Mot sb tiéu chuan mdéi vé 6n dinh héa déi véi hé tuyén tinh
tirng phan hai mé hinh c6 tré thsi gian

Nguyén Hoang Tuong Vy !, Lé Quang Thuan 2*
LBo mon Cong nghé thong tin, Truong Dai hoc FPT, Campus Quy Nhon, Viét Nam
2Khoa Todn va Thong ké, Truong Pai hoc Quy Nhon, Viét Nam
* Tac gid lién hé chinh. Email: lequangthuan@qnu. edu.vn

TOM TAT

Trong bai bao nay, chiing to6i nghién citu tinh én dinh va 6n dinh hoéa ciia cac hé tuyén tinh timg phan hai
mo hinh c6 tré thoi gian bang cach st dung cac phiém ham Lyapunov-Krasovskii tron. Nhitng déng gép méi clia
bai bdo bao gom: (1) thiét lap mot tieu chuan 6n dinh méi dya trén phiém ham Lyapunov-Krasovskii tron dé
dam bao tinh 6n dinh tiém can ctia hé didu khién trong trudng hgp khong c6 diéu khién dau vao va (2) dé xuét
mot diéu khien dd cho su tén tai mot didu khién ngude tuyén tinh trang thai dé én dinh tiem can hé théng khi

c6 diéu khién dau vao. Cudi ciing, mot s6 vi du sb dude chon loc dé minh hoa cho tinh hiéu qua ctia phuong phép
da dé xuat.

T khéa: Hé tuyén tinh tung phan cé tré thai gian, phiém ham Lyapunov-Krasovskii bac hai tiing phan,
on dinh héa hé hai moé hinh.
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ABSTRACT

In this paper, we study the stability and stabilization of time-delayed bimodal piecewise linear systems via
smooth Lyapunov-Krasovskii functionals. The main contributions of the paper are two folds: (1) a new stabil-
ity criterion based on the proposed smooth Lyapunov-Krasovskii functional is derived to guarantee asymptotic
stability in the case of zero inputs and (2) an interesting condition is proposed to design linear state feedback
controllers to stabilize the system which is less conservative than before in the literature. Finally, some numerical

examples illustrate the effectiveness of proposed methods.
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1. INTRODUCTION

In recent decades, piecewise affine (PWA) systems
have received much attention in the field of sys-
tem and control theory. Each PWA system can
be seen as a switching one that is characterized
by a finite collection of affine time-invariant dy-
namics together with a state-dependent switch-
ing law that is ruled by a polyhedral partition
of the state space!. PWA systems also form an
important subclass of hybrid systems and they
can be found in several engineering applications:
power converters, robotics, relay control systems,
etc. PWA systems are also interesting models to
be used for approximating complex nonlinear dy-
namics. Analysis and design of PWA systems are
therefore important as a first step to establish hy-
brid control theory.

Among the fundamental problems of system
theory, the issues concerning stability and sta-
bilization of PWA systems have been intensively
studied for both cases: without and with time de-
lays. For the first case, these problems are well-
studied such as in?? for general vector fields and
in4%% for continuous ones. With the appearance
of time delays, there have been also existed many
works developed over the past years, for instance,
in the papers™. In”, the authors investigated a
class of piecewise time-delayed systems by using

piecewise quadratic functions to derive stability
criteria in term of LMIs and matrix equations.
However, with these employed results, one can not
solve the issue of state feedback controllers design
to stabilize the systems. The paper® has proposed
a method to design a piecewise linear state feed-
back controller to make the closed-loop system
asymptotically stable. In this research direction,
there are some restrictions. The first one is that
from the LMIs combined with matrix equations
that guarantees the continuity of Lyapunov func-
tions for stability it is difficult to develop results
about feedback controller designs. The second one
is that the system under consideration requires
non-Zeno behaviors. Note that the non-Zeno prop-
erty has been established in papers%!%!! for con-
tinuous piecewise affine systems without time-
delays. However, one can not obtain similar results
for the case of time-delayed PWA systems. There-
fore, checking for non-Zenoness of time-delayed
PWA systems becomes an impossible task.

