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TÓM TẮT

Trong bài báo này, chúng tôi đưa ra một điều kiện cần và đủ để một họ hữu hạn các ma trận chuẩn tắc là chéo

hóa đồng thời được qua phép ∗-tương đẳng (SDC). Bên cạnh đó, chúng tôi cũng xây dựng một gói lệnh MATLAB

tương ứng để kiểm tra một họ hữu hạn các ma trận chuẩn tắc có là SDC hay không, và xác định ma trận tương

đẳng làm chéo hóa đồng thời các ma trận ban đầu nếu các ma trận là SDC. Một số ví dụ minh họa và kiểm tra

gói lệnh này cũng được trình bày trong bài báo.
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ABSTRACT

This paper gives an alternative equivalent condition for a finite family of normal matrices to be simultane-

ously diagonalizable via ∗-congruence. The matrices do not need pairwise commute. A corresponding MATLAB

package is developed. Some numerical tests for this package are also presented.
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1. INTRODUCTION

The problems of simultaneously diagonal-
izing a family of matrices (via congru-
ence or similarity) are known to be long-
standing due to their applications, for exam-
ples, multi-linear algebra4, quadratic equa-
tions and optimization10;13, signal process-
ing, data analysis4, . . .

There is a relationship between two con-
cepts of simultaneous diagonalizations via
similarity (SDS) and via congruence (SDC);
see, e.g., in the book of Horn and Johnson12.
One should, hence, need to distinguish these
existing concepts as follows.

Notations and definitions. Let F denote
the field of real numbers R or complex ones

‡Email: vdtduy@upt.edu.vn, voductuduy@gmail.com
§Corresponding author. Email: lethanhhieu@qnu.edu.vn
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C, and Fn×n be the set of all square matri-
ces of order n with entries in F. Let Sn,Hn,

and N n denote the sets of real symmetric,
Hermitian, and normal matrices in Fn×n, re-
spectively. By .∗, .T , we denote the conju-
gate transpose and transpose of a matrix, re-
spectively. For A ∈ Hn, we write A ⪰ 0

(resp., A ≻ 0) for the meaning that A is pos-
itive semidefinite (resp., positive definite).
As usual, In×d denotes the n × d identity
matrix, and we shortly write In if n = d.

Matrices C1, . . . , Cm ∈ Fn×n are called

(i) simultaneously diagonalizable via
similarity on F, shortly F-SDS, if there
exists a nonsingular matrix P ∈ Fn×n

such that P−1CiP ’s are all diago-
nal matrices in Fn×n. When m = 1,

we will say “C1 is F-DS”, or F-
diagonalizable as usual;

(ii) simultaneously diagonalizable via ∗-
congruence on F, abbreviated ∗-SDC,
if there exists a nonsingular matrix
P ∈ Fn×n such that P ∗CiP is diag-
onal for every i = 1, . . . ,m. When
m = 1, we will say “C1 is ∗-DC”;

In case Ci’s are all Hermitian, it is
worth mentioning that the diagonal
matrices P ∗CiP ’s are always real due
to the Hermitianian of Ci’s. Moreover,
P can be chosen to be real if Ci’s are
all real14.

(iii) simultaneously diagonalizable via T -
congruence on F, abbreviated T -SDC,
if there exists a nonsingular matrix

P ∈ Fn×n such that P TCiP is diag-
onal for every i = 1, . . . ,m. When
m = 1, we will say “C1 is T -DC”.

Unlike the ∗-SDC case, the diagonal
matrices P ∗CiP ’s do not need to be
real even Ci’s are real symmetric. The
readers are referred to3 for the T -SDC
properties;

(iv) commuting if they pairwise commute:
CiCj = CjCi for every i, j =

1, . . . ,m.

In the rest of this paper, the term “SDC” will
mean either “simultaneous diagonalization
via congruence” or “simultaneously diag-
onalizing via congruence”, or “simultane-
ously diagonalizable via congruence”, and
depending upon the situation, we will rec-
ognize the ∗- or T−congruence. It is analo-
gous to the term “SDS”.

