Png dung hoc doé thi trong hé goi y du lich

TOM TAT

Trong bdi canh nganh du lich Viét Nam dang phat trién manh mé, viéc hd trg du khach Iya chon cac diém
tham quan pht hop véi so thich ¢4 nhan tré nén rt quan trong. Bai b4o nay nghién ciru tng dung hoc db thi trong
hé goi ¥, tir d6 xay dung mot hé thdng goi y du lich, nhdm dua ra cac goi ¥ vé diém tham quan dua trén cic danh gia
cua nguoi dung. Hé théng goi v duoc xdy dung dya trén Graph Neural Network, cu thé 1a thuat toan LightGCN, mét
ky thuat hoc may tién tién cho phép hoc cac dic trung va mdi quan hé tir dit liéu cé céu tric do thi. Ching toi da
thyc nghiém thuat toan trén ba bg dit li€u khac nhau trudce khi ap dung vao hé théng thue su. Hé théng dang dugc
trién khai va thir nghiém trén mang Internet.

Tw khéa: H¢ goi y, Goiy, Hoc do thi, Mang No-ron dé thi, Du lich.

Application of Graph Learning

in Travel Recommendation System

ABSTRACT

In the context of Vietnam's rapidly growing tourism industry, supporting tourists in choosing attractions that
suit their personal interests has become very important. This paper studies the application of graph learning in
recommender systems, thereby building a travel recommendation system, aiming to provide suggestions about
attractions based on user ratings. The recommendation system is built on Graph Neural Network, specifically the
LightGCN algorithm, an advanced machine learning technique that allows learning features and relationships from
graph-structured data. We have tested the algorithm on three different datasets before applying it to the real system.

The system is being deployed and tested on the Internet.

Keywords: Recommender systems, Recommendations, Graph learning, Graph neural networks, Travel.

1. INTRODUCTION

With the advancement of information
technology, an increasing number of products
and services are being introduced to the digital
space. As the volume of available products and
services grows, users face significant challenges
in selecting the most suitable ones. On the other
hand, personalized recommendations, those
based on user profile information, can greatly
enhance the likelihood of selecting appropriate
products. Therefore, the application of
recommender systems (RSs) to provide
appropriate suggestions is very important.*?

To build recommender systems, one of the
emerging approaches being adopted is graph
learning. Graph learning is a technique that
applies machine learning to graph-structured
data®. This is an emerging technique in the field
of artificial intelligence and has been developing
rapidly in recent years. In practice, the data
collected and provided to recommender systems
can naturally be represented in a graph structure.
Specifically, entities within the recommender
system, including users, items, attributes, and
contexts, are often tightly interconnected, either
explicitty or implicitly, forming either
homogeneous or heterogeneous graphs.
Moreover, graph learning has the capability to
learn complex relationships. In fact, many graph
learning techniques have been developed to
understand relationships modeled by graphs®’.
Consequently, applying graph learning in
recommender systems is one of the research
directions that is of interest and urgency today.

In Vietnam, the tourism industry has seen
significant investment and robust growth in

recent years. Vietnam, with its numerous
renowned attractions (such as the ancient town of
Hoi An, Sapa, Ha Long Bay, Fansipan Mountain,
and more), is recognized internationally as an
ideal destination. Travel magazines consistently
rank Vietnam among the top attractive
destinations, showing the appeal of Vietnamese
tourism. Alongside the growth of the tourism
industry, choosing sightseeing spots to plan a trip
has become increasingly challenging. Travelers
often spend considerable time and effort reading
reviews on various attractions or consulting
friends for travel recommendations. This
necessitates the development of systems that can
recommend attractions to tourists based on their
preferences.

Based on these issues, we have conducted
research to develop a tourism recommender
system using graph learning. The system is
designed to provide recommendations for tourist
attractions based on user preference profiles. This
system is currently being tested online at the
following address: https://travel.fansis.vn.

2. RELATED WORKS

Recommendation systems are widely applied
across various domains, including online
shopping, news reading, travel, music, movie,
and social networking. These systems act as
information filters, suggesting products or
services that users might be interested in, based
on their behavior history or the matching
characteristics between products/services and
user profiles.

