\g(t)
B Y <_ (In(t = t1) = us>2>
po $ t()'sm 263

where t € [t;_q,t;). S are mixture distribution
numbers, {w}i<s<s are non-negative mixture
weights and Y3_; wg = 1, o5 > 0VSs.

The distribution of the next timestamp
Ain(t) under the log-normal mixture can be
modeled by different functions such as PDF, CDF,
survival function, hazard function, or cumulative
hazard function. Moreover, the preferable
function to model the distribution Ajy(t) is the
cumulative hazard function due to its ability to
compute the NLL in the closed form without
numerical integration, leading to the loss function
in Eq. (3) replaces the f,(t) by the @;,(t).
Although the CDF has no closed form, the
approximation of the function has minor deviation
and permits gradient back-propagation, allowing
both the forward and backward processes.

3.2.2. Gompertz Mixture

Gompertz Mixture is proposed to predict both
timestamps and marks of future events without
any prior knowledge about the hidden functional
forms of the latent temporal dynamics.** The CIF
of Gompertz distribution reads as:

A(t) = nexp(Bt)

where 1,3 > 0. The corresponding PDF can be
obtained as follows:

Agp(t) = exp(B(t — t;—1) + v"h; + by)
which its PDF reads:

fep(t) = mexp <B(t —ti—1)

D exp( ) - 1))

for t € [t;_q,¢;), where n = exp(v™" + b,), and
B> 0. The process f¢p(t) becomes the Poisson

distribution when B = 0. The mixture can be
formulated as follows:

S
f(ikPM(t) = Z Ws s €XP (Bs(t - ti—l)
s=1

205 (e (BaCt — 1)) — 1))

fort € [t;_q,t;), where B, > 0 andn, > 0 forany
s. The parameters are obtained as a function of
history encoding h; for t € [t;_4,t;) as follows:

0(t) = {ws(®), Bs ()5 (D) 55 = x(hi)
3.2.3. Exp-decay Mixture

Zhang et al.? extend the expressivity of the
multivariate Hawkes Process by the Self-Attentive
Hawkes Process (SAHP) by adapting the self-
attention mechanism to fit the intensity function of
the Hawkes processes. This allows the Exp-decay
mixture to capture longer historical information
and is more interpretable because the learned
attention weight tensor shows the contributions of
each historical event. It models the intensity
function as the exponential-decaying form like the
classical Exp-decay Hawkes Process and extends
with a nonlinear transform softplus stacked after.
This is also the cause of unmanageable
computation of the integral term when dealing
with long data sequences due to attention weights
computation for each pair of events in the
sequence under the self-attention mechanism.

To solve the infeasible computation, the
final transformation of non-linearity is removed,
and the CIF of the defined Exp-decay distribution
can be obtained as follows:

Aip(8) = nexp(—B(t — t;—1)) + «

where the first term indicates the impacts of
historical events decay with an exponential ratio
added with the a, which is the basic intensity.

By using the distribution as a component,
the mixture of Exp-decay distribution reads the
PDF as follows:

feom(®) = iws(ns exp(—Bs(t — ti-1))
s=1
+ o) exp ((E—z
- 1) exp(—Bs(t — ti_1))
— ot — ti_1)>



for t € [t;_4,t;), whose parameters are all
positive, calculated by x(h;).

3.2.4. Weibull Mixture

Weibull Mixture assumes a population of two or
more subpopulations with different Weibull
distributions.** The Weibull distribution has the
advantage of high approximating ability due to no
numerical instability, so the parameter range is not
limited to a certain range. The parameters of the
Weibull mixture model can be estimated using the
maximum likelihood estimation (MLE) or
Bayesian methods. Its CIF reads:

Ays(®) =Bt —ti))

where n, 3 > 0. CIF will increase when 3 > 1,
decrease when $ < 1, and be constant when B =
1.

And its PDF represents:

S
fVT/BM(t) = z WsnsBs(ns(t
k=1

— 1)) exp (—(n (¢
- ti—1)8))
3.2.5. Log-Cauchy Mixture

Log-Cauchy Mixture is utilized because the Log-
Cuachy distribution can model a wide range of
data due to its flexibility by handling both
symmetric and asymmetric data and super-heavy-
tailed distributions with no given mean or standard
deviation.®® The Log-Cauchy distribution is also
robust to outliers, which is helpful in monitoring
the business.*® The Log-Cauchy mixture with the
PDF is written as:

o

s
* —_ Ws
fiem(@®) = ; (t —t)n(n(t —t;) — W2 + o?

