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Ứng dụng học đồ thị trong hệ gợi ý du lịch 
 
 

  

 

 

TÓM TẮT 

Trong bối cảnh ngành du lịch Việt Nam đang phát triển mạnh mẽ, việc hỗ trợ du khách lựa chọn các điểm 

tham quan phù hợp với sở thích cá nhân trở nên rất quan trọng. Bài báo này đề xuất một hệ thống gợi ý du lịch ứng 

dụng học đồ thị, nhằm đưa ra các gợi ý về điểm tham quan dựa trên hồ sơ người dùng. Hệ thống gợi ý được xây 

dựng dựa trên Graph Neural Network, một kỹ thuật học máy tiên tiến cho phép học các đặc trưng và mối quan hệ từ 

dữ liệu có cấu trúc đồ thị. Hệ thống đang được triển khai và thử nghiệm trên mạng Internet. 

Từ khóa: Hệ gợi ý, gợi ý, học đồ thị, mạng Nơ-ron đồ thị, du lịch. 
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ABSTRACT 

In the context of Vietnam's rapidly growing tourism industry, supporting tourists in choosing attractions that 

suit their personal interests has become very important. This paper proposes a travel recommendation system using 

Graph learning to provide suggestions for attractions based on user profiles. The recommendation system is built on 

Graph Neural Network, an advanced machine learning technique that allows learning features and relationships 

from graph-structured data. The system is being deployed and tested on the Internet. 

Keywords: Recommender systems, recommendations, graph learning, graph neural networks, travel. 

 

1. INTRODUCTION 

With the advancement of information 

technology, an increasing number of products 

and services are being introduced to the digital 

space. As the volume of available products and 

services grows, users face significant challenges 

in selecting the most suitable ones. On the other 

hand, personalized recommendations, those 

based on user profile information, can greatly 

enhance the likelihood of selecting appropriate 

products. Therefore, the application of 

recommender systems (RSs) to provide 

appropriate suggestions is very important.1-3 

To build recommender systems, one of the 

emerging approaches being adopted is graph 

learning. Graph learning is a technique that 

applies machine learning to graph-structured 

data4. This is an emerging technique in the field 

of artificial intelligence and has been developing 

rapidly in recent years. In practice, the data 

collected and provided to recommender systems 

can naturally be represented in a graph structure. 

Specifically, entities within the recommender 

system, including users, items, attributes, and 

contexts, are often tightly interconnected, either 

explicitly or implicitly, forming either 

homogeneous or heterogeneous graphs. 

Moreover, graph learning has the capability to 

learn complex relationships. In fact, many graph 

learning techniques have been developed to 

understand relationships modeled by graphs5-7. 

Consequently, applying graph learning in 

recommender systems is one of the research 

directions that is of interest and urgency today. 

In Vietnam, the tourism industry has seen 

significant investment and robust growth in 

recent years. Vietnam, with its numerous 

renowned attractions (such as the ancient town of 

Hoi An, Sapa, Ha Long Bay, Fansipan Mountain, 

and more), is recognized internationally as an 

ideal destination. Travel magazines consistently 

rank Vietnam among the top attractive 

destinations, showing the appeal of Vietnamese 

tourism. Alongside the growth of the tourism 

industry, choosing sightseeing spots to plan a trip 

has become increasingly challenging. Travelers 

often spend considerable time and effort reading 

reviews on various attractions or consulting 

friends for travel recommendations. This 

necessitates the development of systems that can 

recommend attractions to tourists based on their 

preferences. 

Based on these issues, we have conducted 

research to develop a tourism recommender 

system using graph learning. The system is 

designed to provide recommendations for tourist 

attractions based on user preference profiles. This 

system is currently being tested online at the 

following address: https://travel.fansis.vn. 

