
Một điều kiện tương đương để một họ ma trận chuẩn tắc là 
chéo hóa tương đẳng đồng thời được

TÓM TẮT

Trong bài báo này, chúng tôi đưa ra một điều kiện cần và đủ để một họ hữu hạn các ma trận chuẩn tắc là chéo hóa đồng 
thời được qua phép ∗-tương đẳng (gọi tắt là SDC). Bên cạnh đó, chúng tôi cũng xây dựng một gói lệnh MATLAB tương ứng để kiểm 
tra một họ hữu hạn các ma trận chuẩn tắc có là SDC hay không, và xác định ma trận tương đẳng làm chéo hóa đồng thời các ma trận 
ban đầu nếu các ma trận là SDC. Một số ví dụ minh họa và kiểm tra gói lệnh này cũng được trình bày trong bài báo.

Từ khóa: ∗-tương đẳng, chéo hóa tương đẳng đồng thời, chéo hóa tương đương đồng thời, ma trận chuẩn tắc.



An alternative equivalent condition for a finite family of
normal matrices to be simultaneously diagonalizable via 

congruence

ABSTRACT

This paper gives an alternative equivalent condition for a finite family of normal matrices to be simultaneously diago-

nalizable via ∗-congruence. The matrices do not need pairwise commute. A corresponding MATLAB package is developed. Some 
numerical tests for this package are also presented.
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1. INTRODUCTION

The problems of simultaneously diagonalizing a family
of matrices (via congruence or similarity) are known
to be long-standing due to their applications, for exam-
ples, signal processing, data analysis and multi-linear
algebra,1 quadratic equations and optimization,2, 3 . . .

There is a relationship between two concepts of simul-
taneous diagonalizations via similarity (SDS) and via
congruence (SDC); see, e.g., in the book of Horn and
Johnson.4 One should, hence, need to distinguish these
existing concepts as follows.

Notations and definitions. Let F denote the field of
real numbers R or complex ones C, and Fn×n be the
set of all square matrices of order n with entries in F.
Let Sn,Hn, and Nn denote the sets of real symmetric,
Hermitian, and normal matrices in Fn×n, respectively.
By .∗, .T , we denote the conjugate transpose and trans-
pose of a matrix, respectively. For A ∈ Hn, we write
A ⪰ 0 (resp., A ≻ 0) for the meaning that A is positive
semidefinite (resp., positive definite). As usual, In×d

denotes the n× d identity matrix, and we shortly write
In if n = d.

Matrices C1, . . . , Cm ∈ Fn×n are said to be

(i) simultaneously diagonalizable via similarity on
F, shortly F-SDS, if there exists a nonsingular ma-
trix P ∈ Fn×n such that P−1CiP ’s are all diag-
onal matrices in Fn×n. When m = 1, we will say
“C1 is F-DS”, or F-diagonalizable as usual;

(ii) simultaneously diagonalizable via ∗-congruence
on F, abbreviated ∗-SDC, if there exists a nonsin-
gular matrix P ∈ Fn×n such that P ∗CiP is di-
agonal for every i = 1, . . . ,m. When m = 1, we
will say “C1 is ∗-DC”;

In case Ci’s are all Hermitian, it is worth men-
tioning that the diagonal matrices P ∗CiP ’s are al-
ways real due to the Hermitianian of Ci’s. More-
over, P can be chosen to be real if Ci’s are all
real.5

(iii) simultaneously diagonalizable via T -congruence
on F, abbreviated T -SDC, if there exists a non-
singular matrix P ∈ Fn×n such that PTCiP is
diagonal for every i = 1, . . . ,m. When m = 1,

we will say “C1 is T -DC”.

Unlike the ∗-SDC case, the diagonal matrices
P ∗CiP ’s do not need to be real even Ci’s are real
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symmetric. The readers are referred to the work
by Bustamante et. al. 6 for the T -SDC properties;

(iv) commuting if they pairwise commute: CiCj =

CjCi for every i, j = 1, . . . ,m.