Among the many approaches to building
recommendation systems, Graph Learning is
currently attracting significant attention. Graph

2

https://travel.fansis.vn/

learning applies machine learning techniques to
graph-structured data and is rapidly evolving®. In
recent years, several graph-based
recommendation models have been proposed and
studied>®. The application of graph learning to
recommendation systems can be categorized into
three main approaches: (i) Random Walk Based
Approaches®®. These methods explore the graph
by simulating random walks to generate
sequences of nodes, which are then used for
making recommendations. While effective in
capturing the connectivity within the graph, these
approaches are heuristic-based and lack model
parameters for optimization. (ii) Graph
Embedding Based Approaches'®*®. This method
is efficient for analyzing complex relationships
embedded in the graph. (iii) Graph Neural
Network Based Approaches***®. GNNs apply
neural network techniques to graph data. They
iteratively aggregate information from a node's
neighbors to learn representations. GNN-based
models have become increasingly popular due to
their ability to effectively model the intricate
dependencies in graph data, leading to significant
advancements in recommendation performance.
In Vietnam, a group of authors proposed using
GNN to build session-based recommendation
models'®. Their model was evaluated using
common metrics in recommendation systems,
such as Recall@20 and Mean Reciprocal Rank
(MRR)@20, demonstrating the effectiveness of
GNNSs in capturing user preferences and making
accurate recommendations.

3. GRAPH LEARNING IN RS
3.1. Problem Definition

The recommendation system allows making
predictions about user preferences for
products/services, thereby suggesting items that
users might be interested in. With a graph
learning approach, the recommendation system
can be modeled as a bipartite graph®. Here, each
vertex represents either a user or an item,
meaning there are two types of vertices: user
vertices and item vertices. Each edge connecting
a user vertex to an item vertex represents the
interaction between the user and the
corresponding item. These interactions can be
views, purchases, ratings, and more.

Formally, let U denote the set of users and I
denote the set of items. We construct a graph G =
(V, E) where V is the set of vertices and E is the
set of edges representing recorded interactions in
history. In other words, E = {(u,i)|u € U,i €
I,v(u,i) # 0} where 1r(u,i) denotes the

interaction of user u € U with item i € [. If the
interaction is a rating given by user u on item i,
we can define u interacting with i when u's rating
on i is greater than a certain threshold 6 (where
0 =>1).

The input to the RS is the set of interactions
between each user and item. The task of the RS is
to predict items that users may be interested in
the future. This can be viewed as a link
prediction problem in the bipartite graph G (as
illustrated in Figure 1). In other words, we need
to find a function f, such that f(u,i) represents
the likelihood of interaction between user u and
item i.

Observed interactions

Users Items

Figure 1. Bipartite graphs represent interactions
between users and items.

3.2. The Graph Neural Network Approach

The Graph Neural Network (GNN) approach is a
method that applies neural networks to data
structured as graphs. GNNs leverages this
structure to learn features and relationships from
the data, offering better efficiency compared to
traditional methods. GNNs enables RS to exploit
the complex structure of the user-item graph to
uncover deeper hidden relationships. For
instance, a RS using GNNs can analyze not only
the interaction history of users but also the
relationships between items, this means capturing
collaborative signals from higher-order neighbors
(multi-hop connections), thereby providing more
accurate recommendations to each user’.

GNNs focus on learning representations of nodes
by propagating information from neighboring
nodes through multiple iterations on the graph
structure and aggregating it. This is similar to the
Convolutional Neural Network (CNN) technique,
with the key difference being that CNNs operate
on grid-like structures where the number and
order of neighbors are fixed, whereas in GNNSs,
the number of neighbors is determined by the
historical interaction data.

3.3 Graph Neural Network Architecture

The architecture of the GNN model consists of
four components®?! (illustrated in Figure 2):

e Embeddings
e Graph Convolution
e Layer Combination
e Prediction
O 9(uy,is) Prediction
_________________ c
3 =1
(e (T [el] g
e, e; k<)
(e} ™ ¢ e £
(I e e[T <l &
, 5
=31 1=3
l=211 | =2 c
=1 ii =1 -g
7] H e 1113
¥
' o
(R O g
R L S
(] {1] Embeddings
@ RO)
ul ia

Figure 2. The process of learning representations and
predicting links (between node u, and i,) through
the GNN model architecture.