4. EXPERIMENTS

This section details the experimental setup,
including the datasets used, the procedure
followed, and the evaluation metrics employed for
next activity prediction and next timestamp
prediction tasks. This section also provides the
necessary context for interpreting the results.

4.1. Dataset

We evaluate two real-time event logs extracted
from the 4TU Center for Research Data to
evaluate different combinations of history
encoders and conditional intensities: Helpdesk?
and BPI 2012%. Table 3 shows relevant statistics
from these logs, namely, the number of cases, the

number of different activities, the number of
events, the average and maximum case length, the
maximum and mean event duration in days, the
mean and maximum case duration in days and the
number of different variants.

Table 3. Statistics of the event logs used for
benchmarking. Time-related measures are shown in
days.

Statistics Helpdesk?*  BPI 2012%
Number of cases 4580 13087
Number of event types 14 36
Number of events 21348 262200
Mean case length 4.66 20.04
Maximum case length 15 175
Mean event duration 11.16 0.45
Maximum event duration 59.92 102.85
Mean case duration 40.86 8.62
Maximum case duration 59.99 137.22
Variants 266 4366

4.2. Procedure

Figure 1 shows the procedure of our framework
from preprocessing the data sets, data splitting,
and training the history encoder and CIF until
inferring the timestamps and activities. We
perform data splitting and evaluate all TPP
combinations in identical conditions to ensure
comparable results. The goal is to simulate a
scenario where past knowledge is utilized for
training a predictive model, which is then used to
predict the future. To achieve this, we perform a
5-fold cross-validation, where every approach is
tested once per fold. The event log traces are
sorted by their initial event timestamp and split
into training, validation, and test sets with a
distribution of 64%, 16%, and 20%, respectively.
Timestamps and activities are extracted from each
fold data set and then encoded into history
embeddings h; and sequence embeddings e; by a
chosen history encoder H. These embeddings are
modeled under a specific CIF f*(t) to extract the
time distribution and mark logit as the next
timestamp and activity predictions. Later, we
utilize the ground truth to compute the joint NLL
(Eq. (3)) and optimize the parameters for the
embeddings, the encoder, and the CIF.

4.3. Metrics

We use the following metrics to evaluate the TPP
combinations' performance on the next activity
prediction and next timestamp prediction tasks,
along with the goodness-of-fit by NLL as Eq. (3).



The results are reported as the mean performance
of each TPP combination on five folds.
Additionally, our evaluation appends a dummy
event as an (“[EOC] ") token to the end of every
log trace, which can reduce the process state and
provide a clear stopping point for activity
prediction.

4.3.1. Next activity prediction

We use the accuracy metric since the next activity
prediction task is a classic classification problem.
The accuracy measures the proportion of correct
classifications in relation to the number of
predictions done, which is implemented as
follows:

Top-q ACC({M, }1<i<n, {Mi}1<i<n)

B |{mi € Topg{logit(m)}: 1 <i < N}|
B N

where logit(7,) € RX is obtained by Eq. (2) to
measure the predicted discrete probability.

4.3.2. Next timestamp prediction

Since the time prediction problem is a regression
task, the metric chosen for measuring the TPP
performance in the next timestamp prediction task
is the Mean Absolute Error (MAE). Instead of
evaluating TPP performance based on the
normalized value taken directly from the
distribution under the Mean Absolute Percentage
Error (MAPE), we alter the normalization step and
postprocessing step to return the next timestamp
prediction in days to have a fair comparison with
our benchmarks. MAE metric has the advantage
of not over-penalizing the variability in the
observations, which is important in the time
prediction in predictive process monitoring, where
the time between two events in a trace can be
potentially large. The MAE is defined as follows:

TialE — il
N
where £, is the i-th predicted timestamp.

MAE({t.}1<i<ns {ti}1<ien) =

Table 4. Experimental results of the next timestamp prediction MAE in days and the next activity accuracy of

modeling the overall CIF with different combinations of history encoder and family of distribution. The arrows
1/| indicate that the higher/lower results, the better. The metrics are computed as the mean of the 5-fold cross-

validation. The metrics in bold mean that the model achieves the top-5 performance in the column.

