
1

Ứng dụng học đồ thị trong hệ gợi ý du lịch

TÓM TẮT

Trong bối cảnh ngành du lịch Việt Nam đang phát triển mạnh mẽ, việc hỗ trợ du khách lựa chọn các điểm

tham quan phù hợp với sở thích cá nhân trở nên rất quan trọng. Bài báo này đề xuất một hệ thống gợi ý du lịch ứng

dụng học đồ thị, nhằm đưa ra các gợi ý về điểm tham quan dựa trên hồ sơ người dùng. Hệ thống gợi ý được xây

dựng dựa trên Graph Neural Network, một kỹ thuật học máy tiên tiến cho phép học các đặc trưng và mối quan hệ từ

dữ liệu có cấu trúc đồ thị. Hệ thống đang được triển khai và thử nghiệm trên mạng Internet.

Từ khóa: Hệ gợi ý, gợi ý, học đồ thị, mạng Nơ-ron đồ thị, du lịch.

2

Application of graph learning

in travel recommendation system

ABSTRACT

In the context of Vietnam's rapidly growing tourism industry, supporting tourists in choosing attractions that

suit their personal interests has become very important. This paper proposes a travel recommendation system using

Graph learning to provide suggestions for attractions based on user profiles. The recommendation system is built on

Graph Neural Network, an advanced machine learning technique that allows learning features and relationships

from graph-structured data. The system is being deployed and tested on the Internet.

Keywords: Recommender systems, recommendations, graph learning, graph neural networks, travel.

1. INTRODUCTION

With the advancement of information

technology, an increasing number of products

and services are being introduced to the digital

space. As the volume of available products and

services grows, users face significant challenges

in selecting the most suitable ones. On the other

hand, personalized recommendations, those

based on user profile information, can greatly

enhance the likelihood of selecting appropriate

products. Therefore, the application of

recommender systems (RSs) to provide

appropriate suggestions is very important.1-3

To build recommender systems, one of the

emerging approaches being adopted is graph

learning. Graph learning is a technique that

applies machine learning to graph-structured

data4. This is an emerging technique in the field

of artificial intelligence and has been developing

rapidly in recent years. In practice, the data

collected and provided to recommender systems

can naturally be represented in a graph structure.

Specifically, entities within the recommender

system, including users, items, attributes, and

contexts, are often tightly interconnected, either

explicitly or implicitly, forming either

homogeneous or heterogeneous graphs.

Moreover, graph learning has the capability to

learn complex relationships. In fact, many graph

learning techniques have been developed to

understand relationships modeled by graphs5-7.

Consequently, applying graph learning in

recommender systems is one of the research

directions that is of interest and urgency today.

In Vietnam, the tourism industry has seen

significant investment and robust growth in

recent years. Vietnam, with its numerous

renowned attractions (such as the ancient town of

Hoi An, Sapa, Ha Long Bay, Fansipan Mountain,

and more), is recognized internationally as an

ideal destination. Travel magazines consistently

rank Vietnam among the top attractive

destinations, showing the appeal of Vietnamese

tourism. Alongside the growth of the tourism

industry, choosing sightseeing spots to plan a trip

has become increasingly challenging. Travelers

often spend considerable time and effort reading

reviews on various attractions or consulting

friends for travel recommendations. This

necessitates the development of systems that can

recommend attractions to tourists based on their

preferences.

Based on these issues, we have conducted

research to develop a tourism recommender

system using graph learning. The system is

designed to provide recommendations for tourist

attractions based on user preference profiles. This

system is currently being tested online at the

following address: https://travel.fansis.vn.

2. GRAPH LEARNING IN RS

2.1. Problem Definition

The recommendation system allows making

predictions about user preferences for

https://travel.fansis.vn/

3

products/services, thereby suggesting items that

users might be interested in. With a graph

learning approach, the recommendation system

can be modeled as a bipartite graph6. Here, each

vertex represents either a user or an item,

meaning there are two types of vertices: user

vertices and item vertices. Each edge connecting

a user vertex to an item vertex represents the

interaction between the user and the

corresponding item. These interactions can be

views, purchases, ratings, and more.

Formally, let 𝑈 denote the set of users and 𝐼

denote the set of items. We construct a graph 𝐺 =
(𝑉, 𝐸) where 𝑉 is the set of vertices and 𝐸 is the

set of edges representing recorded interactions in

history. In other words, 𝐸 = {(𝑢, 𝑖)| 𝑢 ∈ 𝑈, 𝑖 ∈
𝐼, 𝑟(𝑢, 𝑖) ≠ 0} where 𝑟(𝑢, 𝑖) denotes the

interaction of user 𝑢 ∈ 𝑈 with item 𝑖 ∈ 𝐼. If the

interaction is a rating given by user 𝑢 on item 𝑖,
we can define 𝑢 interacting with 𝑖 when 𝑢's rating

on 𝑖 is greater than a certain threshold 𝜃 (where

𝜃 ≥ 1).