In the rest of this paper, the term “SDC” will mean ei-
ther “simultaneous diagonalization via congruence” or
“simultaneously diagonalizing via congruence”, or “si-
multaneously diagonalizable via congruence”, and de-
pending upon the situation, we will recognize the ∗- or
T−congruence. It is analogous to the term “SDS”.

An overview of the SDC problem. The SDC problem
is known that first appeared in 1868 by Weierstrass,7

in the 1930s by Albert,8 Finsler,9 Hertenes,10 and later
studies developed some conditions ensuring that two
quadratic forms are SDC (see, e.g., in., works by More
11 and Pong 12 and references therein). However, these
works provide only sufficient conditions, except for a
few ones.4, 13

From the practical point of view, Bunse-Gerstne et al.
14 proposed a Jacobi-like algorithm for SDC two com-
muting normal matrices, and this is numerically ex-
tended to several commuting ones by Mendle.15 Re-
cently, there have been some works 3, 5, 16, 17 that present
some (equivalent or sufficient) conditions for the ∗-
SDC property of collections of either complex or real
Hermitian matrices, and another one deals with the T -
SDC problem for complex symmetric matrices.6 It is
noticed that the ∗- and T -congruences coincide only
when the initial matrices are real symmetric, which are
also real Hermitian. The two ∗-SDC and T -SDC prob-
lems are different, even if the initial matrices are sym-
metric. For example, Bustamante et. al. 6 show that the
two real symmetric matrices

C1 =

[
0 1

1 1

]
, C2 =

[
1 1

1 0

]
∈ S2

are T -SDC. But they are not ∗-SDC over C.5

Several works deal with the normal SDC problem,
i.e., the simultaneous diagonalization of several normal
matrices via ∗-congruence.18, 19 However, they sound
purely theoretical. There has been no algorithm to de-
tect whether the given normal matrices are ∗-SDC.

Contribution of the paper. In this paper, we solve the
normal SDC problem, i.e., the simultaneous diagonal-
ization of several normal matrices via ∗-congruence.
We first give a sufficient and necessary condition for
a finite family of normal matrices to be simultaneously
diagonalizable (via either congruence or similarity). It
is noticed that the SDC property of a family of arbitrary
square matrices can be checked by splitting the ma-
trices into their Hermitian and skew-Hermitian parts.5

The SDC property of the matrix family is confirmed
if a positive definite matrix exists that solves a system
of linear equations defined by the Hermitian and skew-
Hermitian parts; see Theorem 7 below. The number of
linear equations depends upon the number of Hermitian
and skew-Hermitian parts. This may have a big compu-
tation complexity. Our (sufficient and necessary) con-
dition in this paper restricts the number of such matrix
linear equations.

On the other hand, we develop a MATLAB package to
solve the normal SDC problem and its numerical tests.

Auxiliary results. We now recall some existing results
on SDC that will be frequently used in this paper.

Lemma 1. 3 Suppose there is 0 ̸= λ ∈ Rm such that
C(λ) ≻ 0, where, without loss of generality, we assume
λ1 ̸= 0. Then C1, . . . , Cm ∈ Sn is SDC if and only if
PTCiP and PTCjP commute for all 2 ≤ i ̸= j ≤ m,

where P is determined such that PTC(λ)P = I (the
identity matrix).

As shown in the paper of Jiang and Li,3 the matrix P

in Lemma 1 is determined as P = UD1/2, where U is
orthogonal and D1/2 is the square root of the diagonal
matrix D in an eigenvalue decomposition of C(λ) :

D = UTC(λ)U.

The following results can be found in many books on
Linear Algebra; their proofs are hence omitted in this
paper.

Lemma 2. 4 (i) Every A ∈ Hn can be diagonalized via
similarity by a unitary matrix. That is, it can be written
as A = UΛU∗, where U is unitary, Λ is real diagonal
and is uniquely defined up to a permutation of diagonal
elements.

