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TOM TAT

Cho v, 1 1a cac trong chuin tic trén hinh ciu don vi Bx clia mot khong gian Hilbert phitc
v6i 86 chiéu tity ¥ va ¢ 1a mot ham chinh hinh trén By, ¢ 14 mot anh xa tiy chinh hinh cia
Bx. Trong bai bdo nay, ching t6i khdo sit cac dic trung cho tinh bi chin va tinh compact clia
todn ti hop ¢6 trong Wy o, f — ¥ - (f o), tit khong gian kiéu Bloch (nhé) B, (Bx) dén khong
gian tang trudng H;°(Bx), Hj(Bx) theo tinh chat 1y thuyét ciia ¢ va udc lugng ham 55(”;)3)(),
nhitng han ché clia cac ham 1), ¢ dén cAc khong gian con m chidu v6i m > 2. Ching t6i ciing
dat dugc mot cong thie chinh xac clia chuin toan ti Wy

T khéa: Todn i hop c6 trong, hinh cau don vi, khong gian Bloch, khong gian ting trudng,
tinh bj chan, tinh compact.
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ABSTRACT

Let v, u be normal weights on the unit ball By of an Hilbert space X with arbitrary dimension
and 1 be a holomorphic function on Bx and ¢ a holomorphic self-map of Bx. In this work,
we characterize the boundedness and the compactness weighted composition operators Wy, .,
f = 9 (f o), from the Bloch-type spaces B,(Bx) to the (little) growth spaces H;°(Bx),
7—[2(3 x) in terms of function theoretic properties of the symbol 1 and the point evaluation

function 657 (5x)
v(2)

, specifically, of the restrictions of functions 1, ¢ to the m-dimensional subspaces

for some m > 2. We obtain also an exact formula of the operator norm of Wy, .

Keywords: Weighted composition operator, unit ball, Bloch spaces, growth spaces, boundedness,

compaciness

1. INTRODUCTION

Let &1, & be spaces of holomorphic functions
on the unit ball Bx of a Banach space X, ¢
be a holomorphic function on Bx and ¢ a
holomorphic self-map of Bx. The weighted
composition operator, defined by symbols ¢
and ¢, maps from & to & and is given by

Wy (f) = MyCo(f) =4 - (f o)

where My, represents the multiplication oper-
ator with symbol ) and Cy, denotes the com-
position operator with symbol .

In recent years, there has been significant
interest in studying weighted composition op-
erators. A well-known theorem due to Ba-
nach states that for a compact metric space

K, the onto linear isometries of C'(K) are of
the form Tf = u(f o ¢) where |u(z)| = 1
for all x € K, and ¢ : K — K is a homeo-
morphism. Motivated by this theorem, active
research on the description of the isometries
of Banach spaces of analytic functions has
shown that the weighted composition opera-
tors characterize the isometries of many Ba-
nach spaces of analytic functions, including
the Hardy space HP (for 1 < p < oo, p # 2),
the weighted Bergman space, and the disk al-
gebra (see D).

We refer to a standard reference '@ for var-
ious aspects on the theory of (weighted) com-
position operators acting on several spaces of
holomorphic functions. There is a vast liter-
ature on the weighted composition operators



or integral operators between specific holo-
morphic function spaces. In order to treat
these specific spaces in a unified manner,
some frameworks of Banach spaces of holo-
morphic functions on the unit disk were in-
troduced (see, e.g. BH). For example, in B, the
authors provided some topological and func-
tion theoretic conditions for the domain space
and then provide boundedness and compact-
ness criteria, as well as estimates of the op-
erator norm and the essential norm of the
weighted composition operators mapping to
the weighted-type space or the Bloch-type
space on the unit disk. In recent years, con-
siderable interest has emerged in the study
of the weighted composition operators. Re-
cently, interest has arisen in composition op-
erators and operator-valued multipliers on
many vector-valued analytic function spaces
as well as in the case X is an infinite di-
mensional Hilbert space, see, for example
BIITHSIONT]