The input to the RS is the set of interactions

between each user and item. The task of the RS is

to predict items that users may be interested in

the future. This can be viewed as a link

prediction problem in the bipartite graph 𝐺 (as

illustrated in Figure 1). In other words, we need

to find a function 𝑓, such that 𝑓(𝑢, 𝑖) represents

the likelihood of interaction between user 𝑢 and

item 𝑖.

Figure 1. Bipartite graphs represent interactions

between users and items.

2.2. The Graph Neural Network Approach

The Graph Neural Network (GNN) approach is a

method that applies neural networks to data

structured as graphs. GNNs leverages this

structure to learn features and relationships from

the data, offering better efficiency compared to

traditional methods. GNNs enables RS to exploit

the complex structure of the user-item graph to

uncover deeper hidden relationships. For

instance, a RS using GNNs can analyze not only

the interaction history of users but also the

relationships between items, this means capturing

collaborative signals from higher-order neighbors

(multi-hop connections), thereby providing more

accurate recommendations to each user7.

GNNs focus on learning representations of nodes

by propagating information from neighboring

nodes through multiple iterations on the graph

structure and aggregating it. This is similar to the

Convolutional Neural Network (CNN) technique,

with the key difference being that CNNs operate

on grid-like structures where the number and

order of neighbors are fixed, whereas in GNNs,

the number of neighbors is determined by the

historical interaction data.

2.3 Graph Neural Network Architecture

The architecture of the GNN model consists of

four components8,9 (illustrated in Figure 2):

• Embeddings

• Graph Convolution

• Layer Combination

• Prediction

Figure 2. The process of learning representations and

predicting links (between node 𝑢1 and 𝑖4) through

the GNN model architecture.

First, in the Embeddings component, each user

and item is represented by an initial embedding

vector 𝐞𝑢
(0)

, 𝐞𝑖
(0)

, respectively. Here, 𝐞𝑢
(0)

∈ ℝ𝑑,

𝐞𝑖
(0)

∈ ℝ𝑑, where 𝑑 is the dimension of the initial

embedding vector. These embedding vectors are

propagated through the interaction graph to learn

and generate the final representation for each

corresponding user and item (𝐞𝑢 and 𝐞𝑖).

Next, in the Graph Convolution component,

features from neighboring nodes are transmitted

along edges to the active node to aggregate and

𝑢2

𝑖2

𝑖4

𝑢1

𝑖5

𝑖1

𝑢3

𝑖3

Observed interactions

Unobserved interactions

Users Items

𝐞𝑖4
(0)

 𝐞𝑢1
(0)

𝐞𝑖1
(𝑙−1)

 𝐞𝑖2
(𝑙−1)

 𝐞𝑖3
(𝑙−1)

𝐞𝑢1
(𝑙−1)

𝑙 = 1

𝑙 = 2

𝑙 = 3

𝐞𝑢2
(𝑙−1)

 𝐞𝑢3
(𝑙−1)

𝐞𝑖4
(𝑙−1)

𝑙 = 1

𝑙 = 2

𝑙 = 3

𝐞𝑢1

⨀

𝐞𝑢1
(3)

𝐞𝑢1
(2)

𝐞𝑢1
(1)

𝐞𝑖4
(3)

𝐞𝑖4
(2)

𝐞𝑖4
(1)

𝐞𝑖4

Embeddings

G
ra

p
h

 C
o

n
v

o
lu

ti
o

n

L
a

y
e
r
 C

o
m

b
in

a
ti

o
n

Prediction 𝐲ො(𝑢1, 𝑖4)

4

create a new representation for that node. For

example, consider the interaction data illustrated

in Figure 1, the corresponding graph for the root

node 𝑢1 with an interaction depth of 3, as shown

in Figure 3. In the first layer, the neighboring

nodes of 𝑢1 are 𝑖1, 𝑖2, 𝑖3, which transmit their

information and contributing to the representation

of node 𝑢1; similarly, this process continues for

the second and third layers. Specifically, let

𝐞𝑢
(k+1)

 be the embedding vector of node 𝑢 at the

(𝑘 + 1)-th layer. Then, 𝐞𝑢
(k+1)

 is constructed

based on the following formula:

𝐞𝑢
(k+1)

= AGG(𝐞𝑢
(k)

, {𝐞𝑖
(k)

∶ i ∈ N𝑢}) (1)

Where,

• AGG is the aggregation function (for

instance, using a summation function).

