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TÓM TẮT

Chúng tôi xét một biến ngẫu nhiên rời rạcX chỉ nhận các giá trị nguyên không âm. Ký hiệu miền giá trị của

X và hàm khối xác suất của X lần lượt bởi RX và pX(x). Mục đích của bài báo này nhằm đưa ra một phương

pháp biến đổi được dùng để biến đổi hàm pX(x) thành một hàm khối xác suất của một biến ngẫu nhiên rời rạc X̃

với miền giá trị là RX̃ = {k ∈ N : k ≥ minRX}. Chúng tôi tìm thấy một biểu diễn cho hàm đặc trưng của X̃

theo hàm đặc trưng củaX . Ngoài ra, tính bảo toàn phân phối của phép biến đổi được chỉ ra trong một số trường

hợp cụ thể.

Từ khóa: Hàm khối xác suất, biến ngẫu nhiên rời rạc, phép biến đổi, hàm đặc trưng.
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ABSTRACT

Let us consider a discrete random variable X that takes only non-negative integer values. Let RX

and pX(x) denote the range ofX and the probability mass function ofX , respectively. The aim of this

paper is to provide a transformation method used to transform pX(x) into a probability mass function

of a discrete random variable X̃ whose range is RX̃ = {k ∈ N : k ≥ minRX}. We obtain a repre-

sentation of the characteristic function of X̃ in terms of the characteristic function ofX . Moreover, the

distribution-preserving property of the transformation is shown in some specific cases.

Keywords: Probability mass function, discrete random variable, transformation, characteristic function.

1. INTRODUCTION

In probability theory, a probability distribution is the

mathematical function that gives the probabilities of

occurrence of different possible outcomes for a ran-

dom experiment. It is a mathematical description of

a random phenomenon in terms of its sample space

and the probabilities of events (subsets of the sample

space).1,2 The sample space, often denoted by Ω, is

the set of all possible outcomes of a random experi-

ment being observed.

In order to classify probability distributions, we

need to define discrete and continuous random vari-

ables. A random variable is a function whose domain

is a sample space Ω and whose range (i.e., the set of

values that it can obtain) is a subset of the real num-

bers, R. In other words, a random variable assigns

real numbers to the outcomes in its sample space.

Random variables which take on values from a dis-

crete set of numbers (i.e., whose range is either finite

or countably infinite) are called discrete random vari-

able.3 Otherwise, a random variable is called contin-
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uous if it ranges over a continuous set of numbers

that contains all real numbers between two limits.3

In other words, a continuous random variable is one

that takes an uncountably infinite number of possi-

ble values. For instance, a random variable that rep-

resents the time between two successive arrivals to a

queueing system, or that represents the temperature

in a nuclear reactor, is an example of a continuous

random variable.3 It is evident that all random vari-

ables defined on a discrete sample space are discrete.

However, random variables defined on a continuous

sample space may be either discrete or continuous.

Probability distributions can be categorized into two

main types: discrete and continuous. Discrete distri-

butions deal with the probabilities of specific val-

ues for discrete random variables, while continuous

distributions handle the probabilities of various val-

ues for continuous random variables. Examples of

discrete distributions include the Binomial, Poisson,

and Negative Binomial distributions. We will intro-

duce these distributions and several other discrete

distributions in more detail in Section 3. For con-

tinuous distributions, the most popular example is

the normal distribution. This is also referred to as

the Gaussian distribution. Some important continu-

ous distributions are often used to build models and

to test hypotheses about random variables, such as

the student’s t-distribution, the chi-squared distribu-

tion and the F-distribution.

The key difference between a discrete probabil-

ity distribution and a continuous probability distribu-

tion is that in a discrete distribution we are able to

compute the probability that a random variable can

take on a particular value, therefore the probabilities

of individual values can be tabulated. Discrete ran-

dom variables, or discrete distributions, can be com-

pletely characterized by their probability mass func-

tions. The probability mass function (frequently ab-

breviated to pmf ) for a discrete random variable X ,

gives the probability that the value obtained byX on

the outcome of a probability experiment is equal to x

(x ∈ R).3 In the present paper, we denote it by pX(.).

The formal definition of the probability mass func-

tion for a discrete random variable is given in Sec-

tion 2. Sometimes the term discrete density function

is used in place of probability mass function. Since a

continuous random variable takes an uncountably in-

finite number of possible values, the probability that

it is exactly equal to any one of the infinite possi-

ble values is zero. For this reason, the method men-

tioned above to describe a discrete random variable

will not work in the case of a continuous random vari-

able, and then we have to consider the probability of a

continuous random variable taking values in an inter-

val. Continuous random variables, or continuous dis-

tributions, can be completely characterized by their

probability density functions (frequently abbreviated

to pdf ). Because the purpose of this study is to con-

centrate only on discrete distributions, in the article

we will ignore the definitions or concepts associated

with continuous random variables, and we refer the

reader to1,2,4 for more details.