Our setting in this paper will be to dis-
cuss the boundedness, compactness of the
weighted composition operators Wy, , in the
case £ is a general Banach spaces of holo-
morphic functions and & is either growth
space H;°(Bx) or the little growth space
Hg(BX) determined by the growth of the
functions:

Hr (Bx)

= {f e (Bx): swp u(z)|f(2)] < oo},

z€EBx

Hy,(Bx)

={renzB): tim pe)lf(2) =0},

l[=l—1

where J7(Bx) is the space of holomorphic
functions on Bx and p is a normal weight
on Bx. These growth spaces were first stud-
ied by Rubel and Shields ™ in the setting of
X =C.

Growth spaces are an interesting and im-
portant class of Banach spaces of holomor-
phic functions. They have been explored in

many different contexts and there are many
general and more specific references such as,
for example 223 Some well known proper-
ties of these spaces, for By is the unit disk
B C C, are that:

e For a normal weight u, H°(B) is
strictly bigger than H® (the space of
bounded holomorphic functions on B)
if and only if lim|,_; u(2) = 0. If on
the other hand, limsup,,_,; u(z) > 0,
then Hj, = {0};

e The topologies on HZO(IBB) is stronger
than the compact open topology 7c.;

e The bidual [H},(B)]” isometrically iso-
morphic to H;°(B);

e The point evaluation functionals on
H{(B), denoted by 6%, is bounded and
is uniquely extended to point evalua-
tion functional on H;°(B) with equal

norunis;

e The differentiation operator sending
f — f” is an isometric isomorphism
between 82(183), the subspace of the
Bloch space B,(B) of functions with
f(0) = 0, and H;°(B). Note that the
Bloch space contains functions deter-
mined by the growth of the functions
derivatives, so it is closely related to
growth spaces;

e The differentiation operator sending
f — f” is an isometric isomorphism
between HY, the subspace of the H
of functions with f(0) = 0, and H? |,
where Hg° is the growth space H;°(B)
with the weight u(z) = (1 — |2]%)%,
a > 0;

e The maps z — 07¢ is continuous, and
|6%]| goes to infinity as |z| — 1.

These are just a few of the reasons motivating
our research.



In Section [2| we recall crucial conditions
for spaces of holomorphic functions that shall
be used to establish the boundedness, the
compactness as well as for providing essen-
tial norm estimates of these operators in our
settings.

To characterize the boundedness and
compactness, basing on the idea in BE with
minor modifications, in Section [3] we give
the connection between functions in the
growth space H[°(Bx) and their restrictions
to finite-dimensional ones, which leads to the
fact that if the restrictions of the function to
the m-dimensional subspaces, m > 2, have
their growth-norms uniformly bounded, then
the function is in the growth spaces Hy (Byy,)
and conversely.

In Section 4] we characterize the bound-
edness and the compactness of Wy, , from
B,(Bx) into H°(Bx) and into H{(Bx) as
well as calculate the operator norms. We
will show that these characterizations are
completely determined by their behaviour
on ™ and on the point evaluation func-

: B, (Bx) B, (Bx) m
tions 6¢[m](f) and 5@(m)é), where ™ and

w[m] are the restrictions of 1 and ¢, respec-
tively, on the m-dimensional subspaces and
Om) = (@1, Pm), m > 2.

Throughout this paper, we use the no-
tions a < b and a < b for non negative quan-
tities a and b to mean a < Cb and, respec-
tively, C~'b < a < Cb for some inessential
constant C' > 0.