• 𝐞𝑢
(0)

 and 𝐞𝑖
(0)

 represent the initial

embedding vectors of user 𝑢 and item 𝑖.

• 𝐞𝑢
(𝑘)

 and 𝐞𝑖
(𝑘)

 denote the embedding

vectors of user 𝑢 and item 𝑖 after 𝑘 layers

of propagation.

• N𝑢 represents the set of items interacted

with by user 𝑢.

Each different specific algorithm in the GNN

approach will have a different implementation.

For example, in the NGCF8 algorithm, 𝐞𝑢
(𝑘+1)

 is

specifically calculated as follows:

𝐞𝑢
(k+1)

=

𝜎 (𝐖1𝐞𝑢
(k)

+ ∑
1

√|𝑁𝑢||𝑁𝑖|
i ∈ Nu

(𝐖𝟏𝐞𝑖
(k)

+ 𝐖𝟐(𝐞𝑖
(k)

⊙ 𝐞𝑢
(k)

)))
(2)

𝐞𝑖
(k+1)

=

𝜎 (𝐖1𝐞𝑖
(k)

+ ∑
1

√|𝑁𝑢||𝑁𝑖|
u ∈ Ni

(𝐖𝟏e𝑢
(k)

+ 𝐖𝟐(𝐞𝑢
(k)

⊙ 𝐞𝑖
(k)

)))
(3)

Where,

• 𝐖1, 𝐖2: are weight matrices.

• 𝝈: is the nonlinear activation function.

• ⊙: denotes the element-wise product.

Meanwhile, the LightGCN9 algorithm simplifies

this propagation function by removing the

nonlinear activation function 𝛔 and weight

matrices 𝐖𝟏, 𝐖𝟐. The formula for calculating

𝐞𝑢
(𝑘+1)

 and 𝐞𝑖
(𝑘+1)

 in LightGCN is as follows:

𝐞𝑢
(k+1)

= ∑
1

√|𝑁𝑢||𝑁𝑖|
𝐞𝑖

(k)

𝑖 ∈ N𝑢

 (4)

𝐞𝑖
(k+1)

= ∑
1

√|𝑁𝑢||𝑁𝑖|
𝐞𝑢

(k)

𝑢 ∈ N𝑖

 (5)

Figure 3. Information propagation from neighboring

nodes to node 𝑢1 with 3 layers of connections.

The next part of the GNN is Layer Integration.

After 𝑘 layers, we combine the embedding

vectors from all layers to form a single

representation for the node under consideration.

Specifically:

𝐞𝑢 = 𝐶𝑂𝑀𝐵𝐼𝑁𝐸({𝐞𝑢
(𝑘)

, 𝑘 = [0. . 𝐾]} (6)

Here, 𝐶𝑂𝑀𝐵𝐼𝑁𝐸 can be a concatenation of

vectors as used in the NGCF algorithm:

𝐞𝑢 = 𝐞𝑢
(0)

∥ 𝐞𝑢
(1)

∥. . . ∥ 𝐞𝑢
(K)

 ;
(7)

𝐞𝑖 = 𝐞𝑖
(0)

∥ 𝐞𝑖
(1)

∥. . . ∥ 𝐞𝑖
(K)

Or it can be a summation, as in the LightGCN

algorithm:

𝐞𝑢 = ∑ 𝛼𝑘𝐞𝑢
(k)𝐾

𝑘=0 ; 𝐞𝑖 = ∑ 𝛼𝑘𝐞𝑖
(k)𝐾

𝑘=0 (8)

With α𝑘 ≥ 0 as a hyperparameter, it represents

the importance of the embedding vector at the 𝑘-

th layer in contributing to the final embedding

vector. In the LightGCN algorithm, the authors

set α𝑘 =
1

K+1
.

Finally, we have the Link Prediction component.

Once the embeddings for each node have been

established, the predicted link yො𝑢𝑖 between two

nodes 𝑢 and 𝑖, can be simply computed using the

inner product:

yො𝑢𝑖 = 𝐞𝑢
𝑇𝐞𝑖 (9)

The higher this result, the stronger the link

between 𝑢 and 𝑖. Recommending items to user 𝑢

is done by calculating the link values between 𝑢

and various candidate items 𝑖. These links are

then sorted, and the top-K strongest links are

selected for recommendation.