Motivated by the above mentioned challenges,
we study the stabilization of time-delayed bi-
modal piecewise linear systems in this paper.
Our approach is also using piecewise quadratic
Lyapunov-Krasovskii functionals. However, the
functionals are developed such that asymptotic
stability works for more general solution con-
cepts, i.e Carathéodory solutions, and the ob-



tained LMIs can be employed to design a linear
state feedback controller to stabilize the system.
The main contributions are that by employing the
special structure of such a functional, stability cri-
teria will be derived for continuous bimodal time-
delayed piecewise linear systems. Moreover, the
derived LMIs can be employed to design a lin-
ear state feedback controller preserving continu-
ity and stabilizing the system. It is worth to men-
tion that there is a few papers studying the stabi-
lization of PWA systems by linear state feedback
controllers taking quadratic Lyapunov function?.
Finally, our approach is therefore hopefully gener-
alize for more general multi-modal piecewise affine
systems.

The rest of this paper is organized as follows.
In Section 2, we introduce time-delayed bimodal
piecewise linear systems and present related pre-
liminaries. This will be followed by stating and
proving the main results of stability issue and sta-
bilization of continuous time-delayed PWL sys-
tems in Section 3. The proposed theoretical results
are validated by numerical examples in Section 4,
before concluding the paper in Section 5.

Notation. The symbol R is the set of all real
numbers; R, the set of all non-negative real num-
bers, and R’} the set of all n-tuple non-negative
real numbers. The notation R™*™ denotes the set
of all real n x m matrices and the transpose of a
real matrix M € R"™™ is denoted by M”. The
notation He(M) stands for the matrix M + M7T.
A symmetric matrix @ € R™*" is said to be pos-
itive definite, writing @ > 0, if z7'Qz > 0 for all
non-zero x € R™. We write Q < 0 if —@Q > 0. For
a positive definite matrix @, the notation A(Q)
stands for its the maximum eigenvalue. For 7 > 0,
C([—7,0],R™) denotes the normed space of con-
tinuous functions from [—7, 0] to R™ endowed with
the norm

lellc = max{p(s) | s € [-7,0]}.

Also, C([—7,0],R™) denotes the space of contin-
uously differentiable functions from [—7, 0] to R™.

2. TIME-DELAYED BIMODAL PIECE-
WISE LINEAR SYSTEMS

Consider the time-delayed bimodal piecewise lin-
ear systems with inputs

Arx(t) + Agx(t — 7) + Bu(t)
if cT'z(t) <0,

Agx(t) + Agx(t — 1) + Bu(t)
if cT'z(t) >0,

2(5) = 9(s), 5 € [=7,0) (1b)

i(t) = (1a)

where x € R™ is the state and @(¢) denotes its
derivative with respect to time ¢, u € R™ is the

input, the positive number 7 is the time delay,
the matrices Ay, As, Ag € R™*™ B € R™*™ and
¢ € R™ are given. The initial function ¢(s) is in
C([—T,0],R™). For this work, the right-hand side
of (1a) is assumed to be continuous; equivalently,
there exists e € R™ such that

Al - A2 = €CT. (2)

Definition 1. Consider the system (1) for a given
continuous input u € C(R4,R™). A continu-
ous function = : [—7,00) — R” is said to be
a solution of system (1) for the initial function
v € C([—7,0],R") if z(s) = ¢(s),Vs € [-7,0], =
is differentiable on (0, co) and satisfies (1a) for all
t>0.

Note that the existence and uniqueness of such
a solution are followed from the theory of non-
homogeneous ordinary differential equations with
continuous right-hand-sides. The corresponding
solution is denoted by x"(t;¢). In the case that
u(t) =0, it is simply denoted by x(t; ).

Remark 1. For 7 = 0, the system (1) boils down
to bimodal PWA systems that is the main object
studied in the paper?® for stability and stabiliza-
tion.

Definition 2. We consider the system (1) with-
out inputs, i.e. u(t) = 0. The system (1) is said
to be

a) stable if for any € > 0, there exists § > 0
such that [[¢|lc <6 = |lz(t)]| < €Vt >
0.

b) asymptotically stable if it is stable and there
is a positive number §; such that

lellc <6 = lim [la(2)] =0.

To study the stability of system (1), we will
employ continuous functionals as follows.