2. PRELIMINARIES AND AUXIL-
IARY RESULTS

Let X be a complex Hilbert space of arbitrary
dimension, Y a Banach space. Denote by Bx
the closed unit ball of X, and we write B,, in-
stead of Ben. Let (eg)rer be an orthonormal
basis of X that we fix at once. Then every
z € X can be written as

z = szek, z = Z@ek.

kel kel

2.1. Mo6bius transformations

The analogues of Mdbius transformations on
a Hilbert space X are the mappings ®, :
Bx — Bx, a € By, defined as follows:

a — Pa(z) - SaQa(Z>

a(2) = 1—(z,a) ’

z € Bx
(2.1)

where s, = /1 — ||a||?, P, is the orthogonal
projection from X onto the one dimensional

subspace [a] generated by a, and @, is the
orthogonal projection from X onto X & [a].
It is clear that

<||Zcz|a2> a, (z€ X) and

Qu(2) =2 — <||ZC;|Q>a, (z € Bx).
When a = 0, we define ®,(2) = —=.

Denote by Aut(Bx) the group of auto-

P,(z) =

morphisms of the unit ball By.
For details concerning Md&bius transfor-
mations we refer to the book of K. Zhu .

2.2. Banach spaces of holomorphic
functions

By #(Bx,Y) we denote the vector space
of Y-valued holomorphic functions on By.
A holomorphic function f € J(Bx,Y) is
called locally bounded holomorphic on Bx
if for every z € Bx there exists a neigh-
bourhood U, of 0 € X such that f(U,) is
bounded. Put

H1p(Bx,Y) =

{f e #(Bx,Y): fislocally bounded on By }.
Given f € ' (Bx) and z € Byx. We will de-
note, as usual, by V f(z) the gradient of f at
z; that is, the unique element in E represent-
ing the linear operator f/'(z) € X’. We can

write
Vi) = (52,
and hence
)@ =Y 2L ) )
kel



We define the radial derivative of f at z € Bx
as follows:

RIG) = Y 2L () en) = 7).

kel

It is obvious that

z € Bx.

(R ()] < V=]

Now, let £ C 7 (Bx) be a Banach space.

For each z € By, denote 5§ the point-
evaluation functional at z defined by 6¢(f) :=
f(z) for all f € &. Thus, for any function
f €& and z € By,

FE < AINSEN, (2.2)

where [[6Z | = sup{|f(2)| : f € £, |If] < 1}.
For all ® = (®;);er € Aut(Bx), for every
j>1,m>2andall f €&, we write

By = (D1, D),

We state below a comprehensive list of
conditions some of which will be needed to
characterize boundedness, compactness, or
determine the essential norm of the operators
under consideration in this work.

(el) & contains the constant functions.

(e2) The closed unit ball Be is compact in
the compact open topology 7.

(e3) There are m > 2 and constant C' > 0
such that for all & € Aut(By), for all
fe& o;-fek,

1@ - fIl < ClFNL 5 e{L,....m}.

Remark 2.1. It follows from (el) that
inf,ep, |05 > 0, and in particular, the fol-
lowing equivalent conditions are satisfied:

(ela) ||6¢| is bounded from below by a posi-
tive constant on compact sets;

(elb) For each point z € By the functions in
& do not all vanish at z.

Indeed, since the function 1 € &, for every
z € By we have ||6¢ || > ﬁ It is obvious that
(ela) = (elb). Now, assume that (elb) holds
but (ela) fails. Then there exist a compact
subset K of Bx, a sequence {2y }n>1 € K and
zo € K such that z, — 2z and [|6¢ || — 0.
This clearly implies that f(zp) = 0 for all

f € &, which contradicts (elb).

By the uniform boundedness principle,
we can easily prove the following:

Proposition 2.1. Let £ be a Banach space
of holomorphic functions on Byx. Then the
mapping 6 : Bx — C, z +— ||6¢]|, is bounded
on compact subsets of By.

3. GROWTH SPACES AND BLOCH-
TYPE SPACES

For a normal weight v on Bx, we denote

o Hlei
I,(2) .—/0 Ok

Remark 3.1. Since v is positive, continuous,
My, = Mineo 5 v(t) > 0. Moreover, it fol-
lows from (W7) that v is strictly decreasing
on [4,1), hence, maxycp 1y v(t) =1 M, < oo.
Then, it is easy to check that

M,
mys

v(2)INz) < R, := 6 +1-9 <o0. (3.1)

for every z € By.