First, in the Embeddings component, each user
and item is represented by an initial embedding

vector e, e(”, respectively. Here, e\’ € RY,

EO) € R?, where d is the dimension of the initial
embedding vector. These embedding vectors are
propagated through the interaction graph to learn
and generate the final representation for each

corresponding user and item (e,, and e;).

e

Next, in the Graph Convolution component,
features from neighboring nodes are transmitted
along edges to the active node to aggregate and
create a new representation for that node. For
example, consider the interaction data illustrated
in Figure 1, the corresponding graph for the root
node u, with an interaction depth of 3, as shown
in Figure 3. In the first layer, the neighboring
nodes of u, are iy,i,, i3, Which transmit their
information and contributing to the representation
of node u,; similarly, this process continues for
the second and third layers. Specifically, let

eS‘H) be the embedding vector of node u at the

(k + 1)-th layer. Then, eﬂ”” is constructed
based on the following formula:

(k+ 1) _

=AGG(eP, (eP:ieN) (@)

Where,

e AGG is the aggregation function (for
instance, using a summation function).

e and e(o) represent the initial

u
embedding vectors of user u and item i.
(k) and e() denote the embedding
vectors of user u and item i after k layers
of propagation.
e N, represents the set of items interacted
with by user u.

Each different specific algorithm in the GNN
approach will have a different implementation.

For example, in the NGCF? algorithm, e%*" is
specifically calculated as follows:

el(lk+1) —
)
Wle(k)+ (k)+w((k) (k))
< ZN JIN, ||N)
ei(kH) —
1 ®)
o we® + —— (W;e” + w,(elP 0 e)
< 1% ;i |Nu||Ni|(1%u 2\%u i)
Where,

o W,;, W,: are weight matrices.
e ¢ isthe nonlinear activation function.
e (O: denotes the element-wise product.

Meanwhile, the LightGCN? algorithm simplifies
this propagation function by removing the
nonlinear activation function o and weight
matrices Wy, W,. The formula for calculating

el and e in LightGCN is as follows:

(k+ 1) (k)

4
J—N I “

(k+ 1 _ (k)

5
uewwlw ©)

Figure 3. Information propagation from neighboring
nodes to node u, with 3 layers of connections.

The next part of the GNN is Layer Integration.
After k layers, we combine the embedding
vectors from all layers to form a single
representation for the node under consideration.
Specifically:

e, = COMBINE ({e®, k = [0..K]} (6)

Here, COMBINE can be a concatenation of
vectors as used in the NGCF algorithm:

e, =e® el . .1el; 0
es=e” e® ... el

Or it can be a summation, as in the LightGCN
algorithm:

k k
e, = 2K parel’; e = TK japel® (8

With a; = 0 as a hyperparameter, it represents
the importance of the embedding vector at the k-
th layer in contributing to the final embedding
vector. In the LightGCN algorithm, the authors

1
set o = K1

Finally, we have the Link Prediction component.
Once the embeddings for each node have been
established, the predicted link §,,; between two
nodes u and i, can be simply computed using the
inner product:

Yui = eEei 9)

The higher this result, the stronger the link
between u and i. Recommending items to user u
is done by calculating the link values between u
and various candidate items i. These links are
then sorted, and the top-K strongest links are
selected for recommendation.

3.4. Model Training

Using a loss function to optimize parameters in
the model. One popular loss function is BPR
(Bayesian Personalized Ranking)? designed to
optimize the ranking of recommendations:

L= — no (9. —
(w,i,j)eD

9u;) + AllO]2 (10)

In which,
e D: isthe set of triples (u, i,), where
(u, i) is the observed interaction of user
u with item i, while (u, j) is the
interaction of user u with item j that is
not observed.

e §y; and §,;: are the predicted values of
the strength of the connections between
the pairs (user, item): (w,i) and (u,j),
computed by the model.

e o isthe sigmoid function.

e O: are the parameters of the model. In the
LightGCN algorithm, these parameters
are the embedding vectors representing
each user and item at layer k = 0.

e J:is the regularization coefficient.

