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Trong bai bdo nay, chiing t6i dua ra mot diéu kién cin va dit &€ mot ho hitu han cic ma tran chudn tic 1a chéo héa dong
thdi dugc qua phép *-tudng déng (goi tit 13 SDC). Bén canh d6, chiing t6i ciing xdy dung mot géi 1énh MATLAB ticng tng dé kiém
tra mot ho hitu han cac ma trin chuén tic ¢6 1a SDC hay khong, va xdc dinh ma tran tuong déng 1am chéo héa ddng thdi cdc ma tran

ban d4u néu cdc ma trin 1a SDC. Mot s6 vi du minh hoa va kiém tra géi 1énh nay ciing dudc trinh bay trong bai béo.

T khéa: *-ruwong ding, chéo héa twong ding dong thoi, chéo héa twong dwong dong thdi, ma trdn chudn tdc.



An alternative equivalent condition for a finite family of

normal matrices to be simultaneously diagonalizable via
congruence

ABSTRACT

This paper gives an alternative equivalent condition for a finite family of normal matrices to be simultaneously diago-

nalizable via *x-congruence. The matrices do not need pairwise commute. A corresponding MATLAB package is developed. Some

numerical tests for this package are also presented.
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1. INTRODUCTION

The problems of simultaneously diagonalizing a family
of matrices (via congruence or similarity) are known
to be long-standing due to their applications, for exam-
ples, signal processing, data analysis and multi-linear

algebra!' quadratic equations and optimization25 . ..

There is a relationship between two concepts of simul-
taneous diagonalizations via similarity (SDS) and via
congruence (SDC); see, e.g., in the book of Horn and
Johnson® One should, hence, need to distinguish these
existing concepts as follows.

Notations and definitions. Let ' denote the field of
real numbers R or complex ones C, and F"*™ be the
set of all square matrices of order n with entries in [F.
Let 8™, H", and N'™ denote the sets of real symmetric,
Hermitian, and normal matrices in F™**" respectively.
By .*,.T, we denote the conjugate transpose and trans-
pose of a matrix, respectively. For A € H"™, we write
A = 0 (resp., A > 0) for the meaning that A is positive
semidefinite (resp., positive definite). As usual, I, x4
denotes the n X d identity matrix, and we shortly write
I,ifn=d.

Matrices C,...,C,, € F™"*"™ are said to be

®

(i)

(iii)

simultaneously diagonalizable via similarity on
IF, shortly F-SDS, if there exists a nonsingular ma-
trix P € F"*" such that P~1C;P’s are all diag-
onal matrices in F™"*". When m = 1, we will say
“C1 is F-DS”, or F-diagonalizable as usual;

simultaneously diagonalizable via x-congruence
on [F, abbreviated *-SDC, if there exists a nonsin-
gular matrix P € F"*" such that P*C; P is di-
agonal forevery s = 1,...,m. Whenm = 1, we
will say “C' is *-DC”;

In case C;’s are all Hermitian, it is worth men-
tioning that the diagonal matrices P*C; P’s are al-
ways real due to the Hermitianian of C;’s. More-
over, P can be chosen to be real if C;’s are all
real®

simultaneously diagonalizable via T-congruence
on I, abbreviated T-SDC, if there exists a non-
singular matrix P € F"*" such that PTC; P is
diagonal for every ¢ = 1,...,m. When m = 1,
we will say “C is T-DC”.

Unlike the *-SDC case, the diagonal matrices
P*C; P’s do not need to be real even C;’s are real



symmetric. The readers are referred to the work
by Bustamante et. al. © for the T-SDC properties;

(iv) commuting if they pairwise commute: C;C; =
C;C;foreveryi,j=1,...,m.

In the rest of this paper, the term “SDC” will mean ei-
ther “simultaneous diagonalization via congruence” or
“simultaneously diagonalizing via congruence”, or “si-
multaneously diagonalizable via congruence”, and de-
pending upon the situation, we will recognize the *- or
T'—congruence. It is analogous to the term “SDS”.