We define bounded holomorphic spaces
H®(Bx),
H7°(Bx), little growth holomorphic spaces
Hg(BX), Bloch-type spaces B, (Bx), and lit-
tle Bloch-type spaces B, o(Bx) on the unit

growth  holomorphic spaces

ball Bx as follows:

HZ(Bx) = {f € #(Bx): sup |f(2)] < o0

z€EBx

M (Bx) = {J € #/(Bx): sup p(2)|f(2)] < oo},

z€Bx

H(Bx) = {f € H2(Bx): lim p(2)|f(2)] =0},

llzl—1



B,(Bx) := {f e #(Bx) :

| fllsB,(Bx) == sup v(2)|Rf(2)] < oo}.
z€Bx

It is easy to check that H>(Bx), H; (Bx)
and B,(Bx) are Banach under following

norms
[flloo == sup [f(z)],
zEBx
[fllage == sup u(2)|f(2)],
z€Bx
1115, (Bx) = [F O+ [Iflls5,(Bx)>
respectively.

Now we consider the holomorphic func-
tion

g(z) =14 ) 252", zeBy, (3.2)
k>ko

where ky = [logQ V%;)], ng = [1_1%] with
ry = v 1(1/2F) for every k > 1. Here the
symbol [x] means the greatest integer not big-
ger than z. By I8, Theorem 2.3, g(t) is in-

creasing on [0,1) and

l9(2)] < g(llz]) € R,
0<Ci:= inf v(t)g(t) < sup v(t)g(t)
t€[0,1) te[0,1)

< sup v(z)|g(z)| =: C2 < 0. (3.3)
z€By

z € By,

Lemma 3.1. Let v be a normal weight on
Bx. Then there exists C' > 0 such that for
every z € Bx we have

[F] < p(2) I lae sy VF € HpY (Bx),
(3.4)

[f() < CO+L (Dl 8y Y € Bu(Bx).

(3.5)

Proof. The inequality (3.4)) is obvious. The
inequality (3.5) was proved in @ (Proof of
Theorem 3.2). O

Lemma 3.2. Let v be a normal weight on
Bx. Then,

(1) (625 B = 1/u(2);

2) 652759 =1+ IL(2).

Proof. (1) It is obvious.
(2) It follows easily from the definition of
55”(3’() and l) that

62PN S 1+ I(=).

Now we consider the function fy given by

Bl

g(t)dt), =z € By,

fole) = (v
0

where ¢ defined by (3.2). It is clear that

fo € B,(Bx) and by (3.3), it is easy to see

that || folls,(Bx) < 1. Then, in view of (3.3)
again, this yields that

By
1557 B > | fo(2)]

1 Ch
1+02’1+02

> max{

b+ ().

It is easy to prove the following:

Corollary 3.3.  H°(Bx), B, (Bx) satisfy
the properties (el), (e2), (e3).

We will show below that the study of
growth spaces on the unit ball can be re-
duced to studying functions defined on finite
dimensional subspaces. Note that, the similar
results for Bloch-type spaces have just been
studied in &,

For each finite subset F' C I, in symbol
|F| = m < oo, we denote by Bjp the unit
ball of span{e, k € F'}. Without loss of gen-

erality we may assume that F' = {1,...,m},
and hence Bjp) = By,. For each m € N, we
denote
'u[m] = M‘span{el,...,em}’
Zm)] = (2’1, ceey Zm) € B,,.
For m > 2, by

08y, = {x = (z1,...