Definition 3. A continuous function w : R™ — R
is said to be positive definite if w(0) = 0 and
w(z) > 0 for all x € R™.

Definition 4. We say that a continuous func-
tional V' : C([-7,0],R") — R is positive def-
inite if V(0) = 0 and there exists a positive-
definite function w : R™ — R such that w(¢(0)) <
V(¢) for all ¢ € C([—T,0],R"™).

The following proposition yields a sufficient
condition to ensure the asymptotic stability of sys-
tem (1).

Proposition 1. ' Consider the system (1) without
inputs. The system (1) is asymptotically stable
if there exist a positive-definite functional V(¢)



and a positive-definite function w(z) such that
the value of the functional along any selections z;
of solution z(t) of the system is differentiable by
t, and its time derivative satisfies the inequality

dV(IL’t)
dt

< —w(x(t)) for all t > 0,
where z;(s) := x(t + s),s € [—7,0].
3. MAIN RESULTS

In this section, we will provide a novel method
to design state feedback controllers for stabilizing
system (1). To do so, a suitable class of smooth
Lyapunov-Krasovskii functionals (LKF') is first in-
troduced and discussed. By employing the pro-
posed LKFs, a new criterion on asymptotic sta-
bility is derived only in term of linear matrix in-
equalities (LMIs). Then, these LMIs are used to
design a linear state feedback controller to stabi-
lize the system.

3.1. Lyapunov-Krasovskii functionals

In the literature of time-delayed piecewise affine
systems, piecewise quadratic LKFs have been of-
ten used to study the stability of systems®%7®.
Such a functional is basically composed from two
parts: a piecewise quadratic Lyapunov function
and an integral functional defined on the space
CY([-r,0],R™), with 7 is the delay, as

V() = Vi((0)) + Va(p), Ve € CH([-T, 0],11%%"(),)

3
where the functional Va : C1([—7,0],R") — R,
is defined as

Va(p) = / 7 (5)Q(s)ds

Q
+f T / T () Rp(s)dsd,

for some positive definite matrices @), R and the
quadratic piecewise Lyapunov function V7 : R" —
R is defined corresponding with a given polyhe-
dral subdivision {X;}¥_, of R™; that is, Vi(z) =
2T P;x whenever z € X;. The matrices P; are of-
ten chosen in such a way that V; is positive def-
inite and it is continuous across region bound-
aries%7®. In our point of view, the restriction
when one uses this kind of Lyapunov functions is
that the stability of solutions only can be applied
for the systems whose trajectories do not have
Zeno property. To our best of knowledge, check-
ing for non-Zeno property of time-delayed bimodal
pieceiwse linear systems is impossible since there
is no available paper about the non-Zenoness of
time-delayed piecewise linear systems. Therefore,
in this work, we develop Lyapunov-Krasovskii

functionals in two aspects: requirements that V; is
continuously differentiable and relaxation on the
integral functional that it has more general form
of piecewise quadratic one. It turns out that such
requirements impose certain relations on the in-
volved matrices in the literature of bimodal piece-
wise linear systems.

Lemma 1. Let Py, P, € R™*™ be symmetric ma-
trices. The piecewise quadratic function

Fla) = {a;TPlx if Tz

is
a) continuous if and only if there exist h € R™

such that

Py =Py + hel + en”. (4)

b) continuously differentiable if and only if there
exist v € R such that

Py = P, +vyect (5)
Proof. 1t is not hard to prove the lemma. O

3.2. Stability analysis

By employing the proposed smooth piecewise
quadratic LKFs, we now establish a novel stabil-
ity criterion presented in term of linear matrix in-
equalities.

Theorem 1. For system (1), suppose that there
exist the symmetric positive definite matrices
PQ,R € R and h € R", v € R such that
the following statements hold

P +vec” > 0,Q + he! + ch” >0, (6a)

271A2TRA2 —Q < 0, (6D)
21 A2 RAZ — (he? + ch™ + Q) <0,

0] TP

[7‘]13 —TR} <0, (Ge)

[T(P —(iI-)Z’yccT) T(PjT’})/%CCT)] <0, (6d)

where ® = He(P(A + Ag) + @ +
271 AT ATRA4A, and @5 = He{(P + vecT) (A2 +
Ag)} + Q + He(heT) + 27 AT ATRA A5, Then,
the system (1) is asymptotically stable.