An overview of the SDC problem. The
SDC problem is known that first appeared
in 1868 by Weierstrass22, in the 1930s by
Albert1, Finsler6, Hertenes9, and later stud-
ies developed some conditions ensuring that
two quadratic forms are SDC (see, e.g., in.,
works by More16 and Pong19 and refer-
ences therein). However, these works pro-
vide only sufficient conditions, except for a
few ones11;12.

From the practical point of view, Bunse-
Gerstne et al.2 proposed a Jacobi-like algo-
rithm for SDC two commuting normal ma-
trices, and this is numerically extended to
several commuting ones by Mendle15. Re-
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cently, there have been some works13;14;17;20

that present some (equivalent or sufficient)
conditions for the ∗-SDC property of col-
lections of either complex or real Hermi-
tian matrices, and another one deals with
the T -SDC problem for complex symmetric
matrices3. It is noticed that the ∗- and T -
congruences coincide only when the initial
matrices are real symmetric, which are also
real Hermitian. The two ∗-SDC and T -SDC
problems are different, even if the initial ma-
trices are symmetric. For example, Busta-
mante and collaborators3 show that the two
real symmetric matrices

C1 =

[
0 1

1 1

]
, C2 =

[
1 1

1 0

]
∈ S2

are T -SDC. But they are not ∗-SDC over
C14.

Several works deal with the normal
SDC problem, i.e., the simultaneous di-
agonalization of several normal matrices
via ∗-congruence18;21. However, they sound
purely theoretical. There has been no algo-
rithm to detect whether the given normal
matrices are ∗-SDC.

Contribution of the paper. In this pa-
per, we solve the normal SDC problem, i.e.,
the simultaneous diagonalization of several
normal matrices via ∗-congruence. We first
give a sufficient and necessary condition
for a finite family of normal matrices to
be simultaneously diagonalizable (via either
congruence or similarity). It is noticed that
the SDC property of a family of arbitrary

square matrices can be checked by split-
ting the matrices into their Hermitian and
skew-Hermitian parts14. The SDC property
of the matrix family is confirmed if a posi-
tive definite matrix exists that solves a sys-
tem of linear equations defined by the Her-
mitian and skew-Hermitian parts; see The-
orem 7 below. The number of linear equa-
tions depends upon the number of Hermi-
tian and skew-Hermitian parts. This may
have a big computation complexity. Our
(sufficient and necessary) condition in this
paper restricts the number of such matrix
linear equations.

On the other hand, we develop a MAT-
LAB package to solve the normal SDC prob-
lem and its numerical tests.

Auxiliary results. We now recall some
existing results on SDC that will be fre-
quently used in this paper.

Lemma 1. 13 Suppose there is 0 ̸= λ ∈ Rm

such that C(λ) ≻ 0, where, without loss
of generality, we assume λ1 ̸= 0. Then
C1, . . . , Cm ∈ Sn is SDC if and only if
PTCiP and PTCjP commute for all 2 ≤
i ̸= j ≤ m, where P is determined such
that PTC(λ)P = I (the identity matrix).

As shown in the paper of Jiang and Li13,
the matrix P in Lemma 1 is determined as
P = UD1/2, where U is orthogonal and
D1/2 is the square root of the diagonal ma-
trix D in an eigenvalue decomposition of
C(λ) :

D = UTC(λ)U.
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The following results can be found in
many books on Linear Algebra; their proofs
are hence omitted in this paper.

Lemma 2. 12 (i) Every A ∈ Hn can be diag-
onalized via similarity by a unitary matrix.
That is, it can be written as A = UΛU∗,

where U is unitary, Λ is real diagonal and
is uniquely defined up to a permutation of
diagonal elements.

Moreover, if A ∈ Sn, then U is picked to
be real.

(ii) Suppose each of C1, . . . , Cm ∈ Fn×n

is F-DS. Then, they are F-SDS if and only if
they are commuting.

(iii) Let A ∈ Fn×n, B ∈ Fm×m. The ma-
trix M = diag(A,B) is diagonalizable via
similarity if and only if so are both A and B.

(iv) A complex symmetric matrix A is di-
agonalizable via similarity, i.e., P−1AP is
diagonal for some invertible matrix P ∈
Cn×n, if and only if it is complex orthogo-
nally diagonalizable, i.e., Q−1AQ is diag-
onal for some complex orthogonal matrix
Q ∈ Cn×n : QTQ = I.