2. GRAPH LEARNING IN RS 

2.1. Problem Definition 

The recommendation system allows making 

predictions about user preferences for 

https://travel.fansis.vn/
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products/services, thereby suggesting items that 

users might be interested in. With a graph 

learning approach, the recommendation system 

can be modeled as a bipartite graph6. Here, each 

vertex represents either a user or an item, 

meaning there are two types of vertices: user 

vertices and item vertices. Each edge connecting 

a user vertex to an item vertex represents the 

interaction between the user and the 

corresponding item. These interactions can be 

views, purchases, ratings, and more. 

Formally, let 𝑈 denote the set of users and 𝐼 

denote the set of items. We construct a graph 𝐺 =
(𝑉, 𝐸) where 𝑉 is the set of vertices and 𝐸 is the 

set of edges representing recorded interactions in 

history. In other words, 𝐸 = {(𝑢, 𝑖)| 𝑢 ∈ 𝑈, 𝑖 ∈
𝐼, 𝑟(𝑢, 𝑖) ≠ 0} where 𝑟(𝑢, 𝑖) denotes the 

interaction of user 𝑢 ∈ 𝑈 with item 𝑖 ∈ 𝐼. If the 

interaction is a rating given by user 𝑢 on item 𝑖, 
we can define 𝑢 interacting with 𝑖 when 𝑢's rating 

on 𝑖 is greater than a certain threshold 𝜃 (where 

𝜃 ≥ 1). 

The input to the RS is the set of interactions 

between each user and item. The task of the RS is 

to predict items that users may be interested in 

the future. This can be viewed as a link 

prediction problem in the bipartite graph 𝐺 (as 

illustrated in Figure 1). In other words, we need 

to find a function 𝑓, such that 𝑓(𝑢, 𝑖) represents 

the likelihood of interaction between user 𝑢 and 

item 𝑖. 

 

Figure 1. Bipartite graphs represent interactions 

between users and items. 

2.2. The Graph Neural Network Approach 

The Graph Neural Network (GNN) approach is a 

method that applies neural networks to data 

structured as graphs. GNNs leverages this 

structure to learn features and relationships from 

the data, offering better efficiency compared to 

traditional methods. GNNs enables RS to exploit 

the complex structure of the user-item graph to 

uncover deeper hidden relationships. For 

instance, a RS using GNNs can analyze not only 

the interaction history of users but also the 

relationships between items, this means capturing 

collaborative signals from higher-order neighbors 

(multi-hop connections), thereby providing more 

accurate recommendations to each user7. 

GNNs focus on learning representations of nodes 

by propagating information from neighboring 

nodes through multiple iterations on the graph 

structure and aggregating it. This is similar to the 

Convolutional Neural Network (CNN) technique, 

with the key difference being that CNNs operate 

on grid-like structures where the number and 

order of neighbors are fixed, whereas in GNNs, 

the number of neighbors is determined by the 

historical interaction data. 

2.3 Graph Neural Network Architecture 

The architecture of the GNN model consists of 

four components8,9 (illustrated in Figure 2): 

• Embeddings 

• Graph Convolution 

• Layer Combination 

• Prediction 

 

 

Figure 2. The process of learning representations and 

predicting links (between node  𝑢1 and  𝑖4) through 

the GNN model architecture. 

First, in the Embeddings component, each user 

and item is represented by an initial embedding 

vector 𝐞𝑢
(0)

, 𝐞𝑖
(0)

, respectively. Here, 𝐞𝑢
(0)

∈ ℝ𝑑, 

𝐞𝑖
(0)

∈ ℝ𝑑, where 𝑑 is the dimension of the initial 

embedding vector. These embedding vectors are 

propagated through the interaction graph to learn 

and generate the final representation for each 

corresponding user and item (𝐞𝑢 and 𝐞𝑖). 