𝑢1

𝑖1 𝑖2

𝑢2

𝑖3

𝑖4 𝑖5

𝑢3

𝑖4

Layer 1

Layer 2

Layer 3

5

2.4. Model Training

Using a loss function to optimize parameters in

the model. One popular loss function is BPR

(Bayesian Personalized Ranking)10 designed to

optimize the ranking of recommendations:

L = − ∑ 𝑙𝑛𝜎

(𝑢,𝑖,𝑗)∈𝐷

(yො𝑢𝑖 − yො𝑢𝑗) + 𝜆‖Θ‖2 (10)

In which,

• 𝐷: is the set of triples (𝑢, 𝑖, 𝑗), where
(𝑢, 𝑖) is the observed interaction of user

𝑢 with item 𝑖, while (𝑢, 𝑗) is the

interaction of user 𝑢 with item 𝑗 that is

not observed.

• yො𝑢𝑖 and yො𝑢𝑗: are the predicted values of

the strength of the connections between

the pairs (user, item): (𝑢, 𝑖) and (𝑢, 𝑗),

computed by the model.

• 𝜎: is the sigmoid function.

• Θ: are the parameters of the model. In the

LightGCN algorithm, these parameters

are the embedding vectors representing

each user and item at layer 𝑘 = 0.

• 𝜆: is the regularization coefficient.

The BPR loss function encourages the model to

predict links so that items the users have

interacted with (e.g., viewed or rated highly) are

ranked higher than items they have not interacted

or disliked. Through the above calculation steps,

the model will adjust the parameters to minimize

the BPR loss function, thereby improving the

personalized ranking.

3. TRAVEL RECOMMENDATION

APPLICATION

3.1 System Architecture

Our system is built using a layered architecture,

specifically consisting of four layers: the

Database layer, the RS (Recommendation

System) layer, the Service layer, and the

Application layer, as illustrated in Figure 4.

The Database layer provides data for the system,

comprising two types of data: (i) Rating data for

tourist attractions and (ii) Side information,

which includes detailed information about the

attractions (such as category, address, images). In

particular, the Rating data shows the interest and

satisfaction level (from 1-5 stars) of tourists with

the attractions. This is the basis for building a

prediction model, which helps in generating

suitable recommendations. These data will be

periodically extracted (e.g., every 3 days) from

the application database, then they will be stored

(using Google Cloud Storage service) to serve

the recommendation system.

Figure 4. Architecture for the Travel

Recommendation Application.

The RS layer contains the Tourist Attraction

Recommendation Module. This layer is

responsible for building the prediction model

based on the collected rating data and generating

a personalized list of recommendations for each

user based on their rating history. We will

provide detailed information on the

implementation of this module in the following

section.

The Service layer creates Web APIs to expose

the functionalities of the recommendation system

to various applications, allowing them to call

these APIs and present the results. The primary

purpose of this layer is to enable different types

of applications across various platforms and

technologies to utilize the recommendation

system. We implement this module using Flaski

and deploy it on Google Cloudii.

Finally, the Application layer includes

applications that interact with end-users and

present the results. Since this layer is built upon

the Service layer, these applications can be

deployed on various platforms such as Mobile,

Desktop, and Web. In this study, we implement a

Web application for testing, using Wordpress—a

powerful and widely-used Content Management

i Flask, một framework phát triển ứng dụng web trên

Python, https://flask.palletsprojects.com/en/3.0.x/
ii Dịch vụ điện toán đám mây của Google,

https://cloud.google.com/

Recommender Service

User-based Recommender

User preferences Side information App database

Periodic Data Extraction
(Tourist Attractions)

Database

Layer

RS Layer

Service Layer

Application

Layer

General

Recommender

Web

Application

https://flask.palletsprojects.com/en/3.0.x/
https://cloud.google.com/

6

System (CMS). The General Recommender

module within the application provides

recommendations for users who are not logged

into the system or do not have profiles on the

system. This module recommends highly-rated

attractions to users based on simple statistical

methods. In the future, this component could be

enhanced to offer recommendations based on

seasonality, regions, and other factors.

3.2 Recommendation Process & Experiments

The User-based Recommender module in the RS

layer provides personalized attraction

recommendations for a specific user based on

their past rating history. In which:

• Input: User ID.

• Output: Top-K tourist attractions the user

may be interested in.

We propose a general process for generating

recommendations, as illustrated in Figure 5.

Specifically, it includes main components such

as: Data, Filter, Model Training, Links

Prediction & Ranking.

