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ABSTRACT

Let us consider a discrete random variable X that takes only non-negative integer values. Let R x

and px (x) denote the range of X and the probability mass function of X, respectively. The aim of this

paper is to provide a transformation method used to transform px () into a probability mass function

of a discrete random variable X whose range is R ¢ =1{k € N: k > minRx}. We obtain a repre-

sentation of the characteristic function of X in terms of the characteristic function of X. Moreover, the

distribution-preserving property of the transformation is shown in some specific cases.

Keywords: Probability mass function, discrete random variable, transformation, characteristic function.

1. INTRODUCTION

In probability theory, a probability distribution is the
mathematical function that gives the probabilities of
occurrence of different possible outcomes for a ran-
dom experiment. It is a mathematical description of
a random phenomenon in terms of its sample space
and the probabilities of events (subsets of the sample
space). > The sample space, often denoted by (2, is
the set of all possible outcomes of a random experi-
ment being observed.

In order to classify probability distributions, we
need to define discrete and continuous random vari-
ables. A random variable is a function whose domain
is a sample space {2 and whose range (i.e., the set of
values that it can obtain) is a subset of the real num-
bers, R. In other words, a random variable assigns
real numbers to the outcomes in its sample space.
Random variables which take on values from a dis-
crete set of numbers (i.e., whose range is either finite
or countably infinite) are called discrete random vari-
able.? Otherwise, a random variable is called contin-



uous if it ranges over a continuous set of numbers
that contains all real numbers between two limits.>
In other words, a continuous random variable is one
that takes an uncountably infinite number of possi-
ble values. For instance, a random variable that rep-
resents the time between two successive arrivals to a
queueing system, or that represents the temperature
in a nuclear reactor, is an example of a continuous
random variable.3 It is evident that all random vari-
ables defined on a discrete sample space are discrete.
However, random variables defined on a continuous
sample space may be either discrete or continuous.
Probability distributions can be categorized into two
main types: discrete and continuous. Discrete distri-
butions deal with the probabilities of specific val-
ues for discrete random variables, while continuous
distributions handle the probabilities of various val-
ues for continuous random variables. Examples of
discrete distributions include the Binomial, Poisson,
and Negative Binomial distributions. We will intro-
duce these distributions and several other discrete
distributions in more detail in Section 3. For con-
tinuous distributions, the most popular example is
the normal distribution. This is also referred to as
the Gaussian distribution. Some important continu-
ous distributions are often used to build models and
to test hypotheses about random variables, such as
the student’s t-distribution, the chi-squared distribu-
tion and the F-distribution.

The key difference between a discrete probabil-
ity distribution and a continuous probability distribu-
tion is that in a discrete distribution we are able to
compute the probability that a random variable can
take on a particular value, therefore the probabilities
of individual values can be tabulated. Discrete ran-
dom variables, or discrete distributions, can be com-
pletely characterized by their probability mass func-
tions. The probability mass function (frequently ab-
breviated to pmf) for a discrete random variable X,
gives the probability that the value obtained by X on
the outcome of a probability experiment is equal to
(r € R).? In the present paper, we denote it by px (.).

The formal definition of the probability mass func-
tion for a discrete random variable is given in Sec-
tion 2. Sometimes the term discrete density function
is used in place of probability mass function. Since a
continuous random variable takes an uncountably in-
finite number of possible values, the probability that
it is exactly equal to any one of the infinite possi-
ble values is zero. For this reason, the method men-
tioned above to describe a discrete random variable
will not work in the case of a continuous random vari-
able, and then we have to consider the probability of a
continuous random variable taking values in an inter-
val. Continuous random variables, or continuous dis-
tributions, can be completely characterized by their
probability density functions (frequently abbreviated
to pdf’). Because the purpose of this study is to con-
centrate only on discrete distributions, in the article
we will ignore the definitions or concepts associated
with continuous random variables, and we refer the
reader to!">* for more details.