The BPR loss function encourages the model to
predict links so that items the users have
interacted with (e.g., viewed or rated highly) are
ranked higher than items they have not interacted
or disliked. Through the above calculation steps,
the model will adjust the parameters to minimize
the BPR loss function, thereby improving the
personalized ranking.

4. TRAVEL
APPLICATION

4.1 System Architecture

RECOMMENDATION

Our system is built using a layered architecture,
specifically consisting of four layers: the
Database layer, the RS (Recommendation
System) layer, the Service layer, and the
Application layer, as illustrated in Figure 4.

The Database layer provides data for the system,
comprising two types of data: (i) Rating data for
tourist attractions and (ii) Side information,
which includes detailed information about the
attractions (such as category, address, images). In
particular, the Rating data shows the interest and
satisfaction level (from 1-5 stars) of tourists with
the attractions. This is the basis for building a
prediction model, which helps in generating
suitable recommendations. These data will be
periodically extracted (e.g., every 3 days) from
the application database, then they will be stored
(using Google Cloud Storage service) to serve
the recommendation system.

Web General
Application Recommender

Application
Layer

Recommender Service

Service Layer

User-based Recommender RS Layer
[mEmm——————————— $ _______________ 1
1 1
1 1
i i
: i Database
H H Layer
i i
| Ratingdata Side information | App|database

Periodic Data Extraction
(Tourist Attractions)

Figure 4. Architecture for the Travel
Recommendation Application.

The RS layer contains the Tourist Attraction
Recommendation Module. This layer is
responsible for building the prediction model
based on the collected rating data and generating
a personalized list of recommendations for each
user based on their rating history. We will
provide detailed information on the
implementation of this module in the following
section.

The Service layer creates Web APIs to expose
the functionalities of the recommendation system
to various applications, allowing them to call
these APIs and present the results. The primary
purpose of this layer is to enable different types
of applications across various platforms and
technologies to utilize the recommendation
system. We implement this module using Flask
and deploy it on Google Cloud".

Finally, the Application layer includes
applications that interact with end-users and
present the results. Since this layer is built upon
the Service layer, these applications can be
deployed on various platforms such as Mabile,
Desktop, and Web. In this study, we implement a
Web application for testing, using Wordpress—a
powerful and widely-used Content Management
System (CMS). The General Recommender
module within the application provides
recommendations for users who are not logged
into the system or do not have profiles on the

" Flask, mot framework phat trién ung dung web trén
Python, https://flask.palletsprojects.com/en/3.0.x/

i Dich vu dién toan dam may ctia Google,
https://cloud.google.com/

system. This module recommends highly-rated
attractions to users based on simple statistical
methods. In the future, this component could be
enhanced to offer recommendations based on
seasonality, regions, and other factors.

4.2 Recommendation Process & Experiments

The User-based Recommender module in the RS
layer provides personalized attraction
recommendations for a specific user based on
their past rating history. In which:

e Input: User ID.
e Output: Top-K tourist attractions the user
may be interested in.

We propose a general process for generating
recommendations, as illustrated in Figure 5.
Specifically, it includes main components such
as: Data, Filter, Model Training, Links
Prediction & Ranking.

The Data component includes two types: Rating
Data and Side Information Data. The Rating Data
includes user ratings for various attractions and is
used to train the prediction model. Meanwhile,
the Side Information Data is used to filter
candidate attractions.

The Filter module is designed to select candidate
attractions from all available attractions in the
system based on user-specific criteria. For
example, it can filter attractions that belong to
categories such as spiritual tourism or adventure
tourism. However, within the scope of this study,
the module is implemented in a simplified
manner by including all attractions in the system,
except for those the user has already interacted
with, as input for the recommendation process.

The Model Training module is responsible for
training the prediction model. The output
includes the trained model and the final
embeddings for each user and attraction. In this
study, we utilize the LightGCN?# algorithm for
model training and prediction.