The Data component includes two types: Rating

Data and Side Information Data. The Rating Data

includes user ratings for various attractions and is

used to train the prediction model. Meanwhile,

the Side Information Data is used to filter

candidate attractions.

The Filter module is designed to select candidate

attractions from all available attractions in the

system based on user-specific criteria. For

example, it can filter attractions that belong to

categories such as spiritual tourism or adventure

tourism. However, within the scope of this study,

the module is implemented in a simplified

manner by including all attractions in the system,

except for those the user has already interacted

with, as input for the recommendation process.

The Model Training module is responsible for

training the prediction model. The output

includes the trained model and the final

embeddings for each user and attraction. In this

study, we utilize the LightGCN9 algorithm for

model training and prediction.

Links Prediction & Ranking: This module

predicts the links between users and attractions,

followed by ranking them. Specifically, for each

attraction, the system predicts the strength of the

connection between the user and that attraction.

The attractions are then sorted in descending

order of connection strength, and the top-K

attractions with the highest connection strengths

are returned as recommendations.

One noteworthy point is that we do not store the

trained model. Instead, for link prediction, we

only save the final embeddings of each user and

attraction (Users/Items embeddings) and compute

the inner product between these vectors. This

approach simplifies server processing since it

eliminates the need to reference libraries for

loading the model.

Figure 5. Recommendation Process.

To evaluate the effectiveness of the prediction

model, we conducted experiments on three

datasets: MovieLensiii, Yelp20189, and

TripAdvisor11. Both Yelp2018 and TripAdvisor

are datasets about tourism domain. Statistics on

the size of these datasets are described Table 1.

Specifically, we used the MovieLens dataset with

100,000 ratings, the Yelp2018 dataset with

500,000 ratingiv, and the TripAdvisor dataset

with 13,697 ratings for our experiments. The

metrics recall@20, ndcg@20, and precision@20

were used to assess the model's performance12,13.

The graph learning algorithm used in these

experiments is LightGCN. The initial embedding

size is set to 64. The model was optimized using

the Adam14 optimizer with a learning rate of

0.005. The number of propagation layers in the

graph was set to 3. Each batch size was 1,024,

and the model was trained for 100 epochs. We

iii https://grouplens.org/datasets/movielens/
iv We reduce the data size to fit computational

resources.

Model Training

Links Prediction

& Ranking

Rating data

(Training

dataset)

Candidated
items

Filter

Model + Users/Items embeddings

Recommendations

Side information

data

https://grouplens.org/datasets/movielens/

7

utilized Google Colabv to train the model and to

learn the embeddings for users and attractions.

Table 1. Experimental Datasets.

Datasets Ratings # Users # Items #

MovieLens 100.000 943 1.682

Yelp2018 500.000 8.154 36.837

TripAdvisor 13.697 2.371 2.269

The training process to optimize the model is

illustrated through the training-loss curve in

Figure 6-8, corresponding to the MovieLens,

Yelp2018 and TripAdvisor data sets.

Figure 6. Training-loss curve on the MovieLens

dataset.

Figure 7. Training-loss curve on the Yelp2018

dataset.

v A cloud service provided by Google, allowing

writing and execution of Python code through a web

browser, https://colab.research.google.com/.

Figure 8. Training-loss curve on the TripAdvisor

dataset.

Experimental results of the LightGCN model on

the datasets are shown in Table 2.

Table 2. Experimental results of the LightGCN

Datasets

Metrics

Recall Precision NDCG

MovieLens 0,212395 0,386744 0,439850

Yelp2018 0,082281 0,052545 0,083219

TripAdvisor 0,088338 0,005332 0,039634

Experimental results show that the LightGCN

algorithm works effectively, shown through

Recall, Precision, and NDCG metrics. In

particular, with the MovieLens data set, the best

results were obtained with Recall, Precision and

NDCG values of 21.2%, 38.7% and 44%,

respectively. For the other two datasets, the

results were similar: for the Yelp2018 dataset, the

results were 8.2%, 5.3%, and 8.3%; and for the

TripAdvisor dataset, the results were 8.8%, 0.5%,

and 4%. LightGCN was evaluated to be more

effective compared to the NGCF algorithm and

other algorithms8,9. In this study, we do not aim

to compare the LightGCN algorithm with other

algorithms, instead, we test the algorithm with

different data sets, to ensure that it performs well

before integrating it into the travel

recommendation application.