7xm)7

T € X, <$k, xj> = (Sk]}
we denote the family of orthonormal systems



of order m. It is clear that OS; is the unit
sphere of X.
For every x € OS,,, f € #(Bx), we de-

fine
) = 13 )

Then

[% 2G| - Hw@) | 6o

Definition 3.1. Let By be the open unit ball
in C and f € 2 (Bx). We define an affine

norm as follows

s )l o,
where f(-z) : By — C given by f(-z)(\) =
f(Az) for every A € By, and

17 C2)llpgze o) = sup p(Az)|f Q)]

1f 12050, (Bx) =

It is easy to see that the space
uaﬁ(BX)

=A{r e A(Bx): e, 8x) < 0}
is Banach under the norm | - HH}’f,aﬂ(Bx)'
Proposition 3.4. Let f € 5 (Bx). The fol-
lowing are equivalent:

(1) feH7(Bx);

(2) sup,cos,, fo||H
m > 2;

oy (B) < oo for every

(3) sup,eos,, HszH‘”[m](Bm) < oo for some
"
m > 2.

Moreover, for each m > 2

1 340 (Bx) = Sug ”meHOO ) (Bm)- (3.7)

Proof. (1) = (2): Let m > 2 and z},,) =
(21,-.-,2m) € By,. Since szzl zje]H
12tm [, we get

Hfac”’i—[;‘fm](BX): sup ™ (2 )| o ()|

Z[m]eBm

< ap ol (3 )
2€Bx jJEF

<

1 e ) < o
(3.8)

In particular, we obtain (2).

(2) = (3): It is obvious.

(3) = (1): Assume that there exists m >
2 such that

sup || f |l 2% ) (Brm) < O
z€OSm,

We fix z € Bx, z # 0. Consider z =

(ﬁ,xg,...,azm) € OSy, and put zp, =
(I21,0,....,0) € C™ Then |z = [12] and
o - () - o,

k=1

This implies that

[z (Bx) = sup p(2)f(2)]
z€Bx
< sup 2™ (2| fo(2pm))]
zEBx
< sup Hfa:H”HOC |By) < 00
z€OSm
(3.9)

Thus f € Hff’(BX).
On the other hand, it is obvious that

sup || fallze (B < I llge(y)
o €
€08,

for every m > 2. (3.10)

Hence, we obtain (3.7) from (3.8)), (3.9) and

(3-10). O

Remark 3.2. The proposition is not true for
the case m = 1.

Indeed, let X be a Hilbert space with the
orthonormal basis {e;, },,>1. Consider p(z) :=
1—||2||?, and f: Bx — C given by

f(z) = i <% - %,en>, z € Bx.

Then f € J7(Bx) bec2ause
S (% - deen)

<1 <2
<Yl Y g <
n=1 n=1




For each © = > >° (z,e,)e, € OS; and for

n=1
every 2y := 2z € By for some k > 1, we have

fe(zp)) = flzewg) = % - Zf/%k>

and thus, since |fz(z)1))| < 2, we get

suP,cos; ||fallase By)

(L= [z ) fa (2] < 2.

= sup
€085,

However, f ¢ H;°(Bx) because for every
z € Bx, we have

(1= [zI?)If(2)]

=(1—]2|? 3 e—n—i,en Ool
( ””>;<n 7 >ﬁn§jln

as z — 0.

Using a similar argument to that in the
proof of Proposition 2.3 in &, we easily obtain
the following result, for which the proof will
be omitted.

Proposition 3.5. The spaces H;°(Bx) and

o0

ot (Bx) coincide. Moreover,

|l By < Il o83
Sl ) VF € HX(Bx).

4. THE BOUNDEDNESS AND THE
COMPACTNESS OF W, : B,(Bx) —
5 (Bx)

In this section we consider the weighted com-
position operator Wy, from B,(Bx) into
He°(Bx) and into Hj,(Bx) defined by

(Wyof)(2) == 4(2) - (fop)(2), =z € Bx.

The component operators are the multi-
plication operator M, f = v - f and the com-
position operator C,f = f o ¢, which cor-
respond to the cases when the composition
symbol ¢ is the identity function on B and
the multiplication symbol ¥ is the constant
function 1, respectively.