Moreover, if A ∈ Sn, then U is picked to be real.

(ii) Suppose each of C1, . . . , Cm ∈ Fn×n is F-DS.
Then, they are F-SDS if and only if they are commut-
ing.

(iii) Let A ∈ Fn×n, B ∈ Fm×m. The matrix M =

diag(A,B) is diagonalizable via similarity if and only
if so are both A and B.

(iv) A complex symmetric matrix A is diagonalizable
via similarity, i.e., P−1AP is diagonal for some in-
vertible matrix P ∈ Cn×n, if and only if it is com-
plex orthogonally diagonalizable, i.e., Q−1AQ is diag-
onal for some complex orthogonal matrix Q ∈ Cn×n :

QTQ = I.

(v) Suppose A = diag(α1In1
, . . . , αkInk

), αi’s are dis-
tinct. If AB = BA then B = diag(B1, . . . , Bk) with
Bi ∈ Fni×ni for all i = 1, . . . , k. Furthermore, B is
Hermitian (resp., symmetric) if and only if so are Bi’s.
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Construction of the paper. Section 2 is devoted to the
SDC problem for normal matrices, in which we give a
sufficient and necessary condition for a family of nor-
mal matrices to be SDC. And then, we propose a corre-
sponding algorithm. Section 3 discusses the numerical
experiments with respective our SDC algorithm in Sec-
tion 2. We also give a numerical example illustrating
our algorithm. Section 4 presents the conclusion.

2. THE NORMAL SDC PROBLEM

In this section, we deal with the normal SDC problem.
Our conditions for a family of normal matrices to be ∗-
SDC can be viewed as a generalization of that in Theo-
rem 7 below. For convenience to the readers, we revisit
these results as follows.

2.1 SDC and SDS of Hermitian matrices:
revisited

We first summarize some existing results of the SDC
and SDS of several Hermitian matrices. The follow-
ing is presented in the book of Horn and Jonhson 4

whose proof does not completely give a nonsingular
matrix that simultaneously diagonalizes the given ma-
trices. Our proof leads to an algorithm that may be use-
ful in practice. The idea is to follow that of proving The-
orem 9 in the paper of Jiang and Duan jiang2016 for real
symmetric matrices.

Theorem 3. 5 The matrices I, C1, . . . , Cm ∈ Hn,

m ≥ 1, are SDC if and only if they are commuting.
Moreover, when this is the case, they are SDC by a uni-
tary matrix, and the resulting diagonal matrices are all
real.

Theorem 4. Let A1, . . . , Am ∈ Fn×n, m ≥ 1, be
such that each of them is diagonalizable via similarity.
Then, these matrices are simultaneously diagonalizable
via similarity (shortly, SDS) if and only if they pairwise
commute.

The following are not hard to prove, we omit their
proofs.

Lemma 5. The matrices C1, . . . , Cm ∈ Hn are SDC if
and only if for any λ ∈ Rm with a λi ̸= 0, the matrices
C1, . . . , Ci−1,

∑m
t=1 λtCt, Ci+1, . . . , Cm are SDC.

Lemma 6. 5 The matrices C1 =

[
Ĉ1 0

0 0k

]
, . . . , Cm =[

Ĉm 0

0 0k

]
are SDC if and only if so are Ĉ1, . . . , Ĉm.

Using Theorem 3, we comprehensively describe the
SDC property of a family of Hermitian matrices as fol-
lows.

As a consequence of Theorem 3, every commuting col-
lection of Hermitian matrices can be SDC. However,
this is just a sufficient but unnecessary condition. For
example, the matrices

C1 =

−1 −2 0

−2 −28 0

0 0 5

 , C2 =

1 2 0

2 20 0

0 0 −3

 ,

C3 =

2 4 0

4 1 0

0 0 7


are SDC by

P =

1 0 −2

0 0 1

0 1 0


but C1C2 ̸= C2C1. The following provides some
equivalent SDC conditions for Hermitian matrices. It
turns out that the SDC property of a family of such
matrices is equivalent to the feasibility of a positive
semidefinite program (SDP). This also allows us to
use SDP solvers, for example, “CVX”,20 . . . to check the
SDC property of Hermitian matrices.