An overview of the SDC problem. The SDC problem
is known that first appeared in 1868 by Weierstrass,.
in the 1930s by Albert® Finsler? Hertenes 1Y and later
studies developed some conditions ensuring that two
quadratic forms are SDC (see, e.g., in., works by More
'and Pong "2 and references therein). However, these
works provide only sufficient conditions, except for a

few ones 13

From the practical point of view, Bunse-Gerstne et al.
14 proposed a Jacobi-like algorithm for SDC two com-
muting normal matrices, and this is numerically ex-
tended to several commuting ones by Mendle!> Re-

cently, there have been some works 2216117

that present
some (equivalent or sufficient) conditions for the *-
SDC property of collections of either complex or real
Hermitian matrices, and another one deals with the T-
SDC problem for complex symmetric matrices® It is
noticed that the *- and T-congruences coincide only
when the initial matrices are real symmetric, which are
also real Hermitian. The two *-SDC and 7T-SDC prob-
lems are different, even if the initial matrices are sym-
metric. For example, Bustamante et. al. ¢ show that the
two real symmetric matrices

0 1

C:
71

C =
) 2 1 0

1 11652

are T-SDC. But they are not *-SDC over C”

Several works deal with the normal SDC problem,
i.e., the simultaneous diagonalization of several normal
matrices via *-congruence!®!® However, they sound
purely theoretical. There has been no algorithm to de-
tect whether the given normal matrices are x-SDC.

Contribution of the paper. In this paper, we solve the
normal SDC problem, i.e., the simultaneous diagonal-
ization of several normal matrices via %-congruence.
We first give a sufficient and necessary condition for
a finite family of normal matrices to be simultaneously
diagonalizable (via either congruence or similarity). It
is noticed that the SDC property of a family of arbitrary
square matrices can be checked by splitting the ma-
trices into their Hermitian and skew-Hermitian parts?

The SDC property of the matrix family is confirmed
if a positive definite matrix exists that solves a system
of linear equations defined by the Hermitian and skew-
Hermitian parts; see Theorem [7| below. The number of
linear equations depends upon the number of Hermitian
and skew-Hermitian parts. This may have a big compu-
tation complexity. Our (sufficient and necessary) con-
dition in this paper restricts the number of such matrix
linear equations.

On the other hand, we develop a MATLAB package to
solve the normal SDC problem and its numerical tests.

Auxiliary results. We now recall some existing results
on SDC that will be frequently used in this paper.

Lemma 1. 2 Suppose there is 0 # X\ € R™ such that
C()\) > 0, where, without loss of generality, we assume
A # 0. Then Cy,...,Cy € 8™ is SDC if and only if
PTC,P and PTC; P commute for all 2 < i # j < m,
where P is determined such that PYC(\)P = I (the
identity matrix).

As shown in the paper of Jiang and Li® the matrix P
in Lemmall]is determined as P = UD'/2, where U is
orthogonal and D'/? is the square root of the diagonal
matrix D in an eigenvalue decomposition of C(\) :

D=UTC\U.

The following results can be found in many books on
Linear Algebra; their proofs are hence omitted in this
paper.

Lemma 2. % (i) Every A € H" can be diagonalized via
similarity by a unitary matrix. That is, it can be written
as A = UANU*, where U is unitary, A is real diagonal
and is uniquely defined up to a permutation of diagonal

elements.

Moreover, if A € 8™, then U is picked to be real.

,Crm € F™ " s F-DS.
Then, they are F-SDS if and only if they are commut-
ing.

(iii) Let A € F"*" B € F™*™. The matrix M =
diag(A, B) is diagonalizable via similarity if and only
if so are both A and B.

(ii) Suppose each of Cq,...

(iv) A complex symmetric matrix A is diagonalizable
via similarity, i.e., P"YAP is diagonal for some in-
vertible matrix P € C"*"™  if and only if it is com-
plex orthogonally diagonalizable, i.e., Q~' AQ is diag-
onal for some complex orthogonal matrix QQ € C™"*"™ :
QTQ =1

(v) Suppose A = diag(a1 1., - .., ax 1y, ), o;’s are dis-
tinct. If AB = BA then B = diag(Bs, ..., By) with
B; € F"*" forall i = 1,...,k. Furthermore, B is
Hermitian (resp., symmetric) if and only if so are B;’s.



Construction of the paper. Section [2|is devoted to the
SDC problem for normal matrices, in which we give a
sufficient and necessary condition for a family of nor-
mal matrices to be SDC. And then, we propose a corre-
sponding algorithm. Section |3| discusses the numerical
experiments with respective our SDC algorithm in Sec-
tion [2| We also give a numerical example illustrating
our algorithm. Section 4] presents the conclusion.