Theorem 4.1. The following are equivalent:

(1) Wy, By(Bx) — H;°(Bx) is bounded;

[m] . _ [m] [m] B, (Bx)
@) ML, = sup )18
< oo for some m > 2;
(3) Mypp 5B
= sup p(2)|e(2)| 105057 < oo
zEBx
Moreover, in this case
Wy ol = My, o p- (4.1)
Proof. (3) = (2): It is clear.
(1) = (3): Suppose Wy, : B,(Bx) —

H7°(Bx) is bounded. Fix z € Bx. For each
f € B,(Bx) with | fll5,(Bx) < 1, we have

p2)P ()] < Wy o fllrge (Bx)

< Wy ollll s, (Bx) < Wyl

By definition of 68 (Bx) (see Proposition,
taking the supremum over all f in the closed
unit ball of B, (Bx), we obtain

B, (B
@RI < Wl
Taking the supremum over all z € Bx yields

My o < [[Wy | < oo (4.2)

(2) = (1): Assume MQ[ZZ]W < oo for
some m > 2. Let f € B,(Bx) with
I flB,(Bx) < 1. For each z € OS,,, we write
Zp 1= Yoy zkxy. Note that [|zz] = ||zl
and hence ,u[m](z[m]) pl™(z,). Then

Wy (FDallrecs,,, @)

= sup ™ ()W (2)(f 0 9)a(2m))]

2z €EBm

[m]
= Mwmu < 0

for every z € OS,. By (3.7), Wy, is
bounded because

[Wa o ()42 (Bx)
= sup ||(W¢,<p(f))IHHZC[’m](Bm)

wEO m

[m]
= Mw,so,u < 0.



(4) = (2): For z € Bx, we have

()| F ()] < ()l llon )|

< My,pp < 0.

Therefore, taking the supremum over all z €
Bx, we obtain

Wy o f It (Bx) < My,pu <00, (4.3)

Finally, from (4.2), (4.3) we deduce (4.1). O

We next characterize the compactness of
the operators Wy, . As in @ we can prove the

following;:

Lemma 4.2 (I Lemma 2.10). Let &, F be
two Banach spaces of holomorphic functions
on By. Suppose that

(1) The point evaluation functionals on £ are
continuous;

(2) The closed unit ball of £ is a compact
subset of £ in the topology of uniform
convergence on compact sets;

(3) T : & — F is continuous when £ and F
are given the topology of uniform conver-
gence on compact sets.

Then, T is a compact operator if and only
if given a bounded sequence {f,} in &€ such
that f,, — 0 uniformly on compact sets, then
the sequence {T'f,,} converges to zero in the
norm of F.

Theorem 4.3. Assume that Wy,
B,(Bx) — H;°(Bx) is bounded. Then, the
following are equivalent:

(1) There exists m > 2 such that

lim  sup
"1 gy (2)[|>7

@5 Sl =0,

(4.4)
where @) = (1, Pm).

(2) Wy, is compact.

Proof. First, we show that ¢ € H°(Bx). In-
deed, since Wy , is bounded, by Theorem
A1 Mw@u < oc. Then, by Remark [2.1}

inf,ep, H5 v BX H =: a > 0. Consequently,

au(z)\d)(z)! < My o5

This means ¢ € H;°(Bx).
(2) = (1): Suppose Wy, : B,(Bx) —
H7°(Bx) is compact. Fix m > 2. It is obvious
that holds if ¢(,,,) (Bx) is relatively com-
pact in Bx. So assume ¢,y (Bx)N0Bx # @.

z € Bx.

Let {2"},>1 be a sequence in By such

that [|pum)(2")[ — 1. By the definition

of §5(Bx)
O(m) (&™)’
find a sequence {fp}n>1 C B,(Bx) with

[ fullB,(Bx) < 1 for every n > 1 satisfying

n B
[Faloum N> 18 S0 =2 (45)

with ¢ > 0 is given we can

By the condition (e2), without loss of gener-
ality, we may assume that f, — 0 € B,(Bx)
uniformly on compact subsets of By and
{fn}n>1 is uniformly bounded on compact
sets.

For each n > 1, denote a™ := (2™) and
consider the automorphism ®,» € Aut(By)

defined by (£2.1). For each j € {1,...