The starting point of this paper was to study

the Binomial distribution (denoted by Binom(n, p)).

This distribution has two parameters: the number of

trials , n ∈ N∗, and the probability of success for a

single trial, p ∈ (0, 1). The outcome from a random

variableX obeying the Binomial distribution will al-

ways be a nonnegative integer with an upper bound

at n. By the rules of probability, we can attain that the

probability of the event {X = k} (i.e., the probability
of k successes inn trials) is equal to

(
n
k

)
pk(1−p)n−k.

By definition, the quantity
(
n
k

)
pk(1 − p)n−k is the

value of the probability mass function of X at k,

namely pX(k). Then, by chance and by intuition, we

have found the following equality:

n∑
k=0

k∑
i=0

(np− i)

(
n

i

)
pi(1− p)n−i = npq,

which can be shortly rewritten as

n∑
k=0

k∑
i=0

(µ− i)pX(i) = σ2, (1)

where µ = np and σ2 = npq.
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At first glance, equality (1) was nothing special.

However, it is worth noticing that the quantities µ =

np and σ2 = npq are the mean and variance of

the Binomial random variable X , respectively. Fur-

thermore, the set {0; 1; ...;n} is the range of X (de-

noted by RX ). The definitions of the mean and vari-

ance of a discrete random variable are given in Sec-

tion 2. Then, a question naturally arose in our mind:

Whether equality (1) holds true for an arbitrary dis-

crete random variable X whose range is a subset

of the set of natural numbers, if its mean and vari-

ance are finite, or not? Motivated by this question,

we have shown that equality (1) remains true for non-

negative integer-valued random variables satisfying a

certain condition. This result is presented in Lemma

3.2. Combining Lemma 3.2 and Lemma 3.1, we then

obtain the first main theorem (Theorem 3.2), which

gives a way to transform a probability mass function

of a nonnegative integer-valued random variable to

that of another nonnegative integer-valued random

variable. From this result, we achieve the remaining

important results as shown in Section 3. Up to the

present, there are only a few results on transforma-

tions associated with probability mass functions. For

instance, the pignistic transformation and the plausi-

bility transformation are introduced in the research5.

We briefly recall that these two transformations pro-

vide the ways to transform a basic probability assign-

ment function to a probability mass function. Notice

that a basic probability assignment function (called

also mass function) is not a probability mass func-

tion. For more detail, see5.

The rest of the paper is organized as follows. Sec-

tion 2 revisits key definitions and properties includ-

ing probability mass function, mean, variance, and

characteristic function. Section 3 presents our pri-

mary findings. Finally, Section 4 concludes with re-

marks summarizing the significance of our research

outcomes. This systematic approach aids in under-

standing the framework and contributions of our

study.

2. PRELIMINARIES

2.1. Probability mass function, Mean and

Variance

From the point of view of understanding the be-

havior of a discrete random variable, the important

thing is to know the probabilities that the random

variable takes each value in its range. Such probabil-

ities are described with a probability mass function.

Definition 2.1. 4 Let X be a discrete random vari-

able. The probability mass function ofX , denoted by

pX(.), is defined as

pX(x) = P (X = x)> 0 if x ∈ RX ,

pX(x) = 0 if x /∈ RX ,

where RX is the range of X .

Obviously, the range of pX(.) is a subset of the

interval [0, 1]. Furthermore, by the rules of probabil-

ity, one can get that the function values add to 1.0

when summed over all possible values of the random

variable X . This means that
∑

x∈RX
pX(x) = 1.

Definition 2.2. 4 Let X be a discrete random vari-

able with RX = {xk}k≥0. The expectation or the

mean of the random variable X , denoted by EX , is

the number

EX =
∑

x∈RX

xpX(x) =

∞∑
k=0

xkpX(xk), (2)

which is defined when
∑∞

k=0 |xk|pX(xk) < ∞. If

the later series diverges, the mean is not defined.

In the case where the mean is defined, its value

does not depend on the order of summation. Essen-

tially, the mean EX denotes a weighted average of

the elements in RX , where the probabilities act as

the weights in the discrete setting.