Links Prediction & Ranking: This module
predicts the links between users and attractions,
followed by ranking them. Specifically, for each
attraction, the system predicts the strength of the
connection between the user and that attraction.
The attractions are then sorted in descending
order of connection strength, and the top-K
attractions with the highest connection strengths
are returned as recommendations.

One noteworthy point is that we do not store the
trained model. Instead, for link prediction, we
only save the final embeddings of each user and

6

https://flask.palletsprojects.com/en/3.0.x/
https://cloud.google.com/

attraction (Users/Items embeddings) and compute
the inner product between these vectors. This
approach simplifies server processing since it
eliminates the need to reference libraries for
loading the model.

Rating data
(Training
dataset)

Model Training

Side information
data

/ Model + Users/ltems embeddings /

Candidated

items Links Prediction
& Ranking

Filter

/ Recommendations /

Figure 5. Recommendation Process.

To evaluate the effectiveness of the prediction
model, we conducted experiments on three
datasets: MovieLens", Yelp2018%, and
TripAdvisor?®. Both Yelp2018 and TripAdvisor
are datasets about tourism domain. Statistics on
the size of these datasets are described Table 1.
Specifically, we used the MovieLens dataset with
100,000 ratings, the Yelp2018 dataset with
500,000 rating", and the TripAdvisor dataset
with 13,697 ratings for our experiments. The
datasets are divided into 2 parts, specifically,
75% for training and 25% for evaluation. The
metrics recall@20, ndcg@20, and precision@20
were used to assess the model's performance® %,
The graph learning algorithm used in these
experiments is LightGCN. The initial embedding
size is set to 64. The model was optimized using
the Adam?® optimizer with a learning rate of
0.005. The number of propagation layers in the
graph was set to 3. Each batch size was 1,024,
and the model was trained for 100 epochs. We
utilized Google Colab’ to train the model and to
learn the embeddings for users and attractions.

Table 1. Experimental Datasets.

it https://grouplens.org/datasets/movielens/

"V We reduce the data size to fit computational
resources.

vV A cloud service provided by Google, allowing
writing and execution of Python code through a web
browser, https://colab.research.google.com/.

Datasets Ratings # Users # Items #
MovieLens 100.000 943 1.682
Yelp2018 500.000 8.154 36.837
TripAdvisor 13.697 2.371 2.269

The training process to optimize the model is
illustrated through the training-loss curve in
Figure 6-8, corresponding to the Movielens,
Yelp2018 and TripAdvisor data sets.

Movielens
0.5
0.45 'i
04 |
g 035 1
:°° 0.3 {
£ 0.25
E 02 \‘\k
F 0.5 —
0.1
0.05
0

= W = W oo D = W o~ W = D o~ W0 o WD
NN MM o T NN W WD R~ 0 ® G G

Epoch

Figure 6. Training-loss curve on the MovieLens
dataset.

Yelp2018

o
I

=
i

°
=

2
i

Training loss

=]

Figure 7. Training-loss curve on the Yelp2018
dataset.

TripAdvisor

0.8

0.7

0.6 \
Fos |
2os \
§ 03 \
i 0.2 \

0.1 \

[o e — \"'* ...

Figure 8. Training-loss curve on the TripAdvisor
dataset.

Experimental results of the LightGCN model on
the datasets are shown in Table 2.

Table 2. Experimental results of the LightGCN

https://grouplens.org/datasets/movielens/
https://colab.research.google.com/

Metrics
Datasets
Recall Precision NDCG
MovielLens 0,212395 | 0,386744 0,439850
Yelp2018 0,082281 | 0,052545 0,083219
TripAdvisor | 0,088338 | 0,005332 0,039634

Experimental results show that the LightGCN
algorithm works effectively, shown through
Recall, Precision, and NDCG metrics. In
particular, with the MovieLens data set, the best
results were obtained with Recall, Precision and
NDCG values of 21.2%, 38.7% and 44%,
respectively. For the other two datasets, the
results were similar: for the Yelp2018 dataset, the
results were 8.2%, 5.3%, and 8.3%; and for the
TripAdvisor dataset, the results were 8.8%, 0.5%,
and 4%. LightGCN was evaluated to be more
effective compared to the NGCF algorithm and
other algorithms?®#, In this study, we do not aim
to compare the LightGCN algorithm with other
algorithms, instead, we test the algorithm with
different data sets, to ensure that it performs well
before integrating it into the travel
recommendation application.