Ganj = (a()j o — (Pan)(m))j * fn-
By (e3), Go» j € B,(Bx). It is an easy calcu-
lation that for every w € By,

|Gar (W) = (@) - Fu(w) = ((Pan) ) (w))]

3\/ 1- ||a(m)H2

,m}, put

< fn(w)|.
e
Then, by (2.2),
Gyt < Y2 Nl 0
am,j (W S— wl|s
j T Tl

consequently, by Proposition and since
laoll = oIl = 1 as n = oo,
the sequence {Gg» j}n>1 18 a sequence of
holomorphic functions converging to 0 uni-
formly on compact subsets of Bx for each
jed{l,....,m}.

Now by the condition (e3), there exists

C > 0 such that for all j € {1,...,m}, we



have

1Gan 518, (Bx)

< Ha

yLfnlls, (Bx) + 1((Ran) m)); -
<(CH+Dlfnlls,sx) <C+1 Vn=>1

By (2.2), any bounded sequence in B,(Bx) is
uniformly bounded on compact sets and any
sequence in B,(Bx) that converges to 0 in

norm, also converges uniformly on compact
sets. Therefore, since W, , is compact, by

Lemma [1.2, [[¢)- ((Gan); 0 ) lluge(py) — 0 as
n — oo for every j € {1,...,m}. Note that

®,n(a™) = 0. Therefore, by (4.5), we have

p(z") (" ) (2 )H(H%( )(zn =€)
< ()P E) ey (2 Fn(Pimy (27))]

= Z‘ an )

)Mo

= Zuw

—0 asn — oo.

j O SD)HHoo (Bx)

Consequently,
. n BV BX
Jim a8

< lim (=) ()] < <l ey
Since ¢ is arbitrary, it follows that holds.

(1) = (2): Assume that there exists m >
2 such that holds. By Lemma it suf-
fices to show that if {f,,}n>1 is a sequence in
B,(Bx) converging to 0 uniformly on com-
pact subsets of Bx such that || f,[3,(5,) <1
for all n > 1 then ||W¢7¢fn||Hﬁo(BX) — 0 as
n — 0o.

Let {fn}n>1 be such a sequence, fix
e > 0 and choose a number r € (0,1)
such that u()p(2)15,,
ever |lom)(2)] > 7 Slnce for all w €
By, [fu(w)] < 625N, i Jopm(l >
r, then pu(2)[(2)||fu(pm)(2)] < e. Thus
p(@) ) (o (2)] < e if flez)] >

Il < & when-

fullB, (Bx)
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because |p(2)]| (2)|| > r for every
z € Bx.

Now, we consider the case |[p(2)]| < 7.

> ¢

Then [[¢()(2)]| < 7. Note that
B[Qp(m)v'r]
_{gp(m ”Som)( )H<7’,y€Bx}
cB,cC”

is relatively compact for every 0 < r < 1,
by the hypothesis, f, — 0 uniformly on
B[¢(m),7]- Then, there exists a natural num-
ber N such that |f,(w)| < E/HwHHﬁo(BX) for

all n > N whenever w € Blp (), 7]. Thus,

p(@) Y fnlomm) (2)] <e if flp)] <7
O

We now discuss the boundedness and the
compactness of the weighted composition op-
erator mapping into H),(Bx).

Theorem 4.4. The following are equivalent:

(1) ¥ e Hg(BX), and there exists m > 2,

P(m) (rBx) is relatively compact

for every 0 <r < 1, (4.6)
B. (B
Jim I = 0.k > 1
(4.7)

(2) Wzg,go : B,(Bx) — Hg(BX) is compact.

Proof. (1) = (2): Suppose (1) holds. Fix
f € B,(Bx). We show that Wy, ,f =¢-(fo
) € Hex(Bx). Since () [9(2)|f (9 (2)) —
w(2)|Y(2)|f(e(z)) as k — oo for each z € By,
and Hg(BX) is closed in H;?(Bx), it suffices
to check that ¢ - (f o o)) € H)(Bx) for
every k > 1. Given k > 1. By the hypothesis
(1), for given € > 0 there exists r € (0,1)
such that

(2 (P (2))]

B, (Bx)
MW sy, o
< ellflls,my) for ll2] > .