Next, in the Graph Convolution component, 

features from neighboring nodes are transmitted 

along edges to the active node to aggregate and 

𝑢2 

𝑖2 

𝑖4 

𝑢1 

𝑖5 

𝑖1 

𝑢3 

𝑖3 

Observed interactions 

Unobserved interactions 
 

Users Items 

   

 

 
 

𝐞𝑖4
(0)

 𝐞𝑢1
(0)

 

𝐞𝑖1
(𝑙−1)

 𝐞𝑖2
(𝑙−1)

 𝐞𝑖3
(𝑙−1)

 

𝐞𝑢1
(𝑙−1)

 
𝑙 = 1 

𝑙 = 2 

𝑙 = 3 

 
 

𝐞𝑢2
(𝑙−1)

 𝐞𝑢3
(𝑙−1)

 

𝐞𝑖4
(𝑙−1)

 
𝑙 = 1 

𝑙 = 2 

𝑙 = 3 

𝐞𝑢1 

⨀ 

𝐞𝑢1
(3)

 

𝐞𝑢1
(2)

 

𝐞𝑢1
(1)

 

𝐞𝑖4
(3)

 

𝐞𝑖4
(2)

 

𝐞𝑖4
(1)

 

𝐞𝑖4 

Embeddings 

G
ra

p
h

 C
o

n
v

o
lu

ti
o

n
 

L
a

y
e
r
 C

o
m

b
in

a
ti

o
n

 

Prediction 𝐲ො(𝑢1, 𝑖4) 



4 

 

 

create a new representation for that node. For 

example, consider the interaction data illustrated 

in Figure 1, the corresponding graph for the root 

node 𝑢1 with an interaction depth of 3, as shown 

in Figure 3. In the first layer, the neighboring 

nodes of 𝑢1 are 𝑖1, 𝑖2, 𝑖3, which transmit their 

information and contributing to the representation 

of node 𝑢1; similarly, this process continues for 

the second and third layers. Specifically, let 

𝐞𝑢
(k+1)

 be the embedding vector of node 𝑢 at the 

(𝑘 + 1)-th layer. Then, 𝐞𝑢
(k+1)

 is constructed 

based on the following formula: 

𝐞𝑢
(k+1)

= AGG(𝐞𝑢
(k)

, {𝐞𝑖
(k)

∶ i ∈ N𝑢}) (1) 

Where,  

• AGG is the aggregation function (for 

instance, using a summation function). 

• 𝐞𝑢
(0)

 and 𝐞𝑖
(0)

 represent the initial 

embedding vectors of user 𝑢 and item 𝑖. 

• 𝐞𝑢
(𝑘)

 and 𝐞𝑖
(𝑘)

 denote the embedding 

vectors of user 𝑢 and item 𝑖 after 𝑘 layers 

of propagation. 

• N𝑢 represents the set of items interacted 

with by user  𝑢. 

Each different specific algorithm in the GNN 

approach will have a different implementation. 

For example, in the NGCF8 algorithm, 𝐞𝑢
(𝑘+1)

 is 

specifically calculated as follows: 

𝐞𝑢
(k+1)

= 

𝜎 (𝐖1𝐞𝑢
(k)

+ ∑
1

√|𝑁𝑢||𝑁𝑖|
i ∈ Nu

(𝐖𝟏𝐞𝑖
(k)

+ 𝐖𝟐(𝐞𝑖
(k)

⊙ 𝐞𝑢
(k)

))) 
(2) 

𝐞𝑖
(k+1)

= 

𝜎 (𝐖1𝐞𝑖
(k)

+ ∑
1

√|𝑁𝑢||𝑁𝑖|
u ∈ Ni

(𝐖𝟏e𝑢
(k)

+ 𝐖𝟐(𝐞𝑢
(k)

⊙ 𝐞𝑖
(k)

))) 
(3) 

Where, 

• 𝐖1, 𝐖2: are weight matrices. 

• 𝝈: is the nonlinear activation function. 

• ⊙: denotes the element-wise product. 