4.3 The Web Application

The web application is built on the WordPress
platform, providing a useful and convenient tool
for users to explore attractions. The application
serves two main types of users: administrators
and tourists. In particular, the administrator has
main functions such as: Managing attractions
(posting, editing articles...) and Managing users;
Meanwhile, tourists can search for attractions by
province/city, leave reviews about their
experiences with attractions, and view
recommendations based on their rating history. If
the user is not logged in, the system suggests
attractions with high average ratings.

As described in the previous section, this Web
application will connect to the Web API to fetch
recommended attractions for users. Some images
of the application are depicted in Figure 9-11.

Edit product

*BIMEEvE R S S

Figure 9. The function of Posting attractions.

TravelRS @

Q Tim kiém dia diém..

Tinh thanh

Figure 10. The function of Searching attractions.

Y CHO BAN

Bai tam Quy Nhon Trung tdm Mua réi nudc Bong Ho Hoan Kiém
1

Sen

Figure 11. The function of Suggesting attractions.

To validate the recommendation functionality of
the web application, we simulated creating 3
users: uq, u, and us. These users rated 5 tourist
attractions (encoded as i4, i,...i5) out of a total
of 50 attractions in the system. To facilitate the
creation of visual graphs, we have encoded users
and attractions with their IDs. Specific
information about the attractions is given in
Table 3. The rating data is illustrated in Figure 1.
We plotted graphs (Figures 3, 12, and 13) with
the root nodes corresponding to each user to find
attractions the user might be interested in through
the connections in the graph.

Table 3. Information about some attractions.

Attrlalgtlon Attraction name Location
2 Ho Hoan Kiém Ha Noi
iy Trung tim Mua rdi .
nude Bong Sen Ha Noi
i3 bén Ngoc Son Ha Noi
iy Pho c6 héi an Quang Nam
is Bii tam Quy Nhon Binh Dinh

Figure 12. Graph with 3 connection layers for root
vertex u,.

Figure 13. Graph with 3 connection layers for root
vertex us.

By visually analyzing these small graphs, the
attractions that should be suggested for each user
are identified and listed in Table 4 below. These
are the leaf nodes on the graph, connected to the
root nodes (users) through intermediary nodes.

Table 4. Attractions that should be suggested to each
user, derived from the graph analysis.

e For us, the two attractions with the
highest positive connection strengths are
i, i1 and is.

Table 5. Predicted Connection Strengths between
Users and Attractions.

User Attractions Predicted Links
U iy 4,399
U is 3,109
i17, 112, U7, -1,567, -1,694, -1,699,
ul i34_, i36’ i39, '1,705, '1713, '1,718,
i46’ i10 '1,725, '1,726
U, is 4,378
u, i 3,184
i17, i7, i12’ '1,640, '1,747, '1,752,
U, i39, i33, 36, -1,764, -1,773, -1,776,
i14, i41 '1,794, '1,797
Us iy 3,669
Usg iy 2,735
Usg is 2,697
17,134,107, -1,369, -1,415, -1,441,
Uz 140,041, l46) -1,442, -1,459, -1,466,
iy -1,471

Users Attractions should be
suggested
ul i4! i5
Uz i3, iy
u3 iZ! il! i5

Following the recommendation process described
earlier, we learned the representations for each
user and attraction to calculate the strength of the
connections between them. The predicted
connection strengths are provided in Table 5
below. Based on these results, we observe that
the constructed model accurately predicts the
attractions that users might be interested in.
Specifically:

e For u,, the two attractions with the
highest positive connection strengths are
i, and ic.

e For u,, the two attractions with the
highest positive connection strengths are
iz and i;.