The starting point of this paper was to study
the Binomial distribution (denoted by Binom(n, p)).
This distribution has two parameters: the number of
trials , n € N*, and the probability of success for a
single trial, p € (0,1). The outcome from a random
variable X obeying the Binomial distribution will al-
ways be a nonnegative integer with an upper bound
at n. By the rules of probability, we can attain that the
probability of the event { X = k} (i.e., the probability
of k successes in n trials) is equal to (7) pE(1—p)"F,
By definition, the quantity (Z) pF(1 — p)"~F is the
value of the probability mass function of X at k,
namely px (k). Then, by chance and by intuition, we
have found the following equality:

n k
N [TV n—i
(np—2)<i>p(1—p) = npq,
k=0 =0

which can be shortly rewritten as
n
k=0

where ;1 = np and 02 = npq.

k
(b —i)px (i) = 0%, (1)
:=0

(3



At first glance, equality (1) was nothing special.
However, it is worth noticing that the quantities y =
np and 0? = npq are the mean and variance of
the Binomial random variable X, respectively. Fur-
thermore, the set {0; 1;...;n} is the range of X (de-
noted by R x). The definitions of the mean and vari-
ance of a discrete random variable are given in Sec-
tion 2. Then, a question naturally arose in our mind:
Whether equality (1) holds true for an arbitrary dis-
crete random variable X whose range is a subset
of the set of natural numbers, if its mean and vari-
ance are finite, or not? Motivated by this question,
we have shown that equality (1) remains true for non-
negative integer-valued random variables satisfying a
certain condition. This result is presented in Lemma
3.2. Combining Lemma 3.2 and Lemma 3.1, we then
obtain the first main theorem (Theorem 3.2), which
gives a way to transform a probability mass function
of a nonnegative integer-valued random variable to
that of another nonnegative integer-valued random
variable. From this result, we achieve the remaining
important results as shown in Section 3. Up to the
present, there are only a few results on transforma-
tions associated with probability mass functions. For
instance, the pignistic transformation and the plausi-
bility transformation are introduced in the research?.
We briefly recall that these two transformations pro-
vide the ways to transform a basic probability assign-
ment function to a probability mass function. Notice
that a basic probability assignment function (called
also mass function) is not a probability mass func-
tion. For more detail, see”.

The rest of the paper is organized as follows. Sec-
tion 2 revisits key definitions and properties includ-
ing probability mass function, mean, variance, and
characteristic function. Section 3 presents our pri-
mary findings. Finally, Section 4 concludes with re-
marks summarizing the significance of our research
outcomes. This systematic approach aids in under-
standing the framework and contributions of our
study.

2. PRELIMINARIES

2.1. Probability mass function, Mean and
Variance

From the point of view of understanding the be-
havior of a discrete random variable, the important
thing is to know the probabilities that the random
variable takes each value in its range. Such probabil-
ities are described with a probability mass function.

Definition 2.1. # Let X be a discrete random vari-
able. The probability mass function of X, denoted by
px(.), is defined as

px(r) =P(X =12)>0
px(z)=0

ifzx € Ry,
ifr ¢ Rx,

where R x is the range of X.

Obviously, the range of px (.) is a subset of the
interval [0, 1]. Furthermore, by the rules of probabil-
ity, one can get that the function values add to 1.0
when summed over all possible values of the random
variable X. This means that >, px(z) = 1.

Definition 2.2. # Let X be a discrete random vari-
able with Rx = {zx}r>0. The expectation or the
mean of the random variable X, denoted by EX, is
the number

EX = Y apx(z) =) zipx(z), ()
JZERX k=0

which is defined when Y -, |zx|px (zx) < oco. If

the later series diverges, the mean is not defined.

In the case where the mean is defined, its value
does not depend on the order of summation. Essen-
tially, the mean EX denotes a weighted average of
the elements in R x, where the probabilities act as
the weights in the discrete setting.