Meanwhile, the LightGCN9 algorithm simplifies 

this propagation function by removing the 

nonlinear activation function 𝛔 and weight 

matrices 𝐖𝟏, 𝐖𝟐. The formula for calculating 

𝐞𝑢
(𝑘+1)

 and  𝐞𝑖
(𝑘+1)

 in LightGCN is as follows: 

𝐞𝑢
(k+1)

=  ∑
1

√|𝑁𝑢||𝑁𝑖|
𝐞𝑖

(k)

𝑖 ∈ N𝑢

 (4) 

𝐞𝑖
(k+1)

=  ∑
1

√|𝑁𝑢||𝑁𝑖|
𝐞𝑢

(k)

𝑢 ∈ N𝑖

 (5) 

 

Figure 3. Information propagation from neighboring 

nodes to node 𝑢1 with 3 layers of connections. 

The next part of the GNN is Layer Integration. 

After 𝑘 layers, we combine the embedding 

vectors from all layers to form a single 

representation for the node under consideration. 

Specifically: 

𝐞𝑢 = 𝐶𝑂𝑀𝐵𝐼𝑁𝐸({𝐞𝑢
(𝑘)

,  𝑘 = [0. . 𝐾]} (6) 

Here, 𝐶𝑂𝑀𝐵𝐼𝑁𝐸 can be a concatenation of 

vectors as used in the NGCF algorithm: 

𝐞𝑢 = 𝐞𝑢
(0)

∥ 𝐞𝑢
(1)

∥.  .  . ∥ 𝐞𝑢
(K)

 ; 
(7) 

𝐞𝑖 = 𝐞𝑖
(0)

∥ 𝐞𝑖
(1)

∥.  .  . ∥ 𝐞𝑖
(K)

   

Or it can be a summation, as in the LightGCN 

algorithm: 

𝐞𝑢 = ∑ 𝛼𝑘𝐞𝑢
(k)𝐾

𝑘=0 ;  𝐞𝑖 = ∑ 𝛼𝑘𝐞𝑖
(k)𝐾

𝑘=0    (8) 

With α𝑘 ≥ 0 as a hyperparameter, it represents 

the importance of the embedding vector at the 𝑘-

th layer in contributing to the final embedding 

vector. In the LightGCN algorithm, the authors 

set α𝑘 =
1

K+1
. 

Finally, we have the Link Prediction component. 

Once the embeddings for each node have been 

established, the predicted link yො𝑢𝑖 between two 

nodes 𝑢 and 𝑖, can be simply computed using the 

inner product: 

yො𝑢𝑖 = 𝐞𝑢
𝑇𝐞𝑖 (9) 

The higher this result, the stronger the link 

between 𝑢 and 𝑖. Recommending items to user 𝑢 

is done by calculating the link values between  𝑢 

and various candidate items 𝑖. These links are 

then sorted, and the top-K strongest links are 

selected for recommendation. 

𝑢1 

𝑖1 𝑖2 
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2.4. Model Training 

Using a loss function to optimize parameters in 

the model. One popular loss function is BPR 

(Bayesian Personalized Ranking)10 designed to 

optimize the ranking of recommendations: 

L =  − ∑ 𝑙𝑛𝜎

(𝑢,𝑖,𝑗)∈𝐷

(yො𝑢𝑖 −  yො𝑢𝑗) + 𝜆‖Θ‖2 (10) 

 

In which, 

• 𝐷:  is the set of triples (𝑢, 𝑖, 𝑗), where 
(𝑢, 𝑖) is the observed interaction of user 

𝑢 with item 𝑖, while (𝑢, 𝑗) is the 

interaction of user 𝑢 with item 𝑗 that is 

not observed. 

• yො𝑢𝑖 and yො𝑢𝑗: are the predicted values of 

the strength of the connections between 

the pairs (user, item): (𝑢, 𝑖) and (𝑢, 𝑗), 

computed by the model. 

• 𝜎: is the sigmoid function. 

• Θ: are the parameters of the model. In the 

LightGCN algorithm, these parameters 

are the embedding vectors representing 

each user and item at layer 𝑘 = 0. 