Thus, the web application has demonstrated a
travel recommendation system according to the
proposed process described earlier. Accordingly,
for users who already have a profile on the
system, the application will suggest attractions
that they may be interested in based on their
review history. Here, we only created a very
limited number of users and attractions to
illustrate the system's workflow. Building a
larger dataset can be undertaken once the system
is deployed in a real-world operational
environment.

5. CONCLUSION

In this paper, we have presented the application
of graph learning in a travel recommendation
system. Specifically, we have illustrated the use
of the LightGCN algorithm in the Graph Neural
Network approach to model and process data in
the form of a bipartite graph. This method allows
the recommendation system to exploit the
complex structure and hidden relationships
between users and attractions, thereby providing
accurate suggestions to users. At the same time,
we also tested the algorithm on three different
data sets to evaluate their effectiveness. Besides,
we have proposed the travel recommendation

9

system application architecture. This architecture
is general, based on that, we can build systems
with different recommendation algorithms, with
different technologies.

In the future, we plan to continue to improve and
expand the system. Specifically, some future
research directions include: (i) lintegrating
contextual recommendation. We aim to enhance
the recommendation system by incorporating
contextual information. For example, the system
could suggest tourist attractions based on
additional context such as the time to visit or the
type of companions (family, friends, solo travel).
(ii) Exploration of advanced machine learning
techniques. We plan to investigate and apply
more advanced machine learning techniques to
optimize the system. (iii) Enhancement of the
web application. We intend to further develop the
web application by adding more diverse
information and functionalities. This could
include features like tour booking, itinerary
planning, recommendations for accommodations
(hotels, hostels) and dining options (restaurants,
cafes).

In short, building a travel recommendation
system is important and necessary, especially in
the context of the rapid growth of the tourism
industry in Vietnam. We hope that these research
results will be an important stepping stone to
develop more intelligent travel recommendation
systems in the future.

REFERENCES

1. L. Quang-Hung, V. Son-Lam, L. Anh-Cuong. A
Comparative Analysis of Various Approaches for
Incorporating Contextual Information into
Recommender Systems, Journal of Computer
Science, 2022, 18(3), 187-203.

2. V. Son-Lam, L. Quang-Hung. A Deep Learning
Based Approach for Context-Aware Multi-Criteria
Recommender Systems, Computer Systems
Science and Engineering, 2022, 44(1), 471-483.

3. L. Quang-Hung, V. Son-Lam, N. Thi-Kim-
Phuong, L. Thi-Xinh. A state-of-the-art survey on
context-aware recommender systems and
applications, International Journal of Knowledge
and Systems Science (1JKSS), 2021, 12(3), 1-20.

4. Z.Wu, S. Pan, F. Chen, G. Long, C. Zhang, S. Y.
Philip. A comprehensive survey on graph neural
networks, IEEE transactions on neural networks
and learning systems, 2020, 32(1), 4-24.

5. Q. Guo, F. Zhuang, C. Qin, H. Zhu, X. Xie, H.
Xiong, Q. He. A survey on knowledge graph-
based recommender systems, IEEE Transactions

on Knowledge and Data Engineering, 2020, 34(8),
3549-3568.

6. S.Wang, L. Hu, Y. Wang, X. He, Q. Z. Sheng, M.
A. Orgun, P. S. Yu. Graph learning based
recommender systems: A review, Proceedings of
the Thirtieth International Joint Conference on
Artificial Intelligence (IJCAI-21), Montreal, 2021.

7. S. Wu, F. Sun, W. Zhang, X. Xie, B. Cui. Graph
neural networks in recommender systems: a
survey, ACM Computing Surveys, 2022, 55(5), 1-
37.

8. Z. lJiang, H. Liu, B. Fu, Z. Wu, T. Zhang.
Recommendation in heterogeneous information
networks based on generalized random walk
model and bayesian personalized ranking, In
Proceedings of the Eleventh ACM International
Conference on Web Search and Data Mining,
2018.

9. H. Bagci, P. Karagoz. Context-aware friend
recommendation for location based social
networks using random walk, In Proceedings of
the 25th international conference companion on
world wide web, 2016.