3.3 The Web Application

The web application is built on the WordPress

platform, providing a useful and convenient tool

for users to explore attractions. The application

serves two main types of users: administrators

and tourists. In particular, the administrator has

main functions such as: Managing attractions

(posting, editing articles...) and Managing users;

Meanwhile, tourists can search for attractions by

https://colab.research.google.com/

8

province/city, leave reviews about their

experiences with attractions, and view

recommendations based on their rating history. If

the user is not logged in, the system suggests

attractions with high average ratings.

As described in the previous section, this Web

application will connect to the Web API to fetch

recommended attractions for users. Some images

of the application are depicted in Figure 9-11.

Figure 9. The function of Posting attractions.

Figure 10. The function of Searching attractions.

Figure 11. The function of Suggesting attractions.

To validate the recommendation functionality of

the web application, we simulated creating 3

users: 𝑢1, 𝑢2 and 𝑢3.. These users rated 5 tourist

attractions (encoded as 𝑖1, 𝑖2…𝑖5) out of a total

of 50 attractions in the system. The rating data is

illustrated in Figure 1. We plotted graphs

(Figures 3, 12, and 13) with the root nodes

corresponding to each user to find attractions the

user might be interested in through the

connections in the graph.

Figure 12. Graph with 3 connection layers for root

vertex 𝑢2.

Figure 13. Graph with 3 connection layers for root

vertex 𝑢3.

By visually analyzing these small graphs, the

attractions that should be suggested for each user

are identified and listed in Table 3 below. These

are the leaf nodes on the graph, connected to the

root nodes (users) through intermediary nodes.

Table 3. Attractions that should be suggested to each

user, derived from the graph analysis.

Users
Attractions should be

suggested

𝑢1 𝑖4, 𝑖5

𝑢2 𝑖3, 𝑖1

𝑢3 𝑖2, 𝑖1, 𝑖5

Following the recommendation process described

earlier, we learned the representations for each

user and attraction to calculate the strength of the

connections between them. The predicted

connection strengths are provided in Table 4

below. Based on these results, we observe that

the constructed model accurately predicts the

attractions that users might be interested in.

Specifically:

• For 𝑢1, the two attractions with the

highest positive connection strengths are

𝑖4 and 𝑖5.

• For 𝑢2, the two attractions with the

highest positive connection strengths are

𝑖3 and 𝑖1.

𝑢2

𝑖2 𝑖4

𝑢1

𝑖5

𝑖1 𝑖3

𝑢3

𝑖3

Layer 1

Layer 2

Layer 3

𝑢3

𝑖3

𝑖2

𝑢1

𝑖4

𝑖1 𝑖2

𝑢2

𝑖5

Layer 1

Layer 2

Layer 3

9

• For 𝑢3, the two attractions with the

highest positive connection strengths are

𝑖2, 𝑖1 and 𝑖5.

Table 4. Predicted Connection Strengths between

Users and Attractions.

User Attractions Predicted Links

𝑢1 𝑖4 4,399

𝑢1 𝑖5 3,109

𝑢1
𝑖17, 𝑖12, 𝑖7,

 𝑖34, 𝑖36, 𝑖39,
𝑖46, 𝑖10

-1,567, -1,694, -1,699,

-1,705, -1.713, -1,718,

-1,725, -1,726

𝑢2 𝑖3 4,378

𝑢2 𝑖1 3,184

𝑢2
𝑖17, 𝑖7, 𝑖12,

 𝑖39, 𝑖33, 𝑖36,
𝑖14, 𝑖41

-1,640, -1,747, -1,752,

-1,764, -1,773, -1,776,

-1,794, -1,797

𝑢3 𝑖2 3,669

𝑢3 𝑖1 2,735

𝑢3 𝑖5 2,697

𝑢3
𝑖17, 𝑖34, 𝑖7,

 𝑖40, 𝑖41, 𝑖46,
𝑖11

-1,369, -1,415, -1,441,

-1,442, -1,459, -1,466,

-1,471

Thus, the web application has demonstrated a

travel recommendation system according to the

proposed process described earlier. Accordingly,

for users who already have a profile on the

system, the application will suggest attractions

that they may be interested in based on their

review history. Here, we only created a very

limited number of users and attractions to

illustrate the system's workflow. Building a

larger dataset can be undertaken once the system

is deployed in a real-world operational

environment.

4. RELATED WORKS

Recommendation systems are widely applied

across various domains, including online

shopping, news reading, travel, music, movie,

and social networking. These systems act as

information filters, suggesting products or

services that users might be interested in, based

on their behavior history or the matching

characteristics between products/services and

user profiles.