• 𝜆: is the regularization coefficient. 

The BPR loss function encourages the model to 

predict links so that items the users have 

interacted with (e.g., viewed or rated highly) are 

ranked higher than items they have not interacted 

or disliked. Through the above calculation steps, 

the model will adjust the parameters to minimize 

the BPR loss function, thereby improving the 

personalized ranking. 

3. TRAVEL RECOMMENDATION 

APPLICATION 

3.1 System Architecture 

Our system is built using a layered architecture, 

specifically consisting of four layers: the 

Database layer, the RS (Recommendation 

System) layer, the Service layer, and the 

Application layer, as illustrated in Figure 4. 

The Database layer provides data for the system, 

comprising two types of data: (i) Rating data for 

tourist attractions and (ii) Side information, 

which includes detailed information about the 

attractions (such as category, address, images). In 

particular, the Rating data shows the interest and 

satisfaction level (from 1-5 stars) of tourists with 

the attractions. This is the basis for building a 

prediction model, which helps in generating 

suitable recommendations. These data will be 

periodically extracted (e.g., every 3 days) from 

the application database, then they will be stored 

(using Google Cloud Storage service) to serve 

the recommendation system. 

 

Figure 4. Architecture for the Travel 

Recommendation Application. 

The RS layer contains the Tourist Attraction 

Recommendation Module. This layer is 

responsible for building the prediction model 

based on the collected rating data and generating 

a personalized list of recommendations for each 

user based on their rating history. We will 

provide detailed information on the 

implementation of this module in the following 

section. 

The Service layer creates Web APIs to expose 

the functionalities of the recommendation system 

to various applications, allowing them to call 

these APIs and present the results. The primary 

purpose of this layer is to enable different types 

of applications across various platforms and 

technologies to utilize the recommendation 

system. We implement this module using Flaski 

and deploy it on Google Cloudii. 

Finally, the Application layer includes 

applications that interact with end-users and 

present the results. Since this layer is built upon 

the Service layer, these applications can be 

deployed on various platforms such as Mobile, 

Desktop, and Web. In this study, we implement a 

Web application for testing, using Wordpress—a 

powerful and widely-used Content Management 

 
i Flask, một framework phát triển ứng dụng web trên 

Python, https://flask.palletsprojects.com/en/3.0.x/  
ii Dịch vụ điện toán đám mây của Google, 

https://cloud.google.com/  
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System (CMS). The General Recommender 

module within the application provides 

recommendations for users who are not logged 

into the system or do not have profiles on the 

system. This module recommends highly-rated 

attractions to users based on simple statistical 

methods. In the future, this component could be 

enhanced to offer recommendations based on 

seasonality, regions, and other factors. 

3.2 Recommendation Process & Experiments 

The User-based Recommender module in the RS 

layer provides personalized attraction 

recommendations for a specific user based on 

their past rating history. In which: 

• Input: User ID. 

• Output: Top-K tourist attractions the user 

may be interested in. 

We propose a general process for generating 

recommendations, as illustrated in Figure 5. 

Specifically, it includes main components such 

as: Data, Filter, Model Training, Links 

Prediction & Ranking. 

The Data component includes two types: Rating 

Data and Side Information Data. The Rating Data  

includes user ratings for various attractions and is 

used to train the prediction model. Meanwhile, 

the Side Information Data is used to filter 

candidate attractions. 

The Filter module is designed to select candidate 

attractions from all available attractions in the 

system based on user-specific criteria. For 

example, it can filter attractions that belong to 

categories such as spiritual tourism or adventure 

tourism. However, within the scope of this study, 

the module is implemented in a simplified 

manner by including all attractions in the system, 

except for those the user has already interacted 

with, as input for the recommendation process. 

The Model Training module is responsible for 

training the prediction model. The output 

includes the trained model and the final 

embeddings for each user and attraction. In this 

study, we utilize the LightGCN9 algorithm for 

model training and prediction. 