Definition 2.3. Let X be a discrete random variable
with Rx = {zx}r>0, and let A > 0 be a positive
real number (not necessarily integer). The moment of
order A of X is defined as

o0

ay =EX? = Z(mk)Apx(mk).
k=0



Definition 2.4. * Suppose that the mean and the mo-
ment of order 2 of the discrete random variable X
are finite. The variance of X, denoted by VarX, is
the quantity

VarX = E(X — EX)?

= (x — EX)’px (a1).
k=0

The variance characterizes the amount of varia-
tion of the random variable from its mean. The fol-
lowing property is commonly useful to compute the
variance.

VarX = EX? — (EX)?.

The expectation and variance of a random variable
are two of the foremost notions in probability theory.
For basic properties of expectation and variance, we

refer the reader to the studies '*©.

2.2. Characteristic function

In probability theory and mathematical statistics,
characteristic functions always play an outstanding
role by providing a comprehensive way to describe
and analyze probability distributions. They are par-
ticularly powerful due to their unique properties and
applications in various statistical methodologies.

Definition 2.5. 7 The characteristic function of a dis-
crete random variable X is defined as

px(t) =E(e™X) = e rpx(ar), ()
k=0

where ¢ is any real number and ¢ = /—1.

Since |¢?*®| is a bounded and continuous function
for all finite real ¢ and x, the characteristic function
always exists. We recall that any characteristic func-
tion px (t) satisfies the following conditions (see the
research’ Theorem 1.1.1):

1. ¢x(t) is uniformly continuous;
2. QDX(O) = lil’l’lt_m QOX(t) = 1;
3. |ex(t)| < 1 for all real numbers ¢.

4. px(—t) = px(t), where the horizontal bar
denotes the complex conjugate.

In addition, if the moment of order n exists (where n
is a positive integer) then ¢ x (¢) is n times differen-
tiable for all ¢, and it is related to the n — th derivative
of the characteristic function by the formula’

an = (=) (0). )

So, the existence of some moments of a random
variable ensures the existence of the corresponding
derivatives of the characteristic function. We next in-
troduce the following important result (referred to as
the uniqueness theorem), which shows that a proba-
bility distribution is uniquely determined by its char-
acteristic function.

Proposition 2.1 (Theorem 1.1.2). 7 Two probability
distributions are identical if and only if their charac-
teristic functions are identical.

For more details on properties of characteristic
functions, interested readers could be refer to’ and
the references therein. Thanks to characteristic func-
tions, we arrive at some interesting results as shown
in Subsection 3.3.

3. MAIN RESULTS

Let X be a discrete random variable with the range
Rx C N (the set Rx is either finite or countably
infinite). Throughout the forthcoming, we always as-
sume that the mean and variance of X exist, and are
denoted by p and o2 (o > 0) respectively.

3.1. Formulation of transformation

Lemma 3.1. Let k be a nonnegative integer. If R x
is infinite, we then get

k
D (n—i)px(i) >0 k > minRx.
i=0
If R 5 is fintite with |R x | greater than 1, we have
k

Z(,u—i)px(i) >0 mnRx <k <maxRx—1.
i=0



Proof. 1f R x is infinite, we have that
k k

S (n—ipx(i)= > (n—i)px(i) >0

1=0 i=min R x
forminRx < k < p (note that > min R x).
For k > p, setting a(i) = (u — i)px (¢), we obtain

k (1] k
S - e =3 e+ 3 @

=0 i= i=[p]+1
1] 00
> a(i) + Z
i=0 —[u+1
=> a(i)=p—p=0,
=0
where [.] denotes the floor function. Obviously,

S (n—i)px(i) = 0if k < min Rx.