2. THE NORMAL SDC PROBLEM

In this section, we deal with the normal SDC problem.
Our conditions for a family of normal matrices to be *-
SDC can be viewed as a generalization of that in Theo-
rem [7| below. For convenience to the readers, we revisit
these results as follows.

2.1 SDC and SDS of Hermitian matrices:
revisited

We first summarize some existing results of the SDC
and SDS of several Hermitian matrices. The follow-
ing is presented in the book of Horn and Jonhson %
whose proof does not completely give a nonsingular
matrix that simultaneously diagonalizes the given ma-
trices. Our proof leads to an algorithm that may be use-
ful in practice. The idea is to follow that of proving The-
orem 9 in the paper of Jiang and Duan Jang2016 for req]
symmetric matrices.

Theorem 3. ' The matrices I,Cy,...,Cp, € H”,
m > 1, are SDC if and only if they are commuting.
Moreover, when this is the case, they are SDC by a uni-
tary matrix, and the resulting diagonal matrices are all
real.

Theorem 4. Let Ay,..., A, € F™™" m > 1, be
such that each of them is diagonalizable via similarity.
Then, these matrices are simultaneously diagonalizable
via similarity (shortly, SDS) if and only if they pairwise
commute.

The following are not hard to prove, we omit their
proofs.

Lemma 5. The matrices C1,...,C,, € H" are SDC if
and only if for any A € R™ with a \; # 0, the matrices
Cl, ey Ci—l, Z?;l )\tC't, Ci+1a ey Cm are SDC.

Lemma 6. 2 The matrices C; = ¢ 0 ooy, O =
0 O
Cn 0 . . A A
0 0 are SDC if and only if so are C1, ..., Cy,.
k

Using Theorem (3] we comprehensively describe the
SDC property of a family of Hermitian matrices as fol-
lows.

As a consequence of Theorem 3] every commuting col-
lection of Hermitian matrices can be SDC. However,
this is just a sufficient but unnecessary condition. For
example, the matrices

-1 -2 0 1 2 0
Ci=|-2 =28 0|, Ca=1(2 20 0|,
0 0 5 0 0 -3

2 4 0
C3=14 1 0
0 0 7

are SDC by
1 0 -2
P=|0 0 1
01 0

but C1Cy # C5C;. The following provides some
equivalent SDC conditions for Hermitian matrices. It
turns out that the SDC property of a family of such
matrices is equivalent to the feasibility of a positive
semidefinite program (SDP). This also allows us to
use SDP solvers, for example, “Cvx”2’ . to check the
SDC property of Hermitian matrices.

Theorem 7. ° The following conditions are equivalent:
(i) Matrices C1,...,Cp, € H™ are SDC.

(i1) There exists a nonsingular matrix P € C™*"
such that P*C1 P, ..., P*C,, P are commuting.

(iii) There exists a positive definite matrix X = X* €
H™ solves the following system of —= linear
equations

If Cy,...,C,, are real, then one can pick P and X to
be real.

2.2 The normal SDC problem

Recall that a square matrix N € F"*™ is said to be
normal if
N*N = NN™.

It is well-known that (real or complex) Hermitian, uni-
tary, orthogonal matrices are normal, but the converse
is not true in general. The readers are referred to, e.g.,
the work by Grone et al.,?! for equivalent conditions for
a normal matrix.

The third condition of Theorem [/| leads us to a suf-
ficient and necessary condition for the *-SDC prop-
erty of a family of arbitrary square matrices. This can



be done by splitting the matrices into their Hermitian
and skew-Hermitian parts as follows. For square matri-
,A,, € F™ ™ their Hermitian and skew-

Hermitian part are

ces Aq,...

A+ A; A — A}
A=A e AN (g
2 2i
where i is the imaginary unit, iZ = —1. Noticing that
AY and A$ are Hermitian and that
Ay =AY +iAs, Ar = AD —iAs, 3)

It is not hard to show that Ay, ..., A,, are *-SDC if and
onlyifsoareA?,Af-,i =1,...,m.

Lemma 8. 2 The square matrices Ay,..., A, €
F*" are SDC if and only if so are A?,A?, i
1

N

Theorem [7] and Lemma [§] lead to a sufficient and nec-
essary condition for a family of arbitrary square matri-
ces to be *-SDC, in which, after splitting up the initial
matrices into Hermitian and skew-Hermitian, there are
m(m — 1) matrix equations as in (I). One can apply
Theorem [7] and Lemma [§] to normal matrices. Below,
we will introduce a smaller number of normal matrix
equations; see Theorem

Since any normal matrix is always diagonalizable by a
unitary one® it is diagonalizable via both sense similar-
ity and congruence.