Links Prediction & Ranking: This module 

predicts the links between users and attractions, 

followed by ranking them. Specifically, for each 

attraction, the system predicts the strength of the 

connection between the user and that attraction. 

The attractions are then sorted in descending 

order of connection strength, and the top-K 

attractions with the highest connection strengths 

are returned as recommendations. 

One noteworthy point is that we do not store the 

trained model. Instead, for link prediction, we 

only save the final embeddings of each user and 

attraction (Users/Items embeddings) and compute 

the inner product between these vectors. This 

approach simplifies server processing since it 

eliminates the need to reference libraries for 

loading the model. 

 

Figure 5. Recommendation Process. 

To evaluate the effectiveness of the prediction 

model, we conducted experiments on three 

datasets: MovieLensiii, Yelp20189, and 

TripAdvisor11. Both Yelp2018 and TripAdvisor 

are datasets about tourism domain. Statistics on 

the size of these datasets are described Table 1. 

Specifically, we used the MovieLens dataset with 

100,000 ratings, the Yelp2018 dataset with 

500,000 ratingiv, and the TripAdvisor dataset 

with 13,697 ratings for our experiments. The 

metrics recall@20, ndcg@20, and precision@20 

were used to assess the model's performance12,13. 

The graph learning algorithm used in these 

experiments is LightGCN. The initial embedding 

size is set to 64. The model was optimized using 

the Adam14 optimizer with a learning rate of 

0.005. The number of propagation layers in the 

graph was set to 3. Each batch size was 1,024, 

and the model was trained for 100 epochs. We 

 
iii https://grouplens.org/datasets/movielens/  
iv We reduce the data size to fit computational 

resources. 
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utilized Google Colabv to train the model and to 

learn the embeddings for users and attractions. 

Table 1. Experimental Datasets. 

Datasets Ratings # Users # Items # 

MovieLens 100.000 943 1.682 

Yelp2018 500.000 8.154 36.837 

TripAdvisor 13.697 2.371 2.269 

The training process to optimize the model is 

illustrated through the training-loss curve in 

Figure 6-8, corresponding to the MovieLens, 

Yelp2018 and TripAdvisor data sets. 

 

Figure 6. Training-loss curve on the MovieLens 

dataset. 

 

Figure 7. Training-loss curve on the Yelp2018 

dataset. 

 
v A cloud service provided by Google, allowing 

writing and execution of Python code through a web 

browser, https://colab.research.google.com/. 

 

Figure 8. Training-loss curve on the TripAdvisor 

dataset. 

Experimental results of the LightGCN model on 

the datasets are shown in Table 2. 

Table 2. Experimental results of the LightGCN 

Datasets 

Metrics 

Recall Precision NDCG 

MovieLens 0,212395 0,386744 0,439850 

Yelp2018 0,082281 0,052545 0,083219 

TripAdvisor 0,088338 0,005332 0,039634 

Experimental results show that the LightGCN 

algorithm works effectively, shown through 

Recall, Precision, and NDCG metrics. In 

particular, with the MovieLens data set, the best 

results were obtained with Recall, Precision and 

NDCG values of 21.2%, 38.7% and 44%, 

respectively. For the other two datasets, the 

results were similar: for the Yelp2018 dataset, the 

results were 8.2%, 5.3%, and 8.3%; and for the 

TripAdvisor dataset, the results were 8.8%, 0.5%, 

and 4%. LightGCN was evaluated to be more 

effective compared to the NGCF algorithm and 

other algorithms8,9. In this study, we do not aim 

to compare the LightGCN algorithm with other 

algorithms, instead, we test the algorithm with 

different data sets, to ensure that it performs well 

before integrating it into the travel 

recommendation application.  