10.Z. Wang, H. Liu, Y. Du, Z. Wu, X. Zhang. Unified
embedding model over heterogeneous information
network for personalized recommendation, In
Proceedings of the 28th international joint
conference on artificial intelligence, 2019.

11.Y. Cen, X. Zou, J. Zhang, H. Yang, J. Zhou, J.
Tang. Representation learning for attributed
multiplex heterogeneous network, In Proceedings
of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data
Mining, 2019.

12.B. Hu, C. Shi, W. X. Zhao, P. S. Yu. Leveraging
meta-path based context for top-n recommendation
with a neural co-attention model, In Proceedings
of the 24th ACM SIGKDD international
conference on knowledge discovery & data
mining, 2018.

13.Y. Deng. Recommender Systems Based on Graph
Embedding Techniques: A Review, IEEE Access,
2022, 10, 51587-51633.

14.R. Ying, R. He, K. Chen, P. Eksombatchai, W. L.
Hamilton, J. Leskovec. Graph convolutional
neural networks for web-scale recommender
systems, In Proceedings of the 24th ACM
SIGKDD international conference on knowledge
discovery & data mining, 2018.

15.W. Fan, Y. Ma, Q. Li, Y. He, E. Zhao, J. Tang, D.
Yin. Graph neural networks for social
recommendation, In The world wide web
conference, 2019.

16.Z. Cui, Z. Li, S. Wu, X. Y. Zhang, L. Wang.
Dressing as a whole: Outfit compatibility learning

10

based on node-wise graph neural networks, In The
World Wide Web Conference, 2019.

17.C. Gao, X. Wang, X. He, Y. Li. Graph neural
networks for recommender system, In Proceedings
of the Fifteenth ACM International Conference on
Web Search and Data Mining, 2022.

18.D.H. Tran, Q.Z. Sheng, W.E. Zhang, et al.
HeteGraph: graph learning in recommender
systems via graph convolutional networks, Neural
Comput & Applic, 2023, 35, 13047-13063.

19.T. K. Nguyen, T. A. Nguyen, T. N. Mai, H. A.
Nguyen, V. A. Nguyen. Hé goi ¥ mua sim dua
theo phién lam viéc véi mo hinh mang hoc sau dd
thi, Cdc céng trinh nghién ciru, phdt trién va img
dung Cong nghé Thong tin va Truyén thong, 2022,
2022(2), 72-81.

20.X. Wang, X. He, M. Wang, F. Feng, T. S. Chua.
Neural Graph Collaborative Filtering, In
Proceedings of the 42nd international ACM SIGIR
conference on Research and development in
Information Retrieval, 2019.

21.X. He, K. Deng, X. Wang, Y. Li, Y. Zhang, M.
Wang. LightGCN: Simplifying and powering
graph convolution network for recommendation,
In Proceedings of the 43rd International ACM
SIGIR conference on research and development in
Information Retrieval, 2020.

22, Steffen Rendle, Christoph Freudenthaler, Zeno
Gantner, Lars Schmidt-Thieme. BPR: Bayesian
Personalized Ranking from Implicit Feedback,
Proceedings of the Twenty-Fifth Conference on
Uncertainty in Artificial Intelligence, 2009.

23.Y. Zheng, B. Mobasher, R. Burke. Context
recommendation using multi-label classification,
In 2014 IEEE/WIC/ACM International Joint
Conferences on Web Intelligence (WI) and
Intelligent Agent Technologies (IAT), 2014.

24.Y. M. Tamm, R. Damdinov, A. Vasilev. Quality
metrics in recommender systems: Do we calculate
metrics consistently?, In Proceedings of the 15th
ACM Conference on Recommender Systems,
2021.

25.Vu Son Lam, Le Quang Hung, Nguyen Van Vinh.
Danh gia h¢ goi y: Khao sat va thuc nghiém, Ky
yéu hoi thao Qudc gia lan the XXIII "Mot s6 van
dé chon loc cua Cong ngh¢ thong tin va Tmyén
théng", 2020.

26. Diederik P. Kingma, Jimmy Ba. Adam: A Method
for Stochastic ~ Optimization, International
Conference on Learning Representations, 2014.

11