In the case that R x is finite (with |[R x| > 1), due
to S RX (11— i)px (i) = 0, we only need to con-
sider k suchthat minRxy <k <maxRx —1. O

Lemma 3.2. Assume that
lim nzo(u —i)px (i) = 0. ()
1=

Then, setting m = min R x, we have

>3

k=mi=m
In the case that R x is finite, equality (6) becomes
M—-1 k

PP

k=m i=m

where M := max R x.

—i)px (i =02, (6)

—1 pX 027 (7)

Proof. For each positive integer n > m, we have

ZZ p—i)px (i
k=mi=m
n k
=¥ D (u—ipx(i) (px() =0ifi ¢ Rx)

k=0 i=0

(n 41 —=2)(p = i)px (i)

.

S
Il
=)

—w)? +n(p =) + (1 = p)(pn—9)lpx (i)

Il
]
=
~.

I
()

3

=i = 1)px (i) + nZ(u —i)px (i)

n

w Y (n—ipx(i). (8)

=0

It is noteworthy that, by the definitions of ;. and o2,

> (i=p)?px(i) = 0% ) (n—i)px (i) = 0. (9)
i=0 =0

Equality (6) readily follows from (5), (8) and (9).

If Rx is a finite set, by the definition of 1 one
(e —1)px (i) = 0 for every
n > M. Therefore, condition (5) is always true and
we obtain (7). O

can easily see that > "

Remark 3.1. Lemma 3.2 yields another formula for
the variance of a discrete random variable X if its
range is a subset of the set of natural numbers, pro-
vided that (5) is satisfied. Furthermore, from the
proof of Lemma 3.2, we notice that (5) is a necessary
and sufficient condition for the validity of (6).

Combining Lemma 3.1 with Lemma 3.2, we im-
mediately attain the first main theorem.

Theorem 3.2. Assume that (5) holds and set m =
min Rx, M = max R x. Then, there exists a discrete
random variable X such that

R — {keN:m <k} if Rx is infinite;
Y keNim<k< M} ifRy isfinite;

and its probability mass function is given by
|k
px(k) = P(X =k) = = > (n—1)px(i), (10)
Jorallk € Ry.

Proof. According to Lemmas 3.1 and 3.2, we have

and Z ps (k)=
k=m

which imply the statement of Theorem 3.2. O

pX(/-C) >0 (Vk S RX)



Remark 3.3. In other words, Theorem 3.2 or formula
(10) textcolorredprovide a probability transformation
which transforms the probability mass function px (.)
to another probability mass function, p ¢ (.). Also, one
can see that the range of X is always a set containing
consecutive nonnegative intergers, and has the same
minimum value as the one of the initial random vari-
able, R X

Let us now consider the following example to
more understand the use of the transformation.

Example 3.4. Let X be the random variable with the
probability distribution described as follows:

X o 4 ¢ 8
x@ [ 5% 1 3
By direct calculation, using (10) we get
p=06;0"=T;
3
px(0) =px(1) =pz(2) =pz() = 5;

| = |~

Clearly, ZZ:O px (k) = 1 and the corresponding
probability distribution of X is given as

XH01234567
k) | % & & = + 3 + 1

The next example was intended as an attempt to
extend the claim of Theorem 3.2 to the case that X
takes (positive) noninteger values. However, we ob-
tain that the claim is no longer true.

Example 3.5. Let X be the random variable with the
probability distribution given as

X |fo § 1 § 2
rx@ [ 5 5 5 5 3%

From (10), we get

_ 19 5 143
F=96 7 ~ 256’
38
px(0) = 113"
88
pX( ) = 143
We obtain
126
p5(0) +pg(1) = 113 # 1.

Hence, equality (6) does not hold.

3.2. The characteristic function v ¢ (.)

As mentioned in Section 1, it will be very useful to
obtain an expression for the characteristic function
of X. By Proposition 2.1, the fact that every distribu-
tion is uniquely determined by its characteristic func-
tion allows us to be able to determine the distribution
type of X, without having to find the mass probabil-
ity function p ¢ (.).