Among the many approaches to building

recommendation systems, Graph Learning is

currently attracting significant attention. Graph

learning applies machine learning techniques to

graph-structured data and is rapidly evolving4. In

recent years, several graph-based

recommendation models have been proposed and

studied5,6. The application of graph learning to

recommendation systems can be categorized into

three main approaches: (i) Random Walk Based

Approaches15,16. These methods explore the

graph by simulating random walks to generate

sequences of nodes, which are then used for

making recommendations. While effective in

capturing the connectivity within the graph, these

approaches are heuristic-based and lack model

parameters for optimization. (ii) Graph

Embedding Based Approaches17-20. This method

is efficient for analyzing complex relationships

embedded in the graph. (iii) Graph Neural

Network Based Approaches21-25. GNNs apply

neural network techniques to graph data. They

iteratively aggregate information from a node's

neighbors to learn representations. GNN-based

models have become increasingly popular due to

their ability to effectively model the intricate

dependencies in graph data, leading to significant

advancements in recommendation performance.

In Vietnam, a group of authors proposed using

GNN to build session-based recommendation

models26. Their model was evaluated using

common metrics in recommendation systems,

such as Recall@20 and Mean Reciprocal Rank

(MRR)@20, demonstrating the effectiveness of

GNNs in capturing user preferences and making

accurate recommendations.

5. CONCLUSION

In this paper, we have presented the application

of graph learning in a travel recommendation

system. Specifically, we have illustrated the use

of the LightGCN algorithm in the Graph Neural

Network approach to model and process data in

the form of a bipartite graph. This method allows

the recommendation system to exploit the

complex structure and hidden relationships

between users and attractions, thereby providing

accurate suggestions to users. At the same time,

we also tested the algorithm on three different

data sets to evaluate their effectiveness. Besides,

we have proposed the travel recommendation

system application architecture. This architecture

is general, based on that, we can build systems

with different recommendation algorithms, with

different technologies.

In the future, we plan to continue to improve and

expand the system. Specifically, some future

research directions include: (i) Iintegrating

contextual recommendation. We aim to enhance

the recommendation system by incorporating

contextual information. For example, the system

10

could suggest tourist attractions based on

additional context such as the time to visit or the

type of companions (family, friends, solo travel).

(ii) Exploration of advanced machine learning

techniques. We plan to investigate and apply

more advanced machine learning techniques to

optimize the system. (iii) Enhancement of the

web application. We intend to further develop the

web application by adding more diverse

information and functionalities. This could

include features like tour booking, itinerary

planning, recommendations for accommodations

(hotels, hostels) and dining options (restaurants,

cafes).

In short, building a travel recommendation

system is important and necessary, especially in

the context of the rapid growth of the tourism

industry in Vietnam. We hope that these research

results will be an important stepping stone to

develop more intelligent travel recommendation

systems in the future.

REFERENCES

1. L. Quang-Hung, V. Son-Lam, L. Anh-Cuong. A

Comparative Analysis of Various Approaches for

Incorporating Contextual Information into

Recommender Systems, Journal of Computer

Science, 2022, 18(3), 187-203.

2. V. Son-Lam, L. Quang-Hung. A Deep Learning

Based Approach for Context-Aware Multi-Criteria

Recommender Systems, Computer Systems

Science and Engineering, 2022, 44(1), 471–483.

3. L. Quang-Hung, V. Son-Lam, N. Thi-Kim-

Phuong, L. Thi-Xinh. A state-of-the-art survey on

context-aware recommender systems and

applications, International Journal of Knowledge

and Systems Science (IJKSS), 2021, 12(3), 1–20.

4. Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, S. Y.

Philip. A comprehensive survey on graph neural

networks, IEEE transactions on neural networks

and learning systems, 2020, 32(1), 4–24.

5. Q. Guo, F. Zhuang, C. Qin, H. Zhu, X. Xie, H.

Xiong, Q. He. A survey on knowledge graph-

based recommender systems, IEEE Transactions

on Knowledge and Data Engineering, 2020, 34(8),

3549-3568.

6. S. Wang, L. Hu, Y. Wang, X. He, Q. Z. Sheng, M.

A. Orgun, P. S. Yu. Graph learning based

recommender systems: A review, Proceedings of

the Thirtieth International Joint Conference on

Artificial Intelligence (IJCAI-21), Montreal, 2021.

7. S. Wu, F. Sun, W. Zhang, X. Xie, B. Cui. Graph

neural networks in recommender systems: a

survey, ACM Computing Surveys, 2022, 55(5), 1-

37.

8. X. Wang, X. He, M. Wang, F. Feng, T. S. Chua.

Neural Graph Collaborative Filtering, In

Proceedings of the 42nd international ACM SIGIR

conference on Research and development in

Information Retrieval, 2019.