Definition 2.3. Let X be a discrete random variable

with RX = {xk}k≥0, and let λ > 0 be a positive

real number (not necessarily integer). The moment of

order λ of X is defined as

αλ = EXλ =

∞∑
k=0

(xk)
λpX(xk).
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Definition 2.4. 4 Suppose that the mean and the mo-

ment of order 2 of the discrete random variable X

are finite. The variance of X , denoted by VarX , is

the quantity

VarX = E(X − EX)2

=
∞∑
k=0

(xk − EX)2pX(xk).

The variance characterizes the amount of varia-

tion of the random variable from its mean. The fol-

lowing property is commonly useful to compute the

variance.

VarX = EX2 − (EX)2.

The expectation and variance of a random variable

are two of the foremost notions in probability theory.

For basic properties of expectation and variance, we

refer the reader to the studies1,4,6.

2.2. Characteristic function

In probability theory and mathematical statistics,

characteristic functions always play an outstanding

role by providing a comprehensive way to describe

and analyze probability distributions. They are par-

ticularly powerful due to their unique properties and

applications in various statistical methodologies.

Definition 2.5. 7 The characteristic function of a dis-

crete random variable X is defined as

ϕX(t) = E(eitX) =

∞∑
k=0

eitxkpX(xk), (3)

where t is any real number and i =
√
−1.

Since |eitx| is a bounded and continuous function
for all finite real t and x, the characteristic function

always exists. We recall that any characteristic func-

tion ϕX(t) satisfies the following conditions (see the

research7 Theorem 1.1.1):

1. ϕX(t) is uniformly continuous;

2. ϕX(0) = limt→0 ϕX(t) = 1;

3. |ϕX(t)| ≤ 1 for all real numbers t.

4. ϕX(−t) = ϕX(t), where the horizontal bar

denotes the complex conjugate.

In addition, if the moment of order n exists (where n

is a positive integer) then ϕX(t) is n times differen-

tiable for all t, and it is related to the n−th derivative

of the characteristic function by the formula7

αn = (−i)nϕ
(n)
X (0). (4)

So, the existence of some moments of a random

variable ensures the existence of the corresponding

derivatives of the characteristic function. We next in-

troduce the following important result (referred to as

the uniqueness theorem), which shows that a proba-

bility distribution is uniquely determined by its char-

acteristic function.

Proposition 2.1 (Theorem 1.1.2). 7 Two probability

distributions are identical if and only if their charac-

teristic functions are identical.

For more details on properties of characteristic

functions, interested readers could be refer to7 and

the references therein. Thanks to characteristic func-

tions, we arrive at some interesting results as shown

in Subsection 3.3.

3. MAIN RESULTS

Let X be a discrete random variable with the range

RX ⊆ N (the set RX is either finite or countably

infinite). Throughout the forthcoming, we always as-

sume that the mean and variance of X exist, and are

denoted by µ and σ2 (σ > 0) respectively.

3.1. Formulation of transformation

Lemma 3.1. Let k be a nonnegative integer. If RX

is infinite, we then get

k∑
i=0

(µ− i)pX(i) > 0 ⇔ k ≥ minRX .

IfRX̃ is fintite with |RX | greater than 1, we have
k∑

i=0

(µ−i)pX(i) > 0 ⇔ minRX ≤ k ≤ maxRX−1.
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Proof. If RX is infinite, we have that

k∑
i=0

(µ− i)pX(i) =

k∑
i=minRX

(µ− i)pX(i) > 0

for minRX ≤ k ≤ µ (note that µ > minRX ).

For k > µ, setting a(i) = (µ− i)pX(i), we obtain

k∑
i=0

(µ− i)pX(i) =

[µ]∑
i=0

a(i) +
k∑

i=[µ]+1

a(i)

>

[µ]∑
i=0

a(i) +
∞∑

i=[µ]+1

a(i)

=

∞∑
i=0

a(i) = µ− µ = 0,

where [.] denotes the floor function. Obviously,∑k
i=0(µ− i)pX(i) = 0 if k < minRX .

In the case thatRX is finite (with |RX | > 1), due

to
∑maxRX

i=0 (µ − i)pX(i) = 0, we only need to con-

sider k such that minRX ≤ k ≤ maxRX − 1.

Lemma 3.2. Assume that

lim
n→∞

n
n∑

i=0

(µ− i)pX(i) = 0. (5)

Then, settingm = minRX , we have

∞∑
k=m

k∑
i=m

(µ− i)pX(i) = σ2. (6)

In the case thatRX is finite, equality (6) becomes

M−1∑
k=m

k∑
i=m

(µ− i)pX(i) = σ2, (7)

whereM := maxRX .