Theorem 3.6. With the settings of Theorem 3.2, the
characteristic function ¢ ¢ (.) of the random variable
X is given by

oy o Hex (t) +iol (1)
Yx (t) o2(1 — eit)

VteR,  (11)

where, as before, i, 0 and px(.) are respectively
the mean, variance and characteristic function of the
random variable X.

Proof. For simplicity of notations, throughout the
proof, pi, and py, stand for px (k) and p ¢ (k), respec-
tively. From (10) and by grouping the terms appro-
priately, we attain



Jj=0 k=j
= 5 (S1a() — S2(1) (12
where
Stal) =Y [(n=ips Y™ (13a)

k=0

<.
Il
=)

j—1

eiﬂ . (13b)

S
<

San(t) =3 [(1 = )ps

j=1 k=0

<

On the other hand, by definition,

px(t) = lim S, (), (14)

n—oo

we are thus left with the task of determining the limits
of Sy ,,(t) and Sy ,,(¢) as n tends to co.

To find the limit of S; ,,(¢) defined as (13a), it is
worth pointing out that

n

0 <[Sta(®)] =D ™ > (u—ip
k=0

Jj=0

IN

n Y (n—J)p;l.
=0

From (5) and the Squeeze Theorem, it immediately
follows that
lim Sy, (t) =0. (15)

n—oo

In order to arrive at the remaining limit, we first
rewrite Sy, 2(t), given by (13b), as follows

n

1 _ y
Son(t) = T——7 D _(n—)p;(1 €
j=1
1 n o

= T 2 el =)
=0
S w3
=0 =0

+ ijje“f] (16)
=0

Letting n tend to oo in the both sides of (16), we get

/
lim S () = — Px ()

n—00 1 —eit 7

|[—rex )+ )

owing to the following simple equalities,

oo

> (u—i)p; =0

§=0
o0 oo 1

Y _pie™ =px(t); D jpje™ = ¢k (b).
§=0 =0

From (12), (14), (15) and (17), the proof of Theorem
3.6 is completed. O

3.3. Distribution-preserving property

The work of this section contains descriptions of
some different well-kown discrete distributions used
in probability. By the method of characteristic func-
tions, our aim is to verify whether the random vari-
ables X and X are able to belong to the same family
of distributions (in other words, whether the distribu-
tion family of X can be preserved by the formulated
transformation) for each considered case.

e Binomial distribution

Binomial distributions correspond to random vari-
ables that count the number of successes among n
independent trials having the same probability of suc-
cess. Such trials are called Bernoulli trials. The prob-
abilistic model of Bernoulli trials is applicable in
many situations, where it is reasonable to assume in-
dependence and constant success probability.

Definition 3.1. %® A random variable X is said to
have a Binomial distribution with parameters n and
p(wheren € N*, 0 < p < 1)if

P(X =k)= <Z>p’“(1 —p)" 7, (18)

forall k =0,1,...,n. We write X ~ B(n, p).

If X ~ B(n,p), the mean and variance are®
p=mnp, o°=np(l—p), (19)
and the characteristic function is given by’

ox(t) = (1—p+pet)". (20)



From (19), (20) and (11), we have

ex(t)=(1—p+pe")" 1)

which immediately implies that

X ~B(n—1,p),

for all n > 2.
e Poisson distribution

Poisson distributions are applied when the random
variables under consideration count the number of
events occurring in a specified time period or a spatial
area, and the observed processes satisfy the primary
conditions of time (or space) homogeneity, indepen-
dent increments, and no memory of the past.

Definition 3.2. % A random variable X is said to
have a Poisson distribution with unique parameter
A>0if

e~ ANk
P(X =k) = i

We then write X ~ Pois()\).

k=0,1,2,... (22)

The mean, variance and characteristic function of

the Poisson distribution are”’

p=o?=2, (23)
px(t) = exp[A(e” — 1)]. (24)

First of all, let us prove that assumption (5) is satis-
fied. Indeed, by (22) and (23), we get

Z 1= k)px (k
k=0

n _AAk
A=k)——
— k!
n oy k+1 n k
_ ef’\[ A - A }
k! (k—1)!
k=0 =1
N noak+l Tl okl
—° [ K k! }
k=0 ’ k=0 ’
_ _)\/\n—H
- n!