Theorem 7. 5 The following conditions are equivalent:

(i) Matrices C1, . . . , Cm ∈ Hn are SDC.

(ii) There exists a nonsingular matrix P ∈ Cn×n

such that P ∗C1P, . . . , P
∗CmP are commuting.

(iii) There exists a positive definite matrix X = X∗ ∈
Hn solves the following system of m(m−1)

2 linear
equations

CiXCj = CjXCi, 1 ≤ i < j ≤ m. (1)

If C1, . . . , Cm are real, then one can pick P and X to
be real.

2.2 The normal SDC problem

Recall that a square matrix N ∈ Fn×n is said to be
normal if

N∗N = NN∗.

It is well-known that (real or complex) Hermitian, uni-
tary, orthogonal matrices are normal, but the converse
is not true in general. The readers are referred to, e.g.,
the work by Grone et al.,21 for equivalent conditions for
a normal matrix.

The third condition of Theorem 7 leads us to a suf-
ficient and necessary condition for the ∗-SDC prop-
erty of a family of arbitrary square matrices. This can
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be done by splitting the matrices into their Hermitian
and skew-Hermitian parts as follows. For square matri-
ces A1, . . . , Am ∈ Fn×n, their Hermitian and skew-
Hermitian parts* are

Ah
i :=

Ai +A∗
i

2
, As

i :=
Ai −A∗

i

2i
, (2)

where i is the imaginary unit, i2 = −1. Noticing that
Ah

i and As
i are Hermitian and that

Ai = Ah
i + iAs

i , A∗
i = Ah

i − iAs
i . (3)

It is not hard to show that A1, . . . , Am are ∗-SDC if and
only if so are Ah

i , A
s
i , i = 1, . . . ,m.

Lemma 8. 13 The square matrices A1, . . . , Am ∈
Fn×n are SDC if and only if so are Ah

i , A
s
i , i =

1, . . . ,m.

Theorem 7 and Lemma 8 lead to a sufficient and nec-
essary condition for a family of arbitrary square matri-
ces to be ∗-SDC, in which, after splitting up the initial
matrices into Hermitian and skew-Hermitian, there are
m(m − 1) matrix equations as in (1). One can apply
Theorem 7 and Lemma 8 to normal matrices. Below,
we will introduce a smaller number of normal matrix
equations; see Theorem 11.

Since any normal matrix is always diagonalizable by a
unitary one,4 it is diagonalizable via both sense similar-
ity and congruence.

It is well-known 4 that any finite family of commuting
square matrices can be simultaneously upper triangu-
larized by a unitary matrix. Moreover, if these matrices
are normal, then so are the resulting upper triangular
matrices, and hence they are diagonal. Theorem 4 thus
leads to the following observation.

Lemma 9. 4 Normal matrices N1, . . . , Nm are SDC by
a unitary matrix if and only if they pairwise commute.

Consequently, the normal matrices N1, . . . , Nm are
SDS if and only if they are SDC by a unitary matrix.

Proof. Suppose N1, . . . , Nm pairwise commute. There
exists a unitary matrix U such that U∗NiU is upper tri-
angular for every i = 1, . . . ,m.4 Since U∗NiU =: Ti

is normal due to the normality of Ni, Ti must be diag-
onal. Thus N1, . . . , Nm are SDC by the unitary matrix
U.

Conversely, if N1, . . . , Nm are SDC by a unitary matrix
U, then U∗NiU ’s are diagonal and pairwise commute.
This implies the commutativity of U∗NiU ’s and that of
Ni’s.

The last part is obvious.