Proof. Let us consider the piecewise quadratic
Lyapunov-Krasovskii functional

V:CY[-7,0,R") = R
defined by

V() = Vi(p(0)) + Va(p), (7)



where
2TPzif T2 <0,
Vi) =3 ", 7,
2t Pz if ¢tz 20,
with P, = P, P, = P + ycc! and

Valp) = / Flp(s))ds

Ny

(s)AY RA p(s)dsdn.

where
2TQzif T2 <0,
F(z)=9 +5 .. 1
2t Qoz if ¢t 2 > 0,
with Q1 = Q, Q2 = Q + he? + ch™. Due to (6a)

and Lemma 1, V5 is continuous and positive. Thus,
one has

0
V(g) = Va(p(0)) + / F(p(s))ds

/_T/

Vi(p(0)), ¥ € C'([-7,0, R").

This inequality shows that the functional V' is pos-
itive definite on C'*([—7,0], R™).

(s) AL RA4p(s)dsdn

For any initial function ¢ € C([—7, 0], R™), let
x(t; @) be the corresponding trajectory of system
(1) and define x¢(s) = z(t + s;¢),s € [—7,0].
Then, z; € CY([-7,0],R") for each t > 7 and by
simple transformations we get

t

V(ze) = Vit ) + / Fa(s; 0))ds

t—1
0 t
w [ [ T (s0AT R p)asay
—7 Jit+n

for all t > 7. Using Newton-Leibnitz formula, one
can verify that

Observe that by Lemma 1 and due to (6a), V; is
continuously differentiable with respect to z. On
the other hand, z(t;¢) is continuously differen-
tiable with respect to ¢. Therefore, V' (z;) is con-
tinuously differentiable as a function of variable ¢
defined on [r,00) and its derivative is computed
as

GV = g {ntwen+ [ Fas o

0
+f / i (55 0) AT RAdab(s;so)dsdn}.
—7 Jit+n

For the first term, we take the derivative and note
that 22Ty < infpso{z? Pz + yT Py}, Va,y €
R"™ one has

d oy .
Gvilattion = (52.0)
= &(t)" P (t) + 2" (¢) P (t)
22T (1) P Ay / i(t)ds

n /t_ T (s) AT RA g (s)ds. (8)

= 2xT(t)PZ- (Ai+Aq)z(t)

For the second term, we have

Ccllt /t F(x(s;p))ds = F(x(t;))—F(z(t—T; ¢))

— 2" ()Qia(t) — 2T (t — T)Qua(t — ) (9)

for some 7, j € {1,2}. For the third term, we have

0 t
G [ o)At R (s o)
—7 Jt+n

t
— AT () AT RAgi(t) — / i (5) AT RAyi(s)ds
t—1

T ()T AT AT RAGA (1)
+ 227 (t — 7)TAZT RAZ2(t — 7)

_/t @7 (s)ATRAgi(s)ds. (10)

A combination of (8), (9) and (10) yields

v < [a L) o m) )

where I, = —Q; + 27A2TRA2 and
Iy, = He(Py(A; + Agq)) + TPR™'P; 4+ Qi +
271ATATRA4A;. By Schur complement and the
assumptions (6b)-(6d), we further obtain

d
%V(xt) < —w(z(t),Yt =71

where w(z) = 2T max{-\(I1},), —A(I1%,)}z.
This fact together with Proposition 1 yields the
asymptotic stability of system (1). O



3.3. Linear state feedback stabilization

An interesting application of stability conditions
derived in Theorem 1 is that they can be employed
to design a linear state feedback controller

u(t) = Kz(t) (11)

that makes the following closed-loop system is
asymptotically stable

(A1 + BK)x(t) + Agz(t — 1),
if cT'z(t) <0
(As + BK)z(t) + Aqx(t — 7),
if cTz(t) >0
(12a)
z(s) = ¢(s),s € [-1,0]. (12b)

(1) =

Before stating and proving the results in Theo-
rem 2, we need to introduce the following auxiliary
result concerning positive definite matrices.