It is well-known “ that any finite family of commuting
square matrices can be simultaneously upper triangu-
larized by a unitary matrix. Moreover, if these matrices
are normal, then so are the resulting upper triangular
matrices, and hence they are diagonal. Theorem [] thus
leads to the following observation.

Lemma 9. % Normal matrices N, . .., N,, are SDC by

a unitary matrix if and only if they pairwise commute.

Consequently, the normal matrices Ny,...,N,, are

SDS if and only if they are SDC by a unitary matrix.

Proof. Suppose Ny, ..., N, pairwise commute. There
exists a unitary matrix U such that U* NV, U is upper tri-
angular for every i = 1,...,m% Since U*N;U =: T;
is normal due to the normality of N;, T; must be diag-
onal. Thus Ny, ..

U.
Conversely, if Ny, ...

.y Ny, are SDC by the unitary matrix

, N, are SDC by a unitary matrix
U, then U* N,;U’s are diagonal and pairwise commute.
This implies the commutativity of U* N;U’s and that of
N, i ’S.

The last part is obvious. O

“In fact, the skew-Hermitian part of A is usually defined as

Lemma 10. Let M, N be normal matrices and X be a
square matrix of the same order n. The following state-
ments are true:

i) The conditions

MXN=NXM
MXN*=N*"XM

“)
®)
hold if and only if all the following conditions hold:

MY. X.NY =Nb.X.MY, (6)
MY X.N® =N¢%. XM, (7
M®-X.N» =NY.X.Ms, (8)
M*.X-N°® =N°.X.Ms". )

ii) Moreover, with the above materials and if X is Her-
mitian then ()& Q) can be replaced by

MY X M*®
NS.X.NY

= M- X - M,
— NY. X .N*.

(10)
(1)

Proof. The observation is derived from direct compu-
tations, see the Appendix [} using the expansions
and (3) for M and N. O

The following is our main theorem.

Theorem 11. Let Ny,...,N,, € N*, m > 2. The
following conditions are equivalent:

i) Ni,...,Np, are SDC.

ii) There exists a nonsingular matrix P such that the
matrices P*N, P, P*N;P,t =1,...,m, pairwise

commute.
iii) There exists a positive definite matrix X such that

NzXN] = NJXNi and

N XN =N:XN;, 1<i<j<m. (12)

iv) The matrices Nth, N, t=1,...,m,are SDC.

Proof. The equivalence of i) and iv) is obvious due to
the authors” work > Theorem 3.1

i) = ii). Suppose N1, ..., N, are SDC by a nonsingu-
lar matrix P, that is the matrix P*N; P is diagonal, and
sois P*N/ P, foreveryi = 1,...,m.Itis then obvious
P*N,P, P*N}P,t =1,...,m, pairwise commute.
i1) = #it). Suppose the 2m matrices P*N,; P, P*N} P,
1 =1,...,m, pairwise commute, for some nonsingular
matrix P. Then

(P*N;P) - (P*N,P) = (P*N,P) - (P*N;P),
(P*N;P) - (P*N}P) = (P*N}P) - (P*N;P),

A—A*

2



for every i # j. This implies

N;(PP*)N; = N;(PP*)N;,
Ni(PP*)N; = N (PP*)N;

for every ¢ # j. The conclusion is obvious with X =
PP*.

19i) = 1). Let @ be the square root of X > 0 satisfy-
ing (I2). Note that Q@ = Q*. It follows from that
the matrices QN:Q, QN;Q)’s pairwise commute. This
implies that, for 1 < ¢,1 < m,

N:Q*N; = N;Q*N;, N;Q*Nj = N} Q*N,.

Applying Lemma [10] to each pair of (¢,/) and X =
Q? = Q*Q = 0, one obtains the commutativity of the
Hermitian matrices

QNQ, QN?Q, t=1,....m.

By Lemma 9] these latter matrices are SDC by a uni-
tary matrix V, and hence so are the matrices QN,Q’s
due to Lemma [§] This yields Ny, ..., Ny, are SDC by
the nonsingular matrix U = QV. O

Algorithm 1. SDC of normal matrices.

INPUT: Ni,..., N, € N

OUTPUT: A nonsingular matrix U such that U*N,U’s
are diagonal.