Proof. For each positive integer n ≥ m, we have

n∑
k=m

k∑
i=m

(µ− i)pX(i)

=

n∑
k=0

k∑
i=0

(µ− i)pX(i) (pX(i) = 0 if i /∈ RX)

=

n∑
i=0

(n+ 1− i)(µ− i)pX(i)

=
n∑

i=0

[(i− µ)2 + n(µ− i) + (1− µ)(µ− i)]pX(i)

=

n∑
i=0

(i− µ)2pX(i) + n

n∑
i=0

(µ− i)pX(i)

+ (1− µ)

n∑
i=0

(µ− i)pX(i). (8)

It is noteworthy that, by the definitions of µ and σ2,

∞∑
i=0

(i− µ)2pX(i) = σ2;

∞∑
i=0

(µ− i)pX(i) = 0. (9)

Equality (6) readily follows from (5), (8) and (9).

If RX is a finite set, by the definition of µ one

can easily see that
∑n

i=m(µ− i)pX(i) = 0 for every

n ≥ M . Therefore, condition (5) is always true and

we obtain (7).

Remark 3.1. Lemma 3.2 yields another formula for

the variance of a discrete random variable X if its

range is a subset of the set of natural numbers, pro-

vided that (5) is satisfied. Furthermore, from the

proof of Lemma 3.2, we notice that (5) is a necessary

and sufficient condition for the validity of (6).

Combining Lemma 3.1 with Lemma 3.2, we im-

mediately attain the first main theorem.

Theorem 3.2. Assume that (5) holds and set m =

minRX ,M = maxRX . Then, there exists a discrete

random variable X̃ such that

RX̃ =

{
{k ∈ N : m ≤ k} ifRX is infinite;

{k ∈ N : m ≤ k < M} ifRX is finite;

and its probability mass function is given by

pX̃(k) = P (X̃ = k) =
1

σ2

k∑
i=m

(µ− i)pX(i), (10)

for all k ∈ RX̃ .

Proof. According to Lemmas 3.1 and 3.2, we have

pX̃(k) > 0 (∀k ∈ RX̃) and

∞∑
k=m

pX̃(k) = 1,

which imply the statement of Theorem 3.2.
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Remark 3.3. In other words, Theorem 3.2 or formula

(10) textcolorredprovide a probability transformation

which transforms the probabilitymass function pX(.)

to another probabilitymass function, pX̃(.).Also, one

can see that the range of X̃ is always a set containing

consecutive nonnegative intergers, and has the same

minimum value as the one of the initial random vari-

able, RX .

Let us now consider the following example to

more understand the use of the transformation.

Example 3.4. LetX be the random variable with the

probability distribution described as follows:

X 0 4 6 8

pX(x) 1
8

1
8

1
4

1
2

.

By direct calculation, using (10) we get

µ = 6;σ2 = 7;

pX̃(0) = pX̃(1) = pX̃(2) = pX̃(3) =
3

28
;

pX̃(4) = pX̃(5) =
1

7
;

pX̃(6) = pX̃(7) =
1

7
.

Clearly,
∑7

k=0 pX̃(k) = 1 and the corresponding

probability distribution of X̃ is given as

X̃ 0 1 2 3 4 5 6 7

pX̃(k) 3
28

3
28

3
28

3
28

1
7

1
7

1
7

1
7

.

The next example was intended as an attempt to

extend the claim of Theorem 3.2 to the case that X

takes (positive) noninteger values. However, we ob-

tain that the claim is no longer true.

Example 3.5. LetX be the random variable with the

probability distribution given as

X 0 1
2 1 3

2 2

pX(x) 1
8

2
8

1
8

1
8

3
8

.

From (10), we get

µ =
19

16
; σ2 =

143

256
;

pX̃(0) =
38

143
;

pX̃(1) =
88

143
.

We obtain

pX̃(0) + pX̃(1) =
126

143
6= 1.

Hence, equality (6) does not hold.

3.2. The characteristic function ϕX̃(.)

As mentioned in Section 1, it will be very useful to

obtain an expression for the characteristic function

of X̃ . By Proposition 2.1, the fact that every distribu-

tion is uniquely determined by its characteristic func-

tion allows us to be able to determine the distribution

type of X̃ , without having to find the mass probabil-

ity function pX̃(.).

Theorem 3.6. With the settings of Theorem 3.2, the

characteristic function ϕX̃(.) of the random variable

X̃ is given by

ϕX̃(t) =
µϕX(t) + iϕ′

X(t)

σ2(1− eit)
,∀t ∈ R, (11)

where, as before, µ, σ2 and ϕX(.) are respectively

the mean, variance and characteristic function of the

random variable X .