Lemma 2. Let X, Y € R™*™ Let F' € R™*™ be
a symmetric positive definite matrix. Then, one

has
XTFY + YTFX <vXTFX +~+4'YTFY

for any v > 0.

Proof. Tt follows from the fact that

(v~ V) P (vix - VY) 20

due to the positive definite property of matrix
F. O

Theorem 2. Consider the system (1). Suppose
that there exist symmetric positive definite ma-
trices P,Q, R € R™*" a matrix U € R™*" and
scalars v > 0, u > 0 such that

IR R
[ B2 5 R] <0 (13)
and the following statements hold
-Q Pc
< 14
|:CTP — < Oa ( a)
—Q ) \/iszflgT Pc
V2rAZP —7TR 0| <0, (14b)
c'p 0 —
T, V2rIT AT
~ 14
|:\/§TAdF1 —TR < 0’ ( C)
Uy \@TF%:AZ; rPect A
\/§TAC£F2 —TR 0 ~ 0 <0
cc P 0 —-TR 0 ’
AT 0 0 =

(14d)

where ¥; = He{(Ai—l—Ad)p—i—BU}—i—Q—i—TR, I'; =
A;P+ BU, ¥ = diag(—~4I, —3I, —17, —77%), and

A=[P(Ay+A)T +UTBT Pec” TRe TPc].

Then, there exists a linear state feedback con-
troller u(t) = Kuz(t) such that the closed-loop
system (12) is asymptotically stable.

Proof. Deflne P:= P~ > 0 Q=P 1Qpr!
0,R:=R'>0, K:=UP 'and h:= —c/(2,u)
We prove that the matrices P, @), R, h together
with the scalar 4~! fulfill the conditions of The-
orem 1, in the framework of closed-loop system
(12).

1) First, it is obvious that P 4+ 5 tec? > 0 since
P >0 and 4 > 0. Next, one has

Q—ptect
=plQpP' - ptect
=P HQ—-p Pt PP >0

Q + hel +ch™ =

due to (14a) and Schur complement.

2) To verify the claim (6b), note that it follows
from (14b)

— [ﬂTﬁAZT }Bc]
~ —1
« |TTR O arpazt B <0
0 —u d
or equivalently
—Q +27PARTYA2P 4 71 PecT P < 0.
By pre-multiplying and post-multiplying by p-1
in the above inequality, one gets
2rPA2TR™YA%P — Q — he® — ch”

=2rPA2TR™YAZP — Q + ptecT <.

Note that p~tec” > 0, the above inequality also

implies that 27]5A3TR’1A3P—Q < 0. The claim
(6b) is verified.

3) Next, we verify the claim (6¢). Due to (14c),
we have

He{(A, + A))P+BU} +Q + 7R

+27(A1 P+ BU)TAYR™YA4(A1 P+ BU) < 0
Substituting U = K P and then pre-multiplying
and post-multiplying by P~! in the obtained in-
equality, one gets

(A1 + BK + Ad) (Al + BK + Ad)TP + Q
+27(A1+BK)T AT RA4(A1+BK)+7PR™'P < 0.
)i
(6

This is equivalent to (6¢) in the context of closed-

loop system. The claim (6¢) is verified.



4) Finally, we verify the claim (6d). Note that the
(14d) implies

) —TR 0 0
Uo—[V2rTT AT 7Pec” Al 0 —7R 0
0 0 =

x [V2rTT AT TPec” A]T <0
or equivalently

He{(A; + Ag)P + BU} +Q + 7R
+ QTFQTAdTR_lAdFQ +7Pcc" R~ Pec”
+(P(Ay+ AT +UTBT)3 Y (A + Ay) P+ BU)
+]sccT'~y_1ccT]3—|—7'Rc7y_10]%—1—7']50'7_10]5 < 0.
(15)

Note that in the context of closed-loop system,
the LMI

o, 7(P + 7~ tech)

(P + 7 tech) —TR <0,

(16)
is equivalent to

He{(P+7 e )(Ag+BK +A)}+Q—p tec”
+27(Ay + BK)TATRA4(As + BK)
+7(P+7 e RTH P+ 7 ech) < 0.