9. X. He, K. Deng, X. Wang, Y. Li, Y. Zhang, M.

Wang. LightGCN: Simplifying and powering

graph convolution network for recommendation,

In Proceedings of the 43rd International ACM

SIGIR conference on research and development in

Information Retrieval, 2020.

10. Steffen Rendle, Christoph Freudenthaler, Zeno

Gantner, Lars Schmidt-Thieme. BPR: Bayesian

Personalized Ranking from Implicit Feedback,
Proceedings of the Twenty-Fifth Conference on

Uncertainty in Artificial Intelligence, 2009.

11. Y. Zheng, B. Mobasher, R. Burke. Context

recommendation using multi-label classification,

In 2014 IEEE/WIC/ACM International Joint

Conferences on Web Intelligence (WI) and

Intelligent Agent Technologies (IAT), 2014.

12. Y. M. Tamm, R. Damdinov, A. Vasilev. Quality

metrics in recommender systems: Do we calculate

metrics consistently?, In Proceedings of the 15th

ACM Conference on Recommender Systems,

2021.

13. Vu Son Lam, Le Quang Hung, Nguyen Van Vinh.

Đánh giá hệ gợi ý: Khảo sát và thực nghiệm, Kỷ

yếu hội thảo Quốc gia lần thứ XXIII "Một số vấn

đề chọn lọc của Công nghệ thông tin và Truyền

thông", 2020.

14. Diederik P. Kingma, Jimmy Ba. Adam: A Method

for Stochastic Optimization, International

Conference on Learning Representations, 2014.

15. Z. Jiang, H. Liu, B. Fu, Z. Wu, T. Zhang.

Recommendation in heterogeneous information

networks based on generalized random walk

model and bayesian personalized ranking, In

Proceedings of the Eleventh ACM International

Conference on Web Search and Data Mining,

2018.

16. H. Bagci, P. Karagoz. Context-aware friend

recommendation for location based social

networks using random walk, In Proceedings of

the 25th international conference companion on

world wide web, 2016.

17. Z. Wang, H. Liu, Y. Du, Z. Wu, X. Zhang. Unified

embedding model over heterogeneous information

network for personalized recommendation, In

Proceedings of the 28th international joint

conference on artificial intelligence, 2019.

18. Y. Cen, X. Zou, J. Zhang, H. Yang, J. Zhou, J.

Tang. Representation learning for attributed

multiplex heterogeneous network, In Proceedings

11

of the 25th ACM SIGKDD International

Conference on Knowledge Discovery & Data

Mining, 2019.

19. B. Hu, C. Shi, W. X. Zhao, P. S. Yu. Leveraging

meta-path based context for top-n recommendation

with a neural co-attention model, In Proceedings

of the 24th ACM SIGKDD international

conference on knowledge discovery & data

mining, 2018.

20. Y. Deng. Recommender Systems Based on Graph

Embedding Techniques: A Review, IEEE Access,

2022, 10, 51587-51633.

21. R. Ying, R. He, K. Chen, P. Eksombatchai, W. L.

Hamilton, J. Leskovec. Graph convolutional

neural networks for web-scale recommender

systems, In Proceedings of the 24th ACM

SIGKDD international conference on knowledge

discovery & data mining, 2018.

22. W. Fan, Y. Ma, Q. Li, Y. He, E. Zhao, J. Tang, D.

Yin. Graph neural networks for social

recommendation, In The world wide web

conference, 2019.

23. Z. Cui, Z. Li, S. Wu, X. Y. Zhang, L. Wang.

Dressing as a whole: Outfit compatibility learning

based on node-wise graph neural networks, In The

World Wide Web Conference, 2019.

24. C. Gao, X. Wang, X. He, Y. Li. Graph neural

networks for recommender system, In Proceedings

of the Fifteenth ACM International Conference on

Web Search and Data Mining, 2022.

25. D.H. Tran, Q.Z. Sheng, W.E. Zhang, et al.

HeteGraph: graph learning in recommender

systems via graph convolutional networks, Neural

Comput & Applic, 2023, 35, 13047–13063.

26. T. K. Nguyen, T. A. Nguyen, T. N. Mai, H. A.

Nguyen, V. A. Nguyen. Hệ gợi ý mua sắm dựa

theo phiên làm việc với mô hình mạng học sâu đồ

thị, Các công trình nghiên cứu, phát triển và ứng

dụng Công nghệ Thông tin và Truyền thông, 2022,

2022(2), 72-81.