Lemma 10. Let M,N be normal matrices and X be a
square matrix of the same order n. The following state-
ments are true:

i) The conditions

MXN = NXM (4)

MXN∗ = N∗XM (5)

hold if and only if all the following conditions hold:

Mh ·X ·Nh = Nh ·X ·Mh, (6)

Mh ·X ·Ns = Ns ·X ·Mh, (7)

Ms ·X ·Nh = Nh ·X ·Ms, (8)

Ms ·X ·Ns = Ns ·X ·Ms. (9)

ii) Moreover, with the above materials and if X is Her-
mitian then (7)&(9) can be replaced by

Mh ·X ·Ms = Ms ·X ·Mh, (10)

Ns ·X ·Nh = Nh ·X ·Ns. (11)

Proof. The observation is derived from direct compu-
tations, see the Appendix 4, using the expansions (2)
and (3) for M and N.

The following is our main theorem.

Theorem 11. Let N1, . . . , Nm ∈ Nn, m ≥ 2. The
following conditions are equivalent:

i) N1, . . . , Nm are SDC.

ii) There exists a nonsingular matrix P such that the
matrices P ∗NtP, P

∗N∗
t P, t = 1, . . . ,m, pairwise

commute.

iii) There exists a positive definite matrix X such that

NiXNj = NjXNi and

NiXN∗
j = N∗

j XNi, 1 ≤ i ≤ j ≤ m. (12)

iv) The matrices Nh
t , N

s
t , t = 1, . . . ,m, are SDC.

Proof. The equivalence of i) and iv) is obvious due to
the authors’ work.5, Theorem 3.1

i) ⇒ ii). Suppose N1, . . . , Nm are SDC by a nonsingu-
lar matrix P, that is the matrix P ∗NiP is diagonal, and
so is P ∗N∗

i P, for every i = 1, . . . ,m. It is then obvious
P ∗NiP, P

∗N∗
i P, t = 1, . . . ,m, pairwise commute.

ii) ⇒ iii). Suppose the 2m matrices P ∗NiP, P
∗N∗

i P,

i = 1, . . . ,m, pairwise commute, for some nonsingular
matrix P. Then

(P ∗NiP ) · (P ∗NjP ) = (P ∗NjP ) · (P ∗NiP ),

(P ∗NiP ) · (P ∗N∗
j P ) = (P ∗N∗

j P ) · (P ∗NiP ),

*In fact, the skew-Hermitian part of A is usually defined as A−A∗

2
.
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for every i ̸= j. This implies

Ni(PP ∗)Nj = Nj(PP ∗)Ni,

Ni(PP ∗)N∗
j = N∗

j (PP ∗)Ni,

for every i ̸= j. The conclusion is obvious with X =

PP ∗.

iii) ⇒ i). Let Q be the square root of X ≻ 0 satisfy-
ing (12). Note that Q = Q∗. It follows from (12) that
the matrices QNtQ,QN∗

t Q’s pairwise commute. This
implies that, for 1 ≤ t, l ≤ m,

NtQ
2Nl = NlQ

2Nt, NtQ
2N∗

l = N∗
l Q

2Nt.

Applying Lemma 10 to each pair of (t, l) and X =

Q2 = Q∗Q ≻ 0, one obtains the commutativity of the
Hermitian matrices

QNh
t Q, QNs

t Q, t = 1, . . . ,m.

By Lemma 9, these latter matrices are SDC by a uni-
tary matrix V, and hence so are the matrices QNtQ’s
due to Lemma 8. This yields N1, . . . , Nm are SDC by
the nonsingular matrix U = QV.

Algorithm 1. SDC of normal matrices.

INPUT: N1, . . . , Nm ∈ Nn.

OUTPUT: A nonsingular matrix U such that U∗NiU ’s
are diagonal.

Step 1: If the system (12) has a positive definite solu-
tion X, go to the next step.
Otherwise, conclude the initial matrices are not
SDC.

Step 2: Compute the square root X
1
2 of X by using

eigenvalue decomposition of X.