(v) Suppose A = diag(α1In1, . . . , αkInk
),

αi’s are distinct. If AB = BA then B =

diag(B1, . . . , Bk) with Bi ∈ Fni×ni for all
i = 1, . . . , k. Furthermore, B is Hermitian
(resp., symmetric) if and only if so are Bi’s.

Construction of the paper. Section 2
is devoted to the SDC problem for normal
matrices, in which we give a sufficient and
necessary condition for a family of normal
matrices to be SDC. And then, we propose

a corresponding algorithm. Section 3 dis-
cusses the numerical experiments with re-
spective our SDC algorithm in Section 2.
We also give a numerical example illustrat-
ing our algorithm. Section 4 presents the
conclusion.

2. THE NORMAL SDC PROBLEM

In this section, we deal with the normal
SDC problem. Our conditions for a fam-
ily of normal matrices to be ∗-SDC can be
viewed as a generalization of that in Theo-
rem 7 below. For convenience to the readers,
we revisit these results as follows.

2.1 SDC and SDS of Hermitian
matrices: revisited

We first summarize some existing re-
sults of the SDC and SDS of several Her-
mitian matrices. The following is presented
in the book of Horn and Jonhson12 whose
proof does not completely give a nonsingu-
lar matrix that simultaneously diagonalizes
the given matrices. Our proof leads to an al-
gorithm that may be useful in practice. The
idea is to follow that of proving Theorem
9 in the paper of Jiang and Duan13 for real
symmetric matrices.

Theorem 3. 14 The matrices I, C1, . . . , Cm ∈
Hn, m ≥ 1, are SDC if and only if they are
commuting. Moreover, when this is the case,
they are SDC by a unitary matrix, and the
resulting diagonal matrices are all real.
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Theorem 4. Let A1, . . . , Am ∈ Fn×n, m ≥
1, be such that each of them is diagonaliz-
able via similarity. Then, these matrices are
simultaneously diagonalizable via similar-
ity (shortly, SDS) if and only if they pairwise
commute.

The following are not hard to prove, we
omit their proofs.

Lemma 5. The matrices C1, . . . , Cm ∈
Hn are SDC if and only if for any
λ ∈ Rm with a λi ̸= 0, the matrices
C1, . . . , Ci−1,

∑m
t=1 λtCt, Ci+1, . . . , Cm are

SDC.

Lemma 6. 14 The matrices C1 =[
Ĉ1 0

0 0k

]
, . . . , Cm =

[
Ĉm 0

0 0k

]
are SDC

if and only if so are Ĉ1, . . . , Ĉm.

Using Theorem 3, we comprehensively
describe the SDC property of a family of
Hermitian matrices as follows.

As a consequence of Theorem 3, every
commuting collection of Hermitian matri-
ces can be SDC. However, this is just a suffi-
cient but unnecessary condition. For exam-
ple, the matrices

C1 =

−1 −2 0

−2 −28 0

0 0 5

 , C2 =

1 2 0

2 20 0

0 0 −3

 ,

C3 =

2 4 0

4 1 0

0 0 7



are SDC by

P =

1 0 −2

0 0 1

0 1 0


but C1C2 ̸= C2C1. The following provides
some equivalent SDC conditions for Hermi-
tian matrices. It turns out that the SDC prop-
erty of a family of such matrices is equiva-
lent to the feasibility of a positive semidef-
inite program (SDP). This also allows us to
use SDP solvers, for example, “CVX”7, . . . to
check the SDC property of Hermitian matri-
ces.

Theorem 7. 14 The following conditions are
equivalent:

(i) Matrices C1, . . . , Cm ∈ Hn are SDC.

(ii) There exists a nonsingular matrix P ∈
Cn×n such that P ∗C1P, . . . , P

∗CmP

are commuting.

(iii) There exists a positive definite matrix
X = X∗ ∈ Hn solves the following
system of m(m−1)

2 linear equations

CiXCj = CjXCi, 1 ≤ i < j ≤ m.