Helpdesk BPI 2012

Methods NLL | MAE | Top-1 Top-3 NLL | MAE | Top-1 Top-3

ACC 1 ACC 1 ACC 1 ACC 1
LogNormMix+RNN -2.046201 279.991608 0.695686 0.814908 -4.419353 19.107306 0.809411 0.934645
LogNormMix+GRU -2.049259 269.787903  0.696841 0.814715 -4.498922 19.963001 0.811243 0.935909
LogNormMix+LSTM -1.965748 265.744049 0.698613 0.814715 -4.805172 17.676338 0.810400 0.935561
LogNormMix+Attention -2.025522 243.183641 0.698927 0.814715 -4.970017 19.699347 0.804081 0.942155
LogNormMix+FNet -2.088489 354.522430 0.697804 0.814715 -3.997465 17.554281 0.700791 0.924937
GomptMix+RNN 0.862758 26.262592 0.694530 0.815293 -1.943585 3.082433 0.811463 0.935542
GomptMix+GRU 0.756814 36.176449 0.698190 0.814522 -1.989259 3.715980 0.814430 0.935689
GomptMix+LSTM 0.803448 33.733837 0.694915 0.814909 -1.718078 1.786893 0.811939 0.935103
GomptMix+Attention 0.198063 24.308924 0.798151 0.974923 -2.651078 2.053919 0.810492 0.936513
GomptMix+FNet 0.922608 26.557230 0.695300 0.812982 -1.338134 1.192549 0.658058 0.919295
LogCauMix+RNN -0.245449 24777443 0.697612 0.815100 -2.425044 1.674708 0.809997 0.933234
LogCauMix+GRU -0.238866 25.448597  0.693374 0.812789 -2.447077 4.090276 0.809778 0.935616
LogCauMix+LSTM -0.213667 9.497505 0.697034 0.811633 -2.442514 2.642548 0.810345 0.935744
LogCauMix+Attention -0.572755 20.529713 0.697612 0.812982 -2.426620 1.027533 0.806151 0.928967
LogCauMix+FNet -0.229975 24.389563 0.698960 0.814137 -2.372896 2.651052 0.698978 0.924735
WeibMix+RNN -1.920710 354.471039 0.690100 0.814522 -4.106110 17.718061 0.807818 0.933308
WeibMix+GRU -1.807741 35.020641 0.689137 0.811633 -4.190582 14.316733 0.808514 0.933930
WeibMix+LSTM -1.856559 295.800934 0.686248 0.811633 -4.111487 15.760619 0.812818 0.935542
WeibMix+Attention -1.986018 123.920174 0.687982 0.812982 -4.050585 19.363649 0.796498 0.931842
WeibMix+FNet -1.750751 308.825226 0.683166 0.808166 -3.867040 19.018917 0.694252 0.923929
ExpDecayMix+RNN 1.778744 67.937225 0.696263 0.814908 1.221636 20.735715 0.811005 0.935011
ExpDecayMix+GRU 1.889372 117.146721  0.697612 0.815293 -1.230995 20.580959 0.814375 0.935689
ExpDecayMix+LSTM 1.963200 85.079498  0.696456 0.813367 -1.205069 20.735718 0.812086 0.935231
ExpDecayMix+Attention 1.447936 354.209351  0.696841 0.814522 -1.521961 20.748582 0.808111 0.934700
ExpDecayMix+FNet 1.800676 351.875275  0.697997 0.814522 -1.036910 20.735718 0.699857 0.924918




5. RESULTS

This section presents the findings from the
experiments, highlighting the performance of
different TPP models based on their combinations
of history sequence encoders and formulations of
conditional intensity functions. This section
summarizes the key observations and insights
gained from the experiments.

Table 4 evaluates different combinations of
history encoders and overall conditional
intensities on two real-world datasets, namely
Helpdesk and BPI1 2012.

e Goodness-of-fit is typically evaluated via
the NLL result. The choice of history
encoders such as RNN-based, Attention-
based, and FNet-based methods usually
does not affect the overall performance of
TPP models regarding the goodness-of-
fit. Meanwhile, the intensity functions
used for CIF approximation matter most.
ExpDecayMix shows the worst fitting
ability. Besides, LogNormMix and
WeibMix usually fit the data best due to
the ability to fit the distribution via the
NLL.

e Next timestamp prediction is evaluated
according to the MAE. The choice of
intensity function is also crucial, where
LogCauMix and GomptMix usually
predict significantly better than others. In
the Helpdesk dataset, interestingly, the
LSTM with LogCauMix performs far
better than any other combinations of TPP
models.

e Next activity prediction is evaluated via
the Top-1 ACC and Top-3 ACC. The
results show that the history encoder is
critical because the prediction depends on
its encodings. Attention-based encoders
usually have good predictive performance
because they can capture long-term
features from historical events. Besides,
GRU and LSTM also achieve high results
due to their ability to capture long
memory.