On the other hand, it follows from assump-
tion (1) that



sup|j<r 1(2) [V (2)I[f (or)(2))]

< (@[85S M s, ) < o
(4.9)
Consequently, ¥ (fop)) € Hyf(Bx). More-
over, by ([&.8), ¢ - (f o o)) € H)(Bx).

We also obtain from (4.8)) and (4.9) that
Wim is bounded.

The compactness of the operator W127 o
now follows by arguing as in the proof of The-
orem (4.3 and the condition (4.6).

(2) = (1): First, since ng is bounded
and 1 € B,(Bx) it is easy to check that
¥ € Hp(Bx).

In order to prove , first we have to
show the following claim:

S lle—ul] < a2 Pl
(4.10)

Indeed, it is easy to check by direct cal-
culation that

-
2 VA w

. \/1 O [Pl

‘1 - <Z7w>’2

QX(Zaw)7

where px is the pseudohyperbolic metric
in Bx (see p-99). On the other hand,

ox(z,w) = sup{o(f(2), f(w)) :

f e H®(Bx) with || f]lec <1}

(see (3.4) in B), where o(z,y) = ‘{”_}yy

z,y € Bj, is the pseudohyperbolic metric

)

in B;. Note that, since the function n —
n

1—f(2) f(w)
f(z) = f(w) — 0, it follows from Schwarz’s

lemma, that o(f(2), f(w)) < [f(z) — f(w)| for
every z,w € Bx. Consequently,

is holomorphic from B into B; and

, 2Z,w € Bx.

11

ox(z,w)

< sup{|f(2) — f(w)] :
for f € H>(Bx) with ||f]lw < 1}

H>®(B HP (B
< sup{ |67 B () = 52T B0 )

for f € H>(Bx) with ||f]le < 1}

— ||5Z'LEO(BX) _ ZL'}[EO(BX)”

Hence, is proved.

Next, we prove . For 0 < r < 1,
the set V. := {(5??‘0(3)() ozl € r} C
(Hy°(Bx))' is bounded. Then, by the com-
pactness of W, , the set

(W) (V) = {20 ) s 12l < v}

is relatively compact in [B,(Bx)]'.

It should be noted that, for every sub-
set K of the dual of a Banach space B, (Byx)
and every bounded subset D C C, if the
set {tn : t € D,n € A} is relatively com-
pact in B,(Bx) then A C [B,(Bx)] is rela-
tively compact. With this fact in hand, since
the set {¢(z) : ||z|| < r} is bounded, the
set {5?” Bx), |zl < r} is relatively com-
pact. Then, it follows from the inequality
that p(rBx) is relatively compact, so
is o(m)(rBx) for m > 2.

Finally, we prove . Assume that
there exist m > 1, o > 0 and a se-
quence {z"},>1 C Bx such that |[z"| —
1 and (=) |50, | > o for all
n > 1. Then, we may choose {fp}n>1 C
B,(Bx) such that |fullg,(8y)y < 1 and
[Fnlom )] > 1180

cp(m)(Z”)H — 0/2 for every
n > 1. Thus

p(z") [P (am) (2")] > 0=/ 2u(z")[9(2")].

Therefore, since 1 € HB(BX), ngfn ¢
Hg(BX). This contradicts the boundedness
of WJ . O

Remark 4.1. In the case of dim X < oo,
and following the proof of Theorem the
following statements are equivalent:



i B. (B
(1) ”il‘glM(z)‘w(z)l”éw(k()(;)” =0 fOl“ every

k> 1 and ¢ € HP(Bx);
(2) ng : B,(Bx) — H)(Bx) is compact;

(3) Wg B,(Bx) — Hg(BX) is bounded.
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