(1)

If C1, . . . , Cm are real, then one can pick P

and X to be real.

2.2 The normal SDC problem

Recall that a square matrix N ∈ Fn×n is
said to be normal if

N∗N = NN∗.
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It is well-known that (real or complex) Her-
mitian, unitary, orthogonal matrices are nor-
mal, but the converse is not true in general.
The readers are referred to, e.g., the work by
Grone et al.8, for equivalent conditions for a
normal matrix.

The third condition of Theorem 7 leads
us to a sufficient and necessary condition for
the ∗-SDC property of a family of arbitrary
square matrices. This can be done by split-
ting the matrices into their Hermitian and
skew-Hermitian parts as follows. For square
matrices A1, . . . , Am ∈ Fn×n, their Hermi-
tian and skew-Hermitian parts1 are

Ah
i :=

Ai + A∗
i

2
, As

i :=
Ai − A∗

i

2i
, (2)

where i is the imaginary unit, i2 = −1.

Noticing that Ah
i and As

i are Hermitian and
that

Ai = Ah
i + iAs

i , A∗
i = Ah

i − iAs
i . (3)

It is not hard to show that A1, . . . , Am are
∗-SDC if and only if so are Ah

i , A
s
i , i =

1, . . . ,m.

Lemma 8. 11 The square matrices
A1, . . . , Am ∈ Fn×n are SDC if and only
if so are Ah

i , A
s
i , i = 1, . . . ,m.

Theorem 7 and Lemma 8 lead to a suf-
ficient and necessary condition for a family
of arbitrary square matrices to be ∗-SDC, in
which, after splitting up the initial matrices
into Hermitian and skew-Hermitian, there

are m(m − 1) matrix equations as in (1).
One can apply Theorem 7 and Lemma 8 to
normal matrices. Below, we will introduce a
smaller number of normal matrix equations;
see Theorem 11.

Since any normal matrix is always diag-
onalizable by a unitary one12, it is diagonal-
izable via both sense similarity and congru-
ence.

It is well-known12 that any finite family
of commuting square matrices can be simul-
taneously upper triangularized by a unitary
matrix. Moreover, if these matrices are nor-
mal, then so are the resulting upper trian-
gular matrices, and hence they are diagonal.
Theorem 4 thus leads to the following ob-
servation.

Lemma 9. 12 Normal matrices N1, . . . , Nm

are SDC by a unitary matrix if and only if
they pairwise commute.

Consequently, the normal matrices
N1, . . . , Nm are SDS if and only if they are
SDC by a unitary matrix.

Proof. Suppose N1, . . . , Nm pairwise com-
mute. There exists a unitary matrix U such
that U∗NiU is upper triangular for every
i = 1, . . . ,m12. Since U∗NiU =: Ti is nor-
mal due to the normality of Ni, Ti must be
diagonal. Thus N1, . . . , Nm are SDC by the
unitary matrix U.

Conversely, if N1, . . . , Nm are SDC by a
unitary matrix U, then U∗NiU ’s are diago-
nal and pairwise commute. This implies the

1In fact, the skew-Hermitian part of A is usually defined as A−A∗

2 .
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commutativity of U∗NiU ’s and that of Ni’s.

The last part is obvious.

Lemma 10. Let M,N be normal matrices
and X be a square matrix of the same order
n. The following statements are true:

i) The conditions

MXN = NXM (4)

MXN∗ = N∗XM (5)

hold if and only if all the following condi-
tions hold:

Mh ·X ·Nh = Nh ·X ·Mh, (6)

Mh ·X ·Ns = Ns ·X ·Mh, (7)

Ms ·X ·Nh = Nh ·X ·Ms, (8)

Ms ·X ·Ns = Ns ·X ·Ms. (9)

ii) Moreover, with the above materials
and if X is Hermitian then (7)&(9) can be
replaced by

Mh ·X ·Ms = Ms ·X ·Mh, (10)

Ns ·X ·Nh = Nh ·X ·Ns. (11)

Proof. The observation is derived from di-
rect computations, see the Appendix 4, us-
ing the expansions (2) and (3) for M and
N.

The following is our main theorem.