As a result, assumption (5) is equivalent to

)\n

— — 0 as n = oo,

n!
which is true for all A > 0. So, (5) is valid. By The-
orem 3.6, (23) and (24), it is straightforward to find

the expression for ¢ ¢,
px(t) = exp[A(e” —1)] = px(1).
Thus, we have
X ~ Pois()\).

e Negative binomial distribution

The Negative Binomial distribution is a discrete
probability distribution that models the number of
failures in a sequence of independent and identically
distributed Bernoulli trials before a specified num-
ber of successes occurs. In a sequence of independent
Bernoulli trials, each trial has two potential outcomes
called ”success” and failure”. In each trial the prob-
ability of success is p (0 < p < 1) and of failure is
1 — p. One observes this sequence until a number 7
of successes occurs, where 7 is a fixed integer.

Definition 3.3. %% Let the random variable X denote
the number of observed failures before the " suc-
cess occurs. Then

k+r—1

P<X=k>=< K )(1—p>’“p’", (25)

forallk =0,1,2,...
In this case, the random variable X is said to have

the Negative Binomial distribution with parameters r
and p. We denote by X ~ NB(r, p).

If X ~ NB(r,p), then

P € ) R Ul ) PP
p p

and its characteristic function is given as’

ox(t) = (W) L teR. (27)



From (25) and (26), we first remark that

n

Z(M — k)px (k)

k=0

n
rq
=Y (B k)t d (a=1-p)
k=0 p
n
=gy 4 rp Y (Choad™ - R i)
k=1

n

— qur—l + ,r,pr—1|: (Ck+r ) + Ck+r 1>qk+1

k=1
- ZC;;JrT 19 }

n n—1
_ qur—l + ,rpr—l [Z C]]:+qu+l o Z C]l;:Jrqu—&—l]
=1 k=0

1
7‘ Cm+rq

Due to 0 < g < 1, it is easy to check that

n(n+1)...(n+r) /!
r!

nCi g = —0

as n — oo. In other words, (5) holds true.

Accordingly, by Theorem 3.6, we attain the char-
acteristic function of X defined by

ext = (r=g'en)

which concludes that X ~ NB(r + 1, p).

o Geometric distribution

Consider independent trials such that a certain event
may happen at any given trial with probability p. The
trials continue until the event occurs for the first time.
The number, X, of trials performed before the event
occurs has a geometric distribution. ®

Definition 3.4. % Arandom variable X is said to have
a geometric distribution with parameter p, where 0 <
p < 1, if its probability mass function is defined by

P(X=k =1

forallk=0,1,2,...

—p)Fp, (28)

We then write X ~ Geo(p).

10

From (28), it is easy to see that the geometric dis-
tribution is the special case of the negative binomial
with 7 = 1, namely,

X ~ Geo(p) & X ~ NG(1,p).

As a consequence, we get that X ~ NB(2,r) if
X ~ Geo(p).

o Hypergeometric distribution

The hypergeometric distribution is a discrete proba-
bility distribution that models the probability of ob-
taining a specific number of successes in a sample
drawn without replacement from a finite population
containing two distinct types of elements®® (i.e., a fi-
nite population whose elements can be classified into
two categories one which possesses a certain charac-
teristic and another which does not possess that char-
acteristic). For instance, suppose an urn contains K
white balls and (N — K) black balls. From this, n
balls are drawn without replacement. The probability
that the sample of size n contains k£ white balls and
(n — k) black balls can be obtained by hypergeomet-
ric distribution.