By pre- and post-multiplying by P~!, the above
inequality is equivalent to

(Ay + BK + Ay)P™' + P~} (As + BK + Ag)T
+ 4 P tecT(Ay + BK 4+ Ag) P!
+3 P YAy + BK 4+ Ag) e’ P+ PIQP !
+2rP Y (AT + K"BT)ATYRA4(Ay + BK)P~!
—p P e’ P 4 RV 4 AT PP RTY
—|—T’~y_1R_1CCTP_1—I—TP_lcchy_ZR_lccTP_l < 0.
(17)

On the other hand, applying Lemma 2, we have

P~ lec”(Ay + BK + Ag) P!
+ P YAy + BK + Ay)Tec' P!
< P lecled P
+ P71 (Ay+ BK + Ay)T(Ay + BK + Ag)P~ L,
and
Plec’ R-'+ Rl P71 <
< P lec" P+ R ec" R

Moreover, the LMI (13) yields 7 2R™! < R.
Therefore, the inequality (17) holds if the follow-
ing one fulfills

(Ay + BK + Ay)P™' + P71 (Ay + BK + Ag)T
+37 1P et e’ PP IQP P e P
+3 1P Y (Ay4+ BK + Ag)T(Ay+ BK + Ag)P~!

+2rP (AT + KTBT)ATRA4(Ay + BK)P™!
+ 7R+ 37 P e’ P 4+ 7T R e RTY
+ 7P tee" Ree" P71 < 0.

Note that the later inequality is followed from
(15) where P = P™' > 0, R = R™' > 0,
Q = P7'QP~! > 0. The proof of claim (6d) is
done. O

In the case no time-delays, i.e. 7 = 0, we get
the following corollary.

Corollary 1. Consider system (1) with 7 = 0. Sup-
pose that there exist a positive definite symmetric
matrix P € R™*"_ a matrix U € R™>" and scalar
4 > 0 such that

He((A; + Aq)P + BU) < 0,

and
VU A PecT
AT 3T 0 <0,
«™P 0 —~1

where ¥ = He((Ay + A4)P + BU), and A =
P(AQ + Ag)T + UTBT. Then, there exists a lin-
ear state feedback controller u(t) = Kx(t) such
that the closed-loop system (12) is asymptotically
stable.

Remark 2. Our developed results can be applied
to discontinuous time-delayed bimodal piecewise
linear systems with inputs. In fact, for such sys-
tems, we may employ a state feedback controller
as

Kiz(t) néu cl'x(t)
T

<0
Koz(t) néu cl'z(t) > 0,

u(t) = Kz(t) + {

where the gains K7, K5 are first designed in such
a way that the closed-loop system is continuous,
i.e. satisfying

(Al — Ag) + B(Kl - KQ) = hCT

for some h € R™ and the gain K is designed to
stabilize the system

(A; + BK)x(t) + Aqz(t — )
if cT'z(t) <0
(Ay + BK)x(t) + Aqz(t — )
if cT'x(t) >0
(18)

(t) =

with A; := A; + BK;, i =1,2.



4. NUMERICAL EXAMPLES

In this section, we present two numerical exam-
ples to illustrate the effectiveness of the proposed
stabilization conditions for both cases: with and
without time delays. The first example is consid-
ered as a bimodal piecewise linear system with
time delays. In the second example, we collect a
bimodal piecewise linear system without time de-
lays.

Example 1. Consider the planar time-delayed bi-
modal piecewise linear system

Arx(t) + Agx(t — 7) + bu(t),
cl'z(t) <0
Asx(t) + Agx(t — 1) + bu(t),
clz(t) >0
(19)

B(t) =

where ¢! = [—1 2] b = [0.3 0] and

-2 —4 —5 —4 13
Sl EREIEE S R ]

For u(t) = 0 and 7 = 0, the system (19) is not
asymptotically stable as shown in Fig. 1,

1
4 =10 .

*,(t)
2t 0|

state trajectories

times
Fig. 1. Trajectories of system (19) for
7 =0,u(t) = 0 and starting at 2° = (-3,3)T

For 7 = 0.025, we would stabilize the system
by using linear state feedback controller. To do
so, we find the matrices P,Q, R, the numbers
7, 1 satisfying (13) and LMIs (14a), (14b), (14c),
(14d) of Theorem 2. Note that condition (13) is
not an LMI. However, we can take R = 5Is.
Then, it is an LMI in 4. Solving the LMIs, we
get K =UP~! = [-1513.4 5681.6].