Step 1: If the system (I2)) has a positive definite solu-
tion X, go to the next step.
Otherwise, conclude the initial matrices are not
SDC.

Step 2: Compute the square root X 2 of X by using
eigenvalue decomposition of X.

Step 3: Simultaneously diagonalizing the commuting
and Hermitian matrices
1 .
§X%(Ni +N;)X3, %X%(Ni* — Ni)X3,
for i = 1,...,m, by applying the Jacobi-like
algorithm,5 to determine a unitary matrix V.
Return U = QV.

The last step of Algorithm |1|can apply the Jacobi-like

algorithm P Algorithm 3.1 ex ] oiting the works by Bunse-

Gerstner et. al. # and by Mendl'>

Example 1. The real symmetric matrices

0 1 1 1
1 0|’

C:
T

702:

which are normal, are C-SDC as shown in the work of

Bustamante and collaborators® However, they are not

SDC due to Theorem [/| Indeed, we want to check if

there is a positive semidefinite matrix X = Y -
T

0, which is equivalent to z > 0 and xz > y2, such that

C1XCy = Co X (= (C1XCR)Y).
This is equivalent to
{ x>0, xz > y°
r+y+z =0.
But the last condition is impossible since there do not

exist z, z > 0 such that zz > y* = (z + 2)?. Thus C4
and C5 are not SDC on R. o

Example 2. . Let

1 1 1 1
Ny=1|11 1], No=1|1 -1 1},
1 1 1 1

3i —i i
N3y=|—-1 5i -—i
i —-i 3i

Theorem [IT]leads to finding a positive definite matrix

Ty z
X=|yg t u| >0, z,tvelR (13)
zZ u v

which is equivalent to that
s x> 0,2t > |y|?, det(X) > 0,
such that
N; XN; = N; XN,
N;XN; = N;XN;,

1 <4 < j < 3. By directly computing, with the help
of the expansion y = Re(y) + ilm(y) and similarly to
u, 2, the linear system above (in X) is equivalent to

v=x, t=x—-—y+z u=y=19y, 2=2.

We then pick x = 3, 2 =2, y =u = 0,t =5 and
then

3 0 2
X=10 5 0 =0
2 0 3

makes X2 N1 X2, X2 N, X2, X2 N3 X2, X2 N7 X2,
X2N;X2%, X2N;X2 to be commuting by Theorem
Thus three initial matrices are SDC on R, and so
are they on C.

We will see Example |3 showing the numerical experi-
ment of computing a square root of X and a nonsingular
for x-SDC N7, Ny and N3. o



3. NUMERICAL TESTS

In this section, we perform some numerical tests il-
lustrating our main algorithm implemented in MAT-
LAB R2022a running on a PC with Intel Core i3 CPU
3.3GHz, 8GB RAM, Windows 10 x64 operating sys-
tem.

It is well known that a matrix NV is normal if and only if
it can writtenas N = A+ iB with A* = A, B* = —B
and AB = BA. Notice furthermore that A = A* has
only real eigenvalues, while B is skew-Hermitian, and
hence its eigenvalues are all purely imaginary, As an ex-
isting result” A and B are *-SDC by a unitary matrix.
This leads us to set up a collection of normal matrices
that are for sure *-SDC as follows. Fix a unitary matrix
@, and pick m diagonal matrices D; whose diagonal el-
ements are real in (1, 1), and m diagonal ones S; whose
diagonal elements are purely imaginary in (1, 1). Then
the corresponding normal matrices are constructed as

N, =Q(D; +i5,)Q", i=1,...,m,

which are *-SDC by (. . The first stage of Algorithm
3.2 is implemented with the CVX toolbox [19] call-
ing SDPT3 version 4.0 [36] that solves the following
semidefinite program:

min{s | X > 0,s > ¢, N;XN,; = N;XN,,
NXN = NIXN;,1<i<j<m}, (14)

where the tolerance ¢ > 0 is given. We then exploit
the MATLAB function sqrtm.m, which executes the
algorithm proposed by Deadman and collaborators,*
to compute the square root () of X. For the second
stage, we thank the works of Mendl 2 for executing
the Jacobi-like algorithm. In our experiment, we pick e
as the floating-point relative accuracy eps(2) of MAT-
LAB for detecting the SDC property as in (12]), while
we keep their tolerance 1 for the last stage to be eps
to the power of % We have performed the tests with the
collections of at most 20 normal matrices (of common
sizes 5, 10, ..., 30, respectively). All experiments give
the backward errors approximately bounded above by
1078.