Theorem 11. Let N1, . . . , Nm ∈ N n, m ≥
2. The following conditions are equivalent:

i) N1, . . . , Nm are SDC.

ii) There exists a nonsingular matrix P

such that the matrices P ∗NtP, P
∗N∗

t P,

t = 1, . . . ,m, pairwise commute.

iii) There exists a positive definite matrix
X such that

NiXNj = NjXNi and

NiXN∗
j = N∗

jXNi, 1 ≤ i ≤ j ≤ m.

(12)

iv) The matrices Nh
t , N

s
t , t = 1, . . . ,m,

are SDC.

Proof. The equivalence of i) and iv) is ob-
vious due to14 Theorem 3.1.

i) ⇒ ii). Suppose N1, . . . , Nm are SDC
by a nonsingular matrix P, that is the ma-
trix P ∗NiP is diagonal, and so is P ∗N∗

i P,

for every i = 1, . . . ,m. It is then obvious
P ∗NiP, P

∗N∗
i P, t = 1, . . . ,m, pairwise

commute.

ii) ⇒ iii). Suppose the 2m matrices
P ∗NiP, P

∗N∗
i P, i = 1, . . . ,m, pairwise

commute, for some nonsingular matrix P.

Then

(P ∗NiP ) · (P ∗NjP ) = (P ∗NjP ) · (P ∗NiP ),

(P ∗NiP ) · (P ∗N∗
j P ) = (P ∗N∗

j P ) · (P ∗NiP ),

for every i ̸= j. This implies

Ni(PP ∗)Nj = Nj(PP ∗)Ni,

Ni(PP ∗)N∗
j = N∗

j (PP ∗)Ni,

for every i ̸= j. The conclusion is obvious
with X = PP ∗.
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iii) ⇒ i). Let Q be the square root
of X ≻ 0 satisfying (12). Note that Q =

Q∗. It follows from (12) that the matrices
QNtQ,QN∗

t Q’s pairwise commute. This
implies that, for 1 ≤ t, l ≤ m,

NtQ
2Nl = NlQ

2Nt, NtQ
2N∗

l = N∗
l Q

2Nt.

Applying Lemma 10 to each pair of (t, l)

and X = Q2 = Q∗Q ≻ 0, one obtains the
commutativity of the Hermitian matrices

QNh
t Q, QNs

t Q, t = 1, . . . ,m.

By Lemma 9, these latter matrices are SDC
by a unitary matrix V, and hence so are
the matrices QNtQ’s due to Lemma 8. This
yields N1, . . . , Nm are SDC by the nonsin-
gular matrix U = QV.

Algorithm 1. SDC of normal matrices.

INPUT: N1, . . . , Nm ∈ N n.

OUTPUT: A nonsingular matrix U such that
U∗NiU ’s are diagonal.

Step 1: If the system (12) has a positive def-
inite solution X, go to the next step.
Otherwise, conclude the initial ma-
trices are not SDC.

Step 2: Compute the square root X
1
2 of X

by using eigenvalue decomposition
of X.

Step 3: Simultaneously diagonalizing the
commuting and Hermitian matrices

1

2
X

1
2 (Ni+N∗

i )X
1
2 ,

i

2
X

1
2 (N∗

i −Ni)X
1
2 ,

for i = 1, . . . ,m, by applying
the Jacobi-like algorithm14, to de-
termine a unitary matrix V. Return
U = QV.

The last step of Algorithm 1 can apply
the Jacobi-like algorithm14 Algorithm 3.1
exploiting the works by Bunse-Gerstner and
collaborators2, and by Mendl15.

Example 1. The real symmetric matrices

C1 =

[
0 1

1 1

]
, C2 =

[
1 1

1 0

]
,

which are normal, are C-SDC as shown in
the work of Bustamante and collaborators3.
However, they are not SDC due to Theorem
7. Indeed, we want to check if there is a pos-

itive semidefinite matrix X =

[
x y

y z

]
≻ 0,

which is equivalent to x > 0 and xz > y2,

such that

C1XC2 = C2XC1 (= (C1XC2)
∗) .

This is equivalent to{
x > 0, xz > y2

x+ y + z = 0.