Proof. For simplicity of notations, throughout the

proof, pk and p̃k stand for pX(k) and pX̃(k), respec-

tively. From (10) and by grouping the terms appro-

priately, we attain

Sn(t) :=

n∑
k=0

eitkp̃k

=
1

σ2

n∑
k=0

[
eitk

k∑
j=0

(µ− j)pj

]
=

1

σ2
(µ− 0)p0

n∑
k=0

eitk +
1

σ2
(µ− 1)p1

n∑
k=1

eitk

+
1

σ2
(µ− 2)p2

n∑
k=2

eitk + ...+
1

σ2
(µ− n)pne

itn
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=
1

σ2

n∑
j=0

[
(µ− j)pj

n∑
k=j

eitk
]

=
1

σ2
(S1,n(t)− S2,n(t)) , (12)

where

S1,n(t) :=

n∑
j=0

[
(µ− j)pj

n∑
k=0

eitk
]
; (13a)

S2,n(t) :=

n∑
j=1

[
(µ− j)pj

j−1∑
k=0

eitk
]
. (13b)

On the other hand, by definition,

ϕX̃(t) = lim
n→∞

Sn(t), (14)

we are thus left with the task of determining the limits

of S1,n(t) and S2,n(t) as n tends to ∞.

To find the limit of S1,n(t) defined as (13a), it is

worth pointing out that

0 < |S1,n(t)| =

∣∣∣∣∣
n∑

k=0

eitk

∣∣∣∣∣
∣∣∣∣∣∣

n∑
j=0

(µ− j)pj

∣∣∣∣∣∣
≤

∣∣∣∣∣∣n
n∑

j=0

(µ− j)pj

∣∣∣∣∣∣ .
From (5) and the Squeeze Theorem, it immediately

follows that

lim
n→∞

S1,n(t) = 0. (15)

In order to arrive at the remaining limit, we first

rewrite Sn,2(t), given by (13b), as follows

S2,n(t) =
1

1− eit

n∑
j=1

(µ− j)pj(1− eitj)

=
1

1− eit

n∑
j=0

(µ− j)pj(1− eitj)

=
1

1− eit

[ n∑
j=0

(µ− j)pj − µ

n∑
j=0

pje
itj

+
n∑

j=0

jpje
itj
]
. (16)

Letting n tend to ∞ in the both sides of (16), we get

lim
n→∞

S2,n(t) =
1

1− eit

[
−µϕX(t)+

ϕ′
X(t)

i

]
, (17)

owing to the following simple equalities,

∞∑
j=0

(µ− j)pj = 0;

∞∑
j=0

pje
itj = ϕX(t);

∞∑
j=0

jpje
itj =

1

i
ϕ′
X(t).

From (12), (14), (15) and (17), the proof of Theorem

3.6 is completed.

3.3. Distribution-preserving property

The work of this section contains descriptions of

some different well-kown discrete distributions used

in probability. By the method of characteristic func-

tions, our aim is to verify whether the random vari-

ablesX and X̃ are able to belong to the same family

of distributions (in other words, whether the distribu-

tion family of X can be preserved by the formulated

transformation) for each considered case.

• Binomial distribution

Binomial distributions correspond to random vari-

ables that count the number of successes among n

independent trials having the same probability of suc-

cess. Such trials are called Bernoulli trials. The prob-

abilistic model of Bernoulli trials is applicable in

many situations, where it is reasonable to assume in-

dependence and constant success probability.

Definition 3.1. 6,8 A random variable X is said to

have a Binomial distribution with parameters n and

p (where n ∈ N∗, 0 < p < 1) if

P (X = k) =

(
n

k

)
pk(1− p)n−k, (18)

for all k = 0, 1, ..., n . We write X ∼ B(n, p).

If X ∼ B(n, p), the mean and variance are6

µ = np, σ2 = np(1− p), (19)

and the characteristic function is given by7

ϕX(t) = (1− p+ peit)n. (20)
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From (19), (20) and (11), we have

ϕX̃(t) = (1− p+ peit)n−1, (21)

which immediately implies that

X̃ ∼ B(n− 1, p),

for all n ≥ 2.

• Poisson distribution

Poisson distributions are applied when the random

variables under consideration count the number of

events occurring in a specified time period or a spatial

area, and the observed processes satisfy the primary

conditions of time (or space) homogeneity, indepen-

dent increments, and no memory of the past.

Definition 3.2. 6,8 A random variable X is said to

have a Poisson distribution with unique parameter

λ > 0 if

P (X = k) =
e−λλk

k!
, k = 0, 1, 2, ... (22)

We then write X ∼ Pois(λ).