20

()
*5(t)

3
.-/

state trajectories
o

M
.-I

/

. .
01 0 0.1 0.2 0.3 0.4 0.5 0.6
times

Fig. 2. Trajectories of the closed-loop system
between system (19) and controller (11)

Fig. 2 shows the trajectories of the closed-loop
system that is composed from the system (19)
and the state feedback controller u(t) = Kz(t) =
[—1513.4  5681.6] (t) for initial function

| =3 +sint
p(t) = [2+cost

This trajectory asymptotically converges to the
origin.

} , t €[~0.025,0],

In the rest of this paper, we validate our
method to stabilize a practical bimodal piecewise
linear system without time-delays that appeared
in the work!® | Example 21, and compare our
achievements with the available methods in the
paper 13,

| open, if xqe = 1),
| close, if 20 < (.
| 2 =

Fig. 3. Three water tanks system

Example 2 (13). Consider a three water tanks
system as illustrated in Fig. 3. Let z; be the wa-
ter level of tank ¢, (¢ = 1,2,3), and u be the vol-
ume of water discharged into tank 1. The valve
at tank 2 is open if zo > 0 and closed if zo < 0.
For simplicity, all coefficients are normalized to
1. Then, dynamic equation of the system in the
neighborhood of origin is

3(t) = {Alx(t)—l—bu(t) if Tz(t) <0 20)

Aoz (t) + bu(t) if Tx(t) >0



where ¢! = [0 -1 0] b7 = [1 0 0] and

-1 0 0 ~10 0
Aj=|1 -1 0],4=|1 0 0
0o 1 -1 0 0 —1

Without input, i.e. u(t) = 0, the origin is not
asymptotically stable!?. Based on the theory de-
veloped in'3, a state feedback controller has been
derived to stabilize the system using piecewise lin-
ear functions as follows

N Kiz(t) if Tz(t) <0
ult) = Kox(t) if cTz(t) = 0

with K1 = [-1 =2 0],K; = [0 =2 0].
In fact, such controller transforms a continuous
bimodal system into a discontinuous closed-loop
one, but it is still well-posed in the sense of
Carathéodory solutions'®. It worth to mention
that one does not get such lucky in general.

Taking our proposed approach, we solve the
involved LMIs of Corollary 1 and get the matrices
U= [—0.2548 —0.4668 —0.0143] and

3 0.2690 —0.2156 —0.0517
P=|-0.2156 0.3749 0.0513
—0.0517 0.0513  0.6138

Then, the gain K of linear state feedback con-
troller is

K=UP™'=[-3.6140 —3.3159 —0.0504].

1.5
®,(t)
] x,(t)
1 AN ? I
/ it
/ — — =t}
05| /N — = Xt 4
[ \
= Sy *y(t)
% f i
£ 0r . e
- ] -
(0] |
k7] N ;o
| i e
| e
0.5
e
15
45 . . . . . . .
0 1 2 3 4 5 6 T 8

time (sec)

Fig. 3. Trajectories of the closed-loop three tanks
system with two kinds of controllers

Fig. 3 shows the trajectories of closed-loop sys-
tems for the initial state x(0) = col(—1,—1,1)
that is composed from system (20) and state feed-
back controllers: the linear state feedback con-
troller u(t) = Kux(t) (solid lines) and piecewise
linear state feedback controller (dash lines)

= Kiz(t) if Tz(t) <0
)= Kox(t) if cTx(t) > 0.

Our controller yields a better stabilization.

5. CONCLUSIONS

In this paper, we studied the stability and stabi-
lization of time-delayed bimodal piecewise linear
systems via smooth Lyapunov-Krasovskii func-
tionals. The main contributions of the paper are
including: (1) new stability criteria based on the
proposed smooth Lyapunov-Krasovskii functional
were derived to guarantee asymptotic stability in
the zero inputs and (2) an interesting condition
was established to design a linear state feedback
controller to stabilize the system which is less con-
servative than before in the literature. Finally,
some numerical examples illustrate the effective-
ness of proposed methods.
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