The hypergeometric distribution is characterized
by the following parameters:
- N: The total population size.
- K: The number of elements of Type 1 in the popu-

lation.

- n: The number of draws without replacement (the
sample size).

Definition 3.5. Let N, K and n be integers such
that N > 1,0 < K < N,and1 < n < N.A
random variable X is said to have a hypergeomet-
ric distribution with parameters (N, K, n), written as
X ~ HG(N, K, n), if the corresponding probability
mass function is given by

(29)

where k € Z and

max(0,n + K — N) < k < min(n, K).



If X ~ HG(N, K,n) , the mean and variance are

K(N — K)(N —n)
0

K
p=n—, o’ =

N7 TN (N -

(30)

and its characteristic function is given by’

(N—K)2F1[—n, —K;N - K —n+1;e"

@X(t) - = N
()
(31)
where
. abz ala+1)b(b+1) 22
2F1[a’7bacvz]—1+?ﬂ+ C(C+1) 5
(32)

is the Gaussian hypergeometric function.®
By virtue of the fact that
aZFl [(L, b; &) Z}
0z

we then attain

b
= CoRla+ 1,0+ Lie+1;2],
C

b 2K (V)2 P, By et
px(f) = ie (N-K—n+1)()

, (33)

where @« == —n+ 1,8 .= —K + 1, and v :=
N — K — n + 2. Unfortunately, at first we couldn’t
find the explicit expression for ¢ ¢ (¢) by means of
formula (11) in Theorem 3.6. Therefore, it is difficult
for us to determine the appropriate distribution of the
random variable X .

However, according to the above results and The-
orem 3.2, we have had a reasonable belief that the
random variable X should follow a hypergeometric
distribution and, futhermore, its support set must be
{k€Z:max(0,n+K—-N) <k <min(n—1,K —
1)}. For this reason, we aim at proving that

X ~HG(N —2,K —1,n—1), (34)

provided that N > 3, K > 1land n > 2.

To do this, we first note that (34) is equivalent to

- N —K —#+1;e"

px(t) = :

)

(N_R)QFl [_ﬁv _K;
(
(35)

WhereN::N—2,I~(::K—1andﬁ::n—1.
With the aid of the algebraic computation software
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(MAPLE), we could easily verify that the following
identity

_ pex () +ipk ()
21— ci) =0 (Vt e R),

px(t)

holds true if p, 02, px(t), ¢’y (t), and ¢ (t) are
given by (30), (31), (33) and (35), respectively.
Hence, assertion (34) is true.

o Logarithmic series distribution

The logarithmic series distribution (also known as the
the log-series distribution) is a discrete probability
distribution derived from the Maclaurin series expan-
sion:

2 3 e k
p p Z—p
k=1

where 0 < p < 1. From this, we get
i _7])16 -1
— kln(1 —p)

So, it is easy to see that

—pk

f(k) = Fin(l—p)’ k=1,2,..

defines a probability mass function on the set of pos-
itive integers.

Definition 3.6. ° Arandom variable X is said to have
a logarithmic series distribution with parameter p,
where 0 < p < 1, if its probability mass function
is given as

pk

~ kIn(1 —p)
We then write X ~ LogSeries(p).

P(X =k) = k=1,2,3,... (37)

The logarithmic series distribution is sometimes
used to model the number of items of a product pur-
chased by a buyer in a specified interval.

If X ~ LogSeries(p), the mean and variance are
given as

_ p
P pma—p %
2 _ p2 +pln(1 _p) ) (38b)

(1 —p)?(In(1 - p))?