The mean, variance and characteristic function of

the Poisson distribution are7

µ = σ2 = λ, (23)

ϕX(t) = exp[λ(eit − 1)]. (24)

First of all, let us prove that assumption (5) is satis-

fied. Indeed, by (22) and (23), we get

n∑
k=0

(µ− k)pX(k)

=
n∑

k=0

(λ− k)
e−λλk

k!

= e−λ
[ n∑
k=0

λk+1

k!
−

n∑
k=1

λk

(k − 1)!

]
= e−λ

[ n∑
k=0

λk+1

k!
−

n−1∑
k=0

λk+1

k!

]
= e−λλ

n+1

n!
.

As a result, assumption (5) is equivalent to

λn

n!
−→ 0 as n → ∞,

which is true for all λ > 0. So, (5) is valid. By The-

orem 3.6, (23) and (24), it is straightforward to find

the expression for ϕX̃ ,

ϕX̃(t) = exp[λ(eit − 1)] = ϕX(t).

Thus, we have

X̃ ∼ Pois(λ).

• Negative binomial distribution
The Negative Binomial distribution is a discrete

probability distribution that models the number of

failures in a sequence of independent and identically

distributed Bernoulli trials before a specified num-

ber of successes occurs. In a sequence of independent

Bernoulli trials, each trial has two potential outcomes

called ”success” and ”failure”. In each trial the prob-

ability of success is p (0 < p < 1) and of failure is

1 − p. One observes this sequence until a number r

of successes occurs, where r is a fixed integer.

Definition 3.3. 6,8 Let the random variableX denote

the number of observed failures before the rth suc-

cess occurs. Then

P (X = k) =

(
k + r − 1

k

)
(1− p)kpr, (25)

for all k = 0, 1, 2, ...

In this case, the random variableX is said to have

the Negative Binomial distributionwith parameters r

and p. We denote by X ∼ NB(r, p).

If X ∼ NB(r, p), then

µ =
r(1− p)

p
, σ2 =

r(1− p)

p2
, (26)

and its characteristic function is given as7

ϕX(t) =

(
p

1− (1− p)eit

)r

, t ∈ R. (27)
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From (25) and (26), we first remark that

n∑
k=0

(µ− k)pX(k)

=

n∑
k=0

(rq
p

− k
)
Ck

k+r−1q
kpr (q := 1− p)

= rqpr−1 + rpr−1
n∑

k=1

(
Ck

k+r−1q
k+1 − Ck−1

k+r−1q
kp
)

= rqpr−1 + rpr−1
[ n∑
k=1

(
Ck

k+r−1 + Ck−1
k+r−1

)
qk+1

−
n∑

k=1

Ck−1
k+r−1q

k
]

= rqpr−1 + rpr−1
[ n∑
k=1

Ck
k+rq

k+1 −
n−1∑
k=0

Ck
k+rq

k+1
]

= rpr−1Cn
n+rq

n+1.

Due to 0 < q < 1, it is easy to check that

nCn
n+rq

n+1 =
n(n+ 1)...(n+ r)

r!
qn+1 −→ 0

as n → ∞. In other words, (5) holds true.

Accordingly, by Theorem 3.6, we attain the char-

acteristic function of X̃ defined by

ϕX̃(t) =

(
p

1− (1− p)eit

)r+1

,

which concludes that X̃ ∼ NB(r + 1, p).

• Geometric distribution
Consider independent trials such that a certain event

may happen at any given trial with probability p. The

trials continue until the event occurs for the first time.

The number, X , of trials performed before the event

occurs has a geometric distribution.6

Definition 3.4. 6Arandom variableX is said to have

a geometric distributionwith parameter p, where 0 <

p < 1, if its probability mass function is defined by

P (X = k) = (1− p)kp, (28)

for all k = 0, 1, 2, ...We then write X ∼ Geo(p).

From (28), it is easy to see that the geometric dis-

tribution is the special case of the negative binomial

with r = 1, namely,

X ∼ Geo(p) ⇔ X ∼ NG(1, p).

As a consequence, we get that X̃ ∼ NB(2, r) if

X ∼ Geo(p).

• Hypergeometric distribution
The hypergeometric distribution is a discrete proba-

bility distribution that models the probability of ob-

taining a specific number of successes in a sample

drawn without replacement from a finite population

containing two distinct types of elements6,8 (i.e., a fi-

nite population whose elements can be classified into

two categories one which possesses a certain charac-

teristic and another which does not possess that char-

acteristic). For instance, suppose an urn contains K

white balls and (N − K) black balls. From this, n

balls are drawn without replacement. The probability

that the sample of size n contains k white balls and

(n− k) black balls can be obtained by hypergeomet-

ric distribution.