3.3 The Web Application 

The web application is built on the WordPress 

platform, providing a useful and convenient tool 

for users to explore attractions. The application 

serves two main types of users: administrators 

and tourists. In particular, the administrator has 

main functions such as: Managing attractions 

(posting, editing articles...) and Managing users; 

Meanwhile, tourists can search for attractions by 

https://colab.research.google.com/
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province/city, leave reviews about their 

experiences with attractions, and view 

recommendations based on their rating history. If 

the user is not logged in, the system suggests 

attractions with high average ratings. 

As described in the previous section, this Web 

application will connect to the Web API to fetch 

recommended attractions for users. Some images 

of the application are depicted in Figure 9-11. 

 

Figure 9. The function of Posting attractions. 

 

Figure 10. The function of Searching attractions. 

 

Figure 11. The function of Suggesting attractions. 

To validate the recommendation functionality of 

the web application, we simulated creating 3 

users: 𝑢1, 𝑢2 and 𝑢3.. These users rated 5 tourist 

attractions (encoded as 𝑖1, 𝑖2…𝑖5) out of a total 

of 50 attractions in the system. The rating data is 

illustrated in Figure 1. We plotted graphs 

(Figures 3, 12, and 13) with the root nodes 

corresponding to each user to find attractions the 

user might be interested in through the 

connections in the graph. 

 

Figure 12. Graph with 3 connection layers for root 

vertex 𝑢2. 

 

Figure 13. Graph with 3 connection layers for root 

vertex 𝑢3. 

By visually analyzing these small graphs, the 

attractions that should be suggested for each user 

are identified and listed in Table 3 below. These 

are the leaf nodes on the graph, connected to the 

root nodes (users) through intermediary nodes. 

Table 3. Attractions that should be suggested to each 

user, derived from the graph analysis. 

Users 
Attractions should be 

suggested 

𝑢1 𝑖4, 𝑖5 

𝑢2 𝑖3, 𝑖1 

𝑢3 𝑖2, 𝑖1, 𝑖5 

Following the recommendation process described 

earlier, we learned the representations for each 

user and attraction to calculate the strength of the 

connections between them. The predicted 

connection strengths are provided in Table 4 

below. Based on these results, we observe that 

the constructed model accurately predicts the 

attractions that users might be interested in. 

Specifically: 

• For 𝑢1, the two attractions with the 

highest positive connection strengths are 

𝑖4 and 𝑖5. 

• For 𝑢2, the two attractions with the 

highest positive connection strengths are 

𝑖3 and 𝑖1. 

𝑢2 

𝑖2 𝑖4 

𝑢1 

𝑖5 

𝑖1 𝑖3 

𝑢3 

𝑖3 

Layer 1 

Layer 2 

Layer 3 

𝑢3 

𝑖3 

𝑖2 

𝑢1 

𝑖4 

𝑖1 𝑖2 

𝑢2 

𝑖5 

Layer 1 

Layer 2 

Layer 3 
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• For 𝑢3, the two attractions with the 

highest positive connection strengths are 

𝑖2, 𝑖1 and 𝑖5. 

Table 4. Predicted Connection Strengths between 

Users and Attractions. 

User Attractions Predicted Links 

𝑢1 𝑖4 4,399 

𝑢1 𝑖5 3,109 

𝑢1 
𝑖17, 𝑖12, 𝑖7, 

 𝑖34, 𝑖36, 𝑖39,   
𝑖46, 𝑖10 

-1,567, -1,694, -1,699, 

-1,705, -1.713, -1,718, 

-1,725, -1,726 

𝑢2 𝑖3 4,378 

𝑢2 𝑖1 3,184 

𝑢2 
𝑖17, 𝑖7, 𝑖12, 

 𝑖39, 𝑖33, 𝑖36,   
𝑖14, 𝑖41 

-1,640, -1,747, -1,752, 

-1,764, -1,773, -1,776, 

-1,794, -1,797 

𝑢3 𝑖2 3,669 

𝑢3 𝑖1 2,735 

𝑢3 𝑖5 2,697 

𝑢3 
𝑖17, 𝑖34, 𝑖7, 

 𝑖40, 𝑖41, 𝑖46,   
𝑖11 

-1,369, -1,415, -1,441, 

-1,442, -1,459, -1,466, 

-1,471 

Thus, the web application has demonstrated a 

travel recommendation system according to the 

proposed process described earlier. Accordingly, 

for users who already have a profile on the 

system, the application will suggest attractions 

that they may be interested in based on their 

review history. Here, we only created a very 

limited number of users and attractions to 

illustrate the system's workflow. Building a 

larger dataset can be undertaken once the system 

is deployed in a real-world operational 

environment. 