Example 3. We continue Example 2| with finding a non-
singular matrix U that *-SDC N;, N, and N3. We first
numerically compute the square root of X as

1.6180 0  0.6180
Xz~ | 0 2.2361 0
06180 0  1.6180

Noticing that N7, N are real symmetric and N3 is com-
plex symmetric. Furthermore, for a nonsingular matrix

P. P*N3P does not need to be normal. So, we can-
not apply the extended Jacobi-like algorithm™> How-
ever, we can apply the SDP-SDC method “' to the ma-
trices X2 N1 X2, X2 No X7, X2 (N3 + N3)X? and
Xz L(N; — N3)X 2, which are all Hermitian and are
commuting, to obtain the nonsingular matrix

—-0.4082 —0.7071 0.5774
V ~ | 0.8165 0 0.5774
—0.4082 0.7071 0.5774

that simultaneously diagonalizes the latter matrices
above. Finally, a nonsingular that simultaneously diag-
onalizes the initial matrices N1, Ny, N3 is

—0.9129 —0.7071 1.2910
U=Xz2V~ | 1.8257 0 1.2910] ,
—~0.9129 0.7071  1.2910

where

U*N,U ~ diag(0, 0, 15),
U*NoU ~ diag(—10,0,5),
U*N3U ~ diag(30, 2i, 151).

4. CONCLUSION

We have provided a sufficient and necessary condition
for a finite family of normal matrices to be simultane-
ously diagonalizable via *-congruence. A correspond-
ing MATLAB package has been developed, and some
numerical tests have also been performed.
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Appendix

Proof of Lemmal[I0} 1) By applying (3) to M and N,
one has
MXN = (M"XNY — M*XN*)
+i(MYXN® + M*XN"),
NXM = (NYXM" — N*X M*)
+i(N*XM" + NY X M*),
MXN* = (MYXN" + M*XN?)
—i(MYXN* — M*XNP")
N*XM = (NYXMY + N°*X M*)
—i(N*XM" — NV XM?).

)

Substituting the above identities into (@)-(3) one obtains
that
MYXNY — M*XN® = NYXMY — N°XM*,
MYXN® + M*XNY = N*XM" + NO XM,
MPXNY + M*XN®* = NYXMY + N*X M?*,
MPXN® — MSXNY = N°XM" — NO X M°®.
Adding side-by-side the first and the third (resp., the
second and the fourth) equations one has

MYXNY = NOX MY, MYXN® =N XM,

Subtracting side-by-side the first and the third (resp.,
the second and the fourth) equations one has

M®*XN®=N°*XM?*, M°*XN"=NOXM?*,

Conversely, from (2)), the identities (6)-(9) are equiva-
lent to

(M + M*)X(N + N*) = (N + N*)X (M + M*),
(M + M*)X(N — N*) = (N — N )X (M + M*),
(M — M*)X(N + N*) = (N + N*)X (M — M*),
(M — M*)X(N — N*) = (N = N*)X (M — M*),

respectively. Expanding the above identities leads to
that

MXN+MXN*+M*"XN+ M*"XN* =
NXM+NXM*+N*XM + N*XM*,
MXN - MXN*+M*XN - M"XN* =
NXM+NXM*—N*"XM - N*XM*,
MXN+MXN*—M*"XN—-M"XN*=
NXM - NXM*+ N*XM — N*XM~*,
MXN—-MXN*—M*XN+ M*"XN*=
NXM - NXM*—-N*XM+ N*XM*.

By adding side-by-side the above identities, we have

MXN =NXM.

Similarly, by adding the first and the third, then sub-
tracting the second and the fourth identities, side-by-
side, we additionally obtain

MXN*=N*"XM.

ii) This is an immediate consequence of the first part
with noting that X* = X and

M+ M* = U(Ay + AU,
M — M* =U(Ay — Aa)U™,
N+ N*=V(Ay +AN)V*,
N - N*=V(Ay — An)V¥,

where M = UApU*, N = VANV* are eigen-
value decomposition of the normal matrices M and [NV
(Apr, Ay are complex diagonal and U,V are unitary
matrices). O



	INTRODUCTION
	THE NORMAL SDC PROBLEM
	SDC and SDS of Hermitian matrices: revisited
	The normal SDC problem

	NUMERICAL TESTS
	CONCLUSION