But the last condition is impossible since
there do not exist x, z > 0 such that xz >

y2 = (x+ z)2. Thus C1 and C2 are not SDC
on R. ⋄
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Example 2. . Let

N1 =

1 1 1

1 1 1

1 1 1

 , N2 =

0 1 0

1 −1 1

0 1 0

 ,

N3 =

3i −i i

−i 5i −i

i −i 3i

 .

Theorem 11 leads to finding a positive def-
inite matrix

X =

x y z

ȳ t u

z̄ ū v

 ≻ 0, x, t, v ∈ R, (13)

which is equivalent to that

⇔ x > 0, xt > |y|2, det(X) > 0,

such that

NiXNj = NjXNi,

NiXN∗
j = N∗

jXNi,

1 ≤ i < j ≤ 3. By directly comput-
ing, with the help of the expansion y =

Re(y)+ iIm(y) and similarly to u, z, the lin-
ear system above (in X) is equivalent to

v = x, t = x− y+ z, u = y = ȳ, z = z̄.

We then pick x = 3, z = 2, y = u = 0, t =

5 and then

X =

3 0 2

0 5 0

2 0 3

 ≻ 0

makes X
1
2N1X

1
2 , X

1
2N2X

1
2 , X

1
2N3X

1
2 ,

X
1
2N∗

1X
1
2 , X

1
2N∗

2X
1
2 , X

1
2N∗

3X
1
2 to be

commuting by Theorem 11. Thus three ini-
tial matrices are SDC on R, and so are they
on C.

We will see Example 3 showing the nu-
merical experiment of computing a square
root of X and a nonsingular for ∗-SDC
N1, N2 and N3. ⋄

3. NUMERICAL TESTS

In this section, we perform some numer-
ical tests illustrating our main algorithm im-
plemented in MATLAB R2022a running on
a PC with Intel Core i3 CPU 3.3GHz, 8GB
RAM, Windows 10 x64 operating system.

It is well known that a matrix N is nor-
mal if and only if it can written as N =

A + iB with A∗ = A, B∗ = −B and
AB = BA. Notice furthermore that A =

A∗ has only real eigenvalues, while B is
skew-Hermitian, and hence its eigenvalues
are all purely imaginary, As an existing re-
sult14, A and B are ∗-SDC by a unitary ma-
trix. This leads us to set up a collection of
normal matrices that are for sure ∗-SDC as
follows. Fix a unitary matrix Q, and pick
m diagonal matrices Di whose diagonal el-
ements are real in (1, 1), and m diagonal
ones Si whose diagonal elements are purely
imaginary in (1, 1). Then the corresponding
normal matrices are constructed as

Ni = Q(Di + iSi)Q
∗, i = 1, . . . ,m,

which are ∗-SDC by Q. . The first stage
of Algorithm 3.2 is implemented with the
CVX toolbox [19] calling SDPT3 version
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4.0 [36] that solves the following semidef-
inite program:

min{s|X ⪰ 0, s ≥ ϵ,NiXNj = NjXNi,

NiXN∗
j = N∗

jXNi, 1 ≤ i < j ≤ m},(14)

where the tolerance ϵ > 0 is given. We then
exploit the MATLAB function sqrtm.m,
which executes the algorithm proposed by
Deadman and collaborators5, to compute
the square root Q of X. For the second stage,
we thank the works of Mendl15 for execut-
ing the Jacobi-like algorithm. In our exper-
iment, we pick ϵ as the floating-point rel-
ative accuracy eps(32) of MATLAB for de-
tecting the SDC property as in (12), while
we keep their tolerance15 for the last stage
to be eps to the power of 3

2 . We have
performed the tests with the collections of
at most 20 normal matrices (of common
sizes 5, 10, . . . , 30, respectively). All exper-
iments give the backward errors approxi-
mately bounded above by 10−8.

Example 3. We continue Example 2 with
finding a nonsingular matrix U that ∗-SDC
N1, N2 and N3. We first numerically com-
pute the square root of X as

X
1
2 ≃

1.6180 0 0.6180

0 2.2361 0

0.6180 0 1.6180

 .