The hypergeometric distribution is characterized

by the following parameters:

- N : The total population size.

- K: The number of elements of Type 1 in the popu-

lation.

- n: The number of draws without replacement (the

sample size).

Definition 3.5. Let N , K and n be integers such

that N ≥ 1, 0 ≤ K ≤ N , and 1 ≤ n ≤ N . A

random variable X is said to have a hypergeomet-

ric distributionwith parameters (N,K, n), written as

X ∼ HG(N,K, n), if the corresponding probability

mass function is given by

P (X = k) =

(
K
k

)(
N−K
n−k

)(
N
n

) , (29)

where k ∈ Z and

max(0, n+K −N) ≤ k ≤ min(n,K).
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If X ∼ HG(N,K, n) , the mean and variance are

µ = n
K

N
, σ2 = n

K(N −K)(N − n)

N2(N − 1)
, (30)

and its characteristic function is given by7

ϕX(t) =

(
N−K

n

)
2F1[−n,−K;N −K − n+ 1; eit](

N
n

) .

(31)

where

2F1[a, b; c; z] = 1+
ab

c

z

1!
+
a(a+ 1)b(b+ 1)

c(c+ 1)

z2

2!
+· · ·

(32)

is the Gaussian hypergeometric function.6

By virtue of the fact that

∂2F1[a, b; c; z]

∂z
=

ab

c
2F1[a+ 1, b+ 1; c+ 1; z],

we then attain

ϕ′
X(t) = ieit

nK
(
N−K

n

)
2F1[α, β; γ; e

it]

(N −K − n+ 1)
(
N
n

) , (33)

where α := −n + 1, β := −K + 1, and γ :=

N −K − n + 2. Unfortunately, at first we couldn’t

find the explicit expression for ϕX̃(t) by means of

formula (11) in Theorem 3.6. Therefore, it is difficult

for us to determine the appropriate distribution of the

random variable X̃ .

However, according to the above results and The-

orem 3.2, we have had a reasonable belief that the

random variable X̃ should follow a hypergeometric

distribution and, futhermore, its support set must be

{k ∈ Z : max(0, n+K−N) ≤ k ≤ min(n−1,K−
1)}. For this reason, we aim at proving that

X̃ ∼ HG(N − 2,K − 1, n− 1), (34)

provided that N ≥ 3, K ≥ 1 and n ≥ 2.

To do this, we first note that (34) is equivalent to

ϕX̃(t) =

(
Ñ−K̃

ñ

)
2F1[−ñ,−K̃; Ñ − K̃ − ñ+ 1; eit](

Ñ
ñ

) ,

(35)

where Ñ := N − 2, K̃ := K − 1 and ñ := n − 1.

With the aid of the algebraic computation software

(MAPLE), we could easily verify that the following

identity

ϕX̃(t)− µϕX(t) + iϕ′
X(t)

σ2(1− eit)
≡ 0 (∀t ∈ R),

holds true if µ, σ2, ϕX(t), ϕ′
X(t), and ϕX̃(t) are

given by (30), (31), (33) and (35), respectively.

Hence, assertion (34) is true.

• Logarithmic series distribution
The logarithmic series distribution (also known as the

the log-series distribution) is a discrete probability

distribution derived from theMaclaurin series expan-

sion:

ln(1− p) = −p− p2

2
− p3

3
− · · · =

∞∑
k=1

−pk

k
, (36)

where 0 < p < 1. From this, we get

∞∑
k=1

−pk

k ln(1− p)
= 1.

So, it is easy to see that

f(k) =
−pk

k ln(1− p)
, k = 1, 2, ...,

defines a probability mass function on the set of pos-

itive integers.

Definition 3.6. 6Arandom variableX is said to have

a logarithmic series distribution with parameter p,

where 0 < p < 1, if its probability mass function

is given as

P (X = k) = − pk

k ln(1− p)
, k = 1, 2, 3, ... (37)

We then write X ∼ LogSeries(p).

The logarithmic series distribution is sometimes

used to model the number of items of a product pur-

chased by a buyer in a specified interval.