Besides, its characteristic function is as follows’

In(1 — pe®t)

TR (39)

ex(t) =
Let us now show that assumption (5) is satisfied when

X ~ LogSeries(p). For any positive integer n, ac-
cording to (37) and (38a), we derive

ny (n—k)px (k)
k=1

an (

= A(p)n (111(1 —p)

p)In(1 — )+f)

n n pk
(" =" +p >
=1 k=1

Eal

= A(p)n (111(1 —p)p—p") +p k)
k=1
= A(p) (—=np" T In(1 —p) +pnBu(p)),  (40)
where
1
A =T pma e
Bu(p):==In(1—p)+ > o (b
k=1

= 0forallp € (0,1), it
follows easily from (40) that assumption (5) holds

Owing to lim,,_, o, np"*!

true if and only if

lim nB,(p) = 0.

n—oo

(42)

To verify (42), it is worth noting that B,,(p) defined
as (41b) is exactly equal to the Lagrange remainder of
order n (usually denoted by R,,(.))) for the Maclau-
rin series in equation (36). Using the Lagrange re-
mainder formula’ applied for the function f(z) =

In(1 + =) at z = —p, for each n, we then attain
PP C Vi
T A& e+ 1)
1 n+1
= 43
n+1 <1 + fn) ' (43)
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where &, is some number (depending on n) between
—p and 0. Thus, owing to (43), limit (42) is equiva-

lent to
p n+1
lim =0, 44
n— o0 (1—k§n> ( )
which evidently depends on the limit of —°— as n

tends to co. More specifically, noticing 0 < 1 — p <

1 + &, and setting ¢ := lim,, ﬁ, ifc €10,1)
then (44) is true. If ¢ = 1, the right hand side of (44)
has the indeterminate form 1°°, and hence we haven’t

been able to draw an exact conclusion on (44).
Moreover, from the following estimate
p < p

1+¢, " 1—p
we easily achieve that (44) holds true for all p €

0<

(Vn € N*),

(0,1/2). However, we haven’t yet verified the va-
lidity of (44) (equivalently, that of (42)) in the case
p € [1/2,1). We want to emphasize here that the
claims of Lemma 3.2, Theorem 3.2 and Theorem 3.6
are no longer true if (44) does not hold.

Let p € (0,1/2). By virtue of Theorem 3.6, and
from (38a), (38b), we get the characteristic function
of X given as

q ((1 = pe') In(1 — pe’) — e'*qInq)

(Ing+p)(1 —e)(1 —peit)
(45)

where ¢ := 1 — p. We haven’t determined the prob-

px(t) =

ability distribution family corresponding to the char-
acteristic function defined by (45).

Remark 3.7. By using L’Hospital’s rule, we get that
}%S"X(t) = 0 forall p € (0,
p € (0,1/2)), where p¢(t) is given as (45). This
means that a basic property of characteristic func-

1) (not only for

tions (as presented in Section 2) is satisfied for all
values of p. In addition, with the aid of MAPLE, we
have checked by direct calculation that (42) (hence,
so is assumption (5)) remains true for many values
of p in [0.5,1) (such as 0.5, 0.6, 0.65, 0.7, and up
to p = 0.78). Therefore, we can reasonably predict
that if X ~ LogSeries(p), Theorems 3.2 and 3.6 is
then true for every p € (0, 1). We have been trying to
prove this.



4. CONCLUSION

In the present study, we propose a novel transfor-
mation of probability mass functions associated with
nonnegative interger-valued discrete random vari-
ables. We also demonstrate that our proposed trans-
formation preserves some well-known families of
distributions, such as Poisson distribution, Negative
Binomial distribution and Hypergeometric distribu-
tion. In the future, we intend to extend our research in
two directions. The first one is to continue determin-
ing the distribution of the resulting random variable
(X)) when the initial random variable (X) has another
discrete distrbution, in addition to the distributions
listed in Section 3. This work aims to further verify
the distribution-preserving property of the transfor-
mation. Besides, we would like to discover its useful
applications in various fields. The second direction,
and the more difficult, is to construct an analogous
transformation of probability density functions in the
case of continuous random variables. One of the most
important aims of probability theory is to find trans-
formations which can preserve an initial probability
distribution in some sense. Consequently, such trans-
formations have attracted a great deal of attention.
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