Noticing that N1, N2 are real symmetric
and N3 is complex symmetric. Furthermore,
for a nonsingular matrix P. P ∗N3P does not
need to be normal. So, we cannot apply the
extended Jacobi-like algorithm15. However,

we can apply the SDP-SDC method14 to the
matrices X

1
2N1X

1
2 , X

1
2N2X

1
2 , X

1
2
1
2(N3 +

N∗
3 )X

1
2 and X

1
2
i
2(N

∗
3 − N3)X

1
2 , which are

all Hermitian and are commuting, to obtain
the nonsingular matrix

V ≃

−0.4082 −0.7071 0.5774

0.8165 0 0.5774

−0.4082 0.7071 0.5774


that simultaneously diagonalizes the latter
matrices above. Finally, a nonsingular that
simultaneously diagonalizes the initial ma-
trices N1, N2, N3 is

U = X
1
2V ≃

−0.9129 −0.7071 1.2910

1.8257 0 1.2910

−0.9129 0.7071 1.2910

 ,

where

U∗N1U ≃ diag(0, 0, 15),

U∗N2U ≃ diag(−10, 0, 5),

U∗N3U ≃ diag(30i, 2i, 15i).

4. CONCLUSION

We have provided a sufficient and nec-
essary condition for a finite family of nor-
mal matrices to be simultaneously diagonal-
izable via ∗-congruence. A corresponding
MATLAB package has been developed, and
some numerical tests have also been per-
formed.
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Appendix

Proof of Lemma 10. i) By applying (3) to
M and N, one has

MXN = (MhXNh −MsXNs)

+ i(MhXNs +MsXNh),

NXM = (NhXMh −NsXMs)

+ i(NsXMh +NhXMs),

MXN∗ = (MhXNh +MsXNs)

− i(MhXNs −MsXNh),

N∗XM = (NhXMh +NsXMs)

− i(NsXMh −NhXMs).
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Substituting the above identities into (4)-(5)
one obtains that

MhXNh −MsXNs = NhXMh −NsXMs,

MhXNs +MsXNh = NsXMh +NhXMs,

MhXNh +MsXNs = NhXMh +NsXMs,

MhXNs −MsXNh = NsXMh −NhXMs.

Adding side-by-side the first and the third
(resp., the second and the fourth) equations
one has

MhXNh = NhXMh, MhXNs = NsXMh.

Subtracting side-by-side the first and the
third (resp., the second and the fourth) equa-
tions one has

MsXNs = NsXMs, MsXNh = NhXMs,

Conversely, from (2), the identities (6)-
(9) are equivalent to

(M +M∗)X(N +N∗) = (N +N∗)X(M +M∗),

(M +M∗)X(N −N∗) = (N −N∗)X(M +M∗),

(M −M∗)X(N +N∗) = (N +N∗)X(M −M∗),

(M −M∗)X(N −N∗) = (N −N∗)X(M −M∗),

respectively. Expanding the above identities

leads to that

MXN +MXN∗ +M∗XN +M∗XN∗ =

NXM +NXM∗ +N∗XM +N∗XM∗,

MXN −MXN∗ +M∗XN −M∗XN∗ =

NXM +NXM∗ −N∗XM −N∗XM∗,

MXN +MXN∗ −M∗XN −M∗XN∗ =

NXM −NXM∗ +N∗XM −N∗XM∗,

MXN −MXN∗ −M∗XN +M∗XN∗ =

NXM −NXM∗ −N∗XM +N∗XM∗.

By adding side-by-side the above identities,
we have

MXN = NXM.

Similarly, by adding the first and the third,
then subtracting the second and the fourth
identities, side-by-side, we additionally ob-
tain

MXN∗ = N∗XM.

ii) This is an immediate consequence of
the first part with noting that X∗ = X and

M +M∗ = U(ΛM + ΛM)U∗,

M −M∗ = U(ΛM − ΛM)U∗,

N +N∗ = V (ΛN + ΛN)V
∗,

N −N∗ = V (ΛN − ΛN)V
∗,

where M = UΛMU∗, N = V ΛNV
∗

are eigenvalue decomposition of the normal
matrices M and N (ΛM ,ΛN are complex di-
agonal and U, V are unitary matrices).
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