Step 3: Simultaneously diagonalizing the commuting
and Hermitian matrices

1

2
X

1
2 (Ni +N∗

i )X
1
2 ,

i

2
X

1
2 (N∗

i −Ni)X
1
2 ,

for i = 1, . . . ,m, by applying the Jacobi-like
algorithm,5 to determine a unitary matrix V.

Return U = QV.

The last step of Algorithm 1 can apply the Jacobi-like
algorithm 5, Algorithm 3.1 exploiting the works by Bunse-
Gerstner et. al. 14 and by Mendl.15

Example 1. The real symmetric matrices

C1 =

[
0 1

1 1

]
, C2 =

[
1 1

1 0

]
,

which are normal, are C-SDC as shown in the work of
Bustamante and collaborators.6 However, they are not
SDC due to Theorem 7. Indeed, we want to check if

there is a positive semidefinite matrix X =

[
x y

y z

]
≻

0, which is equivalent to x > 0 and xz > y2, such that

C1XC2 = C2XC1 (= (C1XC2)
∗) .

This is equivalent to{
x > 0, xz > y2

x+ y + z = 0.

But the last condition is impossible since there do not
exist x, z > 0 such that xz > y2 = (x + z)2. Thus C1

and C2 are not SDC on R. ⋄

Example 2. . Let

N1 =

1 1 1

1 1 1

1 1 1

 , N2 =

0 1 0

1 −1 1

0 1 0

 ,

N3 =

3i −i i

−i 5i −i

i −i 3i

 .

Theorem 11 leads to finding a positive definite matrix

X =

x y z

ȳ t u

z̄ ū v

 ≻ 0, x, t, v ∈ R, (13)

which is equivalent to that

⇔ x > 0, xt > |y|2,det(X) > 0,

such that

NiXNj = NjXNi,

NiXN∗
j = N∗

j XNi,

1 ≤ i < j ≤ 3. By directly computing, with the help
of the expansion y = Re(y) + iIm(y) and similarly to
u, z, the linear system above (in X) is equivalent to

v = x, t = x− y + z, u = y = ȳ, z = z̄.

We then pick x = 3, z = 2, y = u = 0, t = 5 and
then

X =

3 0 2

0 5 0

2 0 3

 ≻ 0

makes X
1
2N1X

1
2 , X

1
2N2X

1
2 , X

1
2N3X

1
2 , X

1
2N∗

1X
1
2 ,

X
1
2N∗

2X
1
2 , X

1
2N∗

3X
1
2 to be commuting by Theorem

11. Thus three initial matrices are SDC on R, and so
are they on C.

We will see Example 3 showing the numerical experi-
ment of computing a square root of X and a nonsingular
for ∗-SDC N1, N2 and N3. ⋄
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3. NUMERICAL TESTS

In this section, we perform some numerical tests il-
lustrating our main algorithm implemented in MAT-
LAB R2022a running on a PC with Intel Core i3 CPU
3.3GHz, 8GB RAM, Windows 10 x64 operating sys-
tem.

It is well known that a matrix N is normal if and only if
it can written as N = A+ iB with A∗ = A, B∗ = −B

and AB = BA. Notice furthermore that A = A∗ has
only real eigenvalues, while B is skew-Hermitian, and
hence its eigenvalues are all purely imaginary, As an ex-
isting result,5 A and B are ∗-SDC by a unitary matrix.
This leads us to set up a collection of normal matrices
that are for sure ∗-SDC as follows. Fix a unitary matrix
Q, and pick m diagonal matrices Di whose diagonal el-
ements are real in (1, 1), and m diagonal ones Si whose
diagonal elements are purely imaginary in (1, 1). Then
the corresponding normal matrices are constructed as