If X ∼ LogSeries(p), the mean and variance are

given as

µ = − p

(1− p) ln(1− p)
, (38a)

σ2 = − p2 + p ln(1− p)

(1− p)2(ln(1− p))2
. (38b)
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Besides, its characteristic function is as follows7

ϕX(t) =
ln(1− peit)

ln(1− p)
. (39)

Let us now show that assumption (5) is satisfiedwhen

X ∼ LogSeries(p). For any positive integer n, ac-

cording to (37) and (38a), we derive

n
n∑

k=1

(µ− k)pX(k)

= A(p)n

n∑
k=1

pk
(
(1− p) ln(1− p) +

p

k

)
= A(p)n

(
ln(1− p)

n∑
k=1

(pk − pk+1) + p
n∑

k=1

pk

k

)

= A(p)n

(
ln(1− p)(p− pn+1) + p

n∑
k=1

pk

k

)
= A(p)

(
−npn+1 ln(1− p) + pnBn(p)

)
, (40)

where

A(p) :=
1

(1− p)(ln(1− p))2
, (41a)

Bn(p) := ln(1− p) +
n∑

k=1

pk

k
. (41b)

Owing to limn→∞ npn+1 = 0 for all p ∈ (0, 1), it

follows easily from (40) that assumption (5) holds

true if and only if

lim
n→∞

nBn(p) = 0. (42)

To verify (42), it is worth noting that Bn(p) defined

as (41b) is exactly equal to the Lagrange remainder of

order n (usually denoted by Rn(.))) for the Maclau-

rin series in equation (36). Using the Lagrange re-

mainder formula9 applied for the function f(x) =

ln(1 + x) at x = −p, for each n, we then attain

Bn(p) =
(−1)n(−p)n+1

(1 + ξn)n+1(n+ 1)

=
−1

n+ 1

(
p

1 + ξn

)n+1

, (43)

where ξn is some number (depending on n) between

−p and 0. Thus, owing to (43), limit (42) is equiva-

lent to

lim
n→∞

(
p

1 + ξn

)n+1

= 0, (44)

which evidently depends on the limit of p
1+ξn

as n

tends to ∞. More specifically, noticing 0 < 1− p <

1 + ξn and setting c := limn→∞
p

1+ξn
, if c ∈ [0, 1)

then (44) is true. If c = 1, the right hand side of (44)

has the indeterminate form 1∞, and hence we haven’t

been able to draw an exact conclusion on (44).

Moreover, from the following estimate

0 <
p

1 + ξn
≤ p

1− p
(∀n ∈ N∗),

we easily achieve that (44) holds true for all p ∈
(0, 1/2). However, we haven’t yet verified the va-

lidity of (44) (equivalently, that of (42)) in the case

p ∈ [1/2, 1). We want to emphasize here that the

claims of Lemma 3.2, Theorem 3.2 and Theorem 3.6

are no longer true if (44) does not hold.

Let p ∈ (0, 1/2). By virtue of Theorem 3.6, and

from (38a), (38b), we get the characteristic function

of X̃ given as

ϕX̃(t) =
q
(
(1− peit) ln(1− peit)− eitq ln q

)
(ln q + p)(1− eit)(1− peit)

,

(45)

where q := 1 − p. We haven’t determined the prob-

ability distribution family corresponding to the char-

acteristic function defined by (45).

Remark 3.7. By using L’Hospital’s rule, we get that

lim
t→0

ϕX̃(t) = 0 for all p ∈ (0, 1) (not only for

p ∈ (0, 1/2)), where ϕX̃(t) is given as (45). This

means that a basic property of characteristic func-

tions (as presented in Section 2) is satisfied for all

values of p. In addition, with the aid of MAPLE, we

have checked by direct calculation that (42) (hence,

so is assumption (5)) remains true for many values

of p in [0.5, 1) (such as 0.5, 0.6, 0.65, 0.7, and up

to p = 0.78). Therefore, we can reasonably predict

that if X ∼ LogSeries(p), Theorems 3.2 and 3.6 is

then true for every p ∈ (0, 1). We have been trying to

prove this.
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4. CONCLUSION

In the present study, we propose a novel transfor-

mation of probability mass functions associated with

nonnegative interger-valued discrete random vari-

ables. We also demonstrate that our proposed trans-

formation preserves some well-known families of

distributions, such as Poisson distribution, Negative

Binomial distribution and Hypergeometric distribu-

tion. In the future, we intend to extend our research in

two directions. The first one is to continue determin-

ing the distribution of the resulting random variable

(X̃) when the initial random variable (X) has another

discrete distrbution, in addition to the distributions

listed in Section 3. This work aims to further verify

the distribution-preserving property of the transfor-

mation. Besides, we would like to discover its useful

applications in various fields. The second direction,

and the more difficult, is to construct an analogous

transformation of probability density functions in the

case of continuous random variables. One of the most

important aims of probability theory is to find trans-

formations which can preserve an initial probability

distribution in some sense. Consequently, such trans-

formations have attracted a great deal of attention.
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