To sum up, the NLL and MAE calculated
by timestamps are predominantly influenced by
the formulation of intensity and short-term
influences, which the five history encoders can
adequately capture. Though FNet is a new
proposed approach and does not achieve high
results compared with other history encoders, it
still shows potential when pairing with suitable
intensity functions such as LogCauMix. All
history encoders can sufficiently model the

dynamics of arrival time, given their minor
differences. In contrast, Attention-based encoders
usually surpass other history encoders to model
the dynamics of the next activity due to the
capability of capturing the long-term impacts of
historical events.

6. DISCUSSION

The experimental results presented in this study
provide valuable insights into the performance of
different TPP models for predictive business
process monitoring tasks. The findings highlight
the importance of selecting an appropriate
combination of history sequence encoders and
CIFs to achieve optimal results. One key
observation is that the choice of CIF plays a
crucial role in the next timestamp prediction task.
The LogCauMix and GomptMix intensity
functions consistently outperform other options,
indicating their suitability for capturing the
temporal dynamics of business processes. This
suggests that the formulation of the intensity
function should be carefully considered when
designing TPP models for timestamp prediction.
Another notable finding is the impact of the
history encoder on the next activity prediction
task. Attention-based encoders, such as the self-
attention mechanism, demonstrate superior
performance compared to other encoders. This can
be attributed to their ability to capture long-term
dependencies and selectively focus on relevant
historical events. The results underscore the
importance of leveraging attention mechanisms to
effectively model the complex relationships
between past activities and future predictions. The
experiments also reveal that the FNet encoder,
despite being a relatively new approach, shows
potential when paired with suitable intensity
functions like LogCauMix. While its performance
may not surpass other established encoders, the
FNet's ability to capture temporal patterns
efficiently makes it a promising direction for
future research in TPP models for business
process monitoring. Conclusively, the
performance of TPP models can vary depending
on the characteristics of the dataset and the
specific business process being monitored. The
Helpdesk and BPI 2012 datasets used in this study
represent  real-world  scenarios, but the
generalizability of the findings to other domains
and processes should be further investigated.
Future research could explore the application of
TPP models to a wider range of business processes
and datasets to validate the robustness of the
observed trends.

Another important aspect to consider when
applying TPP models in predictive business



process monitoring is explainability.® As
businesses increasingly rely on automated
decision-making systems, the ability to interpret
and understand the predictions made by these
models becomes crucial. Explainability helps to
build trust in the model's outputs, facilitates
debugging and error analysis, and enables
stakeholders to gain insights into the factors
influencing the predictions.®**! However, it is
important to note that achieving explainability in
TPP models is not without challenges. The
complexity of the models, the high-dimensional
nature of the input data, and the temporal
dependencies can make it difficult to provide
simple and intuitive explanations. Striking a
balance between model performance and
interpretability is an ongoing research challenge.
Future work in this area could focus on developing
novel explainability techniques tailored to TPP
models, as well as conducting user studies to
assess the effectiveness and usability of these
explanations in real-world business settings.

7. CONCLUSION

In this paper, we evaluate the performance of
different TPP models via their combinations of the
history sequence encoder and formulation of CIF
on the predictive business process monitoring data
sets. The results show that the formulation of
intensity influences the next timestamp prediction
and can be captured by any of the history
encoders. The next event prediction is dominated
by the ability to capture long-term impacts from
historical events, especially attention-based
encoders. In our future work, we plan to conduct a
more profound experiment around several aspects
of TPP models, such as loss computation, history
embedding's  normalization, the relational
discovery of events, and optimizations. In our
future work, we extend the capability of TPP
models on other prediction problems such as
activity suffix and remaining time prediction, and
continue research on explainability to bridge the
gap  between model performance and
interpretability, ultimately leading to more
effective and user-friendly monitoring systems.
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