Ni = Q(Di + iSi)Q
∗, i = 1, . . . ,m,

which are ∗-SDC by Q. . The first stage of Algorithm
3.2 is implemented with the CVX toolbox [19] call-
ing SDPT3 version 4.0 [36] that solves the following
semidefinite program:

min{s | X ⪰ 0, s ≥ ϵ,NiXNj = NjXNi,

NiXN∗
j = N∗

j XNi, 1 ≤ i < j ≤ m}, (14)

where the tolerance ϵ > 0 is given. We then exploit
the MATLAB function sqrtm.m, which executes the
algorithm proposed by Deadman and collaborators,22

to compute the square root Q of X. For the second
stage, we thank the works of Mendl 15 for executing
the Jacobi-like algorithm. In our experiment, we pick ϵ

as the floating-point relative accuracy eps( 32 ) of MAT-
LAB for detecting the SDC property as in (12), while
we keep their tolerance 15 for the last stage to be eps
to the power of 3

2 . We have performed the tests with the
collections of at most 20 normal matrices (of common
sizes 5, 10, . . . , 30, respectively). All experiments give
the backward errors approximately bounded above by
10−8.

Example 3. We continue Example 2 with finding a non-
singular matrix U that ∗-SDC N1, N2 and N3. We first
numerically compute the square root of X as

X
1
2 ≃

1.6180 0 0.6180

0 2.2361 0

0.6180 0 1.6180

 .

Noticing that N1, N2 are real symmetric and N3 is com-
plex symmetric. Furthermore, for a nonsingular matrix

P. P ∗N3P does not need to be normal. So, we can-
not apply the extended Jacobi-like algorithm.15 How-
ever, we can apply the SDP-SDC method 5 to the ma-
trices X

1
2N1X

1
2 , X

1
2N2X

1
2 , X

1
2
1
2 (N3 +N∗

3 )X
1
2 and

X
1
2

i
2 (N

∗
3 − N3)X

1
2 , which are all Hermitian and are

commuting, to obtain the nonsingular matrix

V ≃

−0.4082 −0.7071 0.5774

0.8165 0 0.5774

−0.4082 0.7071 0.5774


that simultaneously diagonalizes the latter matrices
above. Finally, a nonsingular that simultaneously diag-
onalizes the initial matrices N1, N2, N3 is

U = X
1
2V ≃

−0.9129 −0.7071 1.2910

1.8257 0 1.2910

−0.9129 0.7071 1.2910

 ,

where

U∗N1U ≃ diag(0, 0, 15),

U∗N2U ≃ diag(−10, 0, 5),

U∗N3U ≃ diag(30i, 2i, 15i).

4. CONCLUSION

We have provided a sufficient and necessary condition
for a finite family of normal matrices to be simultane-
ously diagonalizable via ∗-congruence. A correspond-
ing MATLAB package has been developed, and some
numerical tests have also been performed.
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Appendix

Proof of Lemma 10. i) By applying (3) to M and N,

one has

MXN = (MhXNh −MsXNs)

+ i(MhXNs +MsXNh),

NXM = (NhXMh −NsXMs)

+ i(NsXMh +NhXMs),

MXN∗ = (MhXNh +MsXNs)

− i(MhXNs −MsXNh),

N∗XM = (NhXMh +NsXMs)

− i(NsXMh −NhXMs).

Substituting the above identities into (4)-(5) one obtains
that

MhXNh −MsXNs = NhXMh −NsXMs,

MhXNs +MsXNh = NsXMh +NhXMs,

MhXNh +MsXNs = NhXMh +NsXMs,

MhXNs −MsXNh = NsXMh −NhXMs.

Adding side-by-side the first and the third (resp., the
second and the fourth) equations one has

MhXNh = NhXMh, MhXNs = NsXMh.

Subtracting side-by-side the first and the third (resp.,
the second and the fourth) equations one has

MsXNs = NsXMs, MsXNh = NhXMs,

Conversely, from (2), the identities (6)-(9) are equiva-
lent to

(M +M∗)X(N +N∗) = (N +N∗)X(M +M∗),

(M +M∗)X(N −N∗) = (N −N∗)X(M +M∗),

(M −M∗)X(N +N∗) = (N +N∗)X(M −M∗),

(M −M∗)X(N −N∗) = (N −N∗)X(M −M∗),

respectively. Expanding the above identities leads to
that