4. RELATED WORKS 

Recommendation systems are widely applied 

across various domains, including online 

shopping, news reading, travel, music, movie, 

and social networking. These systems act as 

information filters, suggesting products or 

services that users might be interested in, based 

on their behavior history or the matching 

characteristics between products/services and 

user profiles. 

Among the many approaches to building 

recommendation systems, Graph Learning is 

currently attracting significant attention. Graph 

learning applies machine learning techniques to 

graph-structured data and is rapidly evolving4. In 

recent years, several graph-based 

recommendation models have been proposed and 

studied5,6. The application of graph learning to 

recommendation systems can be categorized into 

three main approaches: (i) Random Walk Based 

Approaches15,16. These methods explore the 

graph by simulating random walks to generate 

sequences of nodes, which are then used for 

making recommendations. While effective in 

capturing the connectivity within the graph, these 

approaches are heuristic-based and lack model 

parameters for optimization. (ii) Graph 

Embedding Based Approaches17-20. This method 

is efficient for analyzing complex relationships 

embedded in the graph. (iii) Graph Neural 

Network Based Approaches21-25. GNNs apply 

neural network techniques to graph data. They 

iteratively aggregate information from a node's 

neighbors to learn representations. GNN-based 

models have become increasingly popular due to 

their ability to effectively model the intricate 

dependencies in graph data, leading to significant 

advancements in recommendation performance. 

In Vietnam, a group of authors proposed using 

GNN to build session-based recommendation 

models26. Their model was evaluated using 

common metrics in recommendation systems, 

such as Recall@20 and Mean Reciprocal Rank 

(MRR)@20, demonstrating the effectiveness of 

GNNs in capturing user preferences and making 

accurate recommendations. 

5. CONCLUSION 

In this paper, we have presented the application 

of graph learning in a travel recommendation 

system. Specifically, we have illustrated the use 

of the LightGCN algorithm in the Graph Neural 

Network approach to model and process data in 

the form of a bipartite graph. This method allows 

the recommendation system to exploit the 

complex structure and hidden relationships 

between users and attractions, thereby providing 

accurate suggestions to users. At the same time, 

we also tested the algorithm on three different 

data sets to evaluate their effectiveness. Besides, 

we have proposed the travel recommendation 

system application architecture. This architecture 

is general, based on that, we can build systems 

with different recommendation algorithms, with 

different technologies. 

In the future, we plan to continue to improve and 

expand the system. Specifically, some future 

research directions include: (i) Iintegrating 

contextual recommendation. We aim to enhance 

the recommendation system by incorporating 

contextual information. For example, the system 
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could suggest tourist attractions based on 

additional context such as the time to visit or the 

type of companions (family, friends, solo travel). 

(ii) Exploration of advanced machine learning 

techniques. We plan to investigate and apply 

more advanced machine learning techniques to 

optimize the system. (iii) Enhancement of the 

web application. We intend to further develop the 

web application by adding more diverse 

information and functionalities. This could 

include features like tour booking, itinerary 

planning, recommendations for accommodations 

(hotels, hostels) and dining options (restaurants, 

cafes). 

In short, building a travel recommendation 

system is important and necessary, especially in 

the context of the rapid growth of the tourism 

industry in Vietnam. We hope that these research 

results will be an important stepping stone to 

develop more intelligent travel recommendation 

systems in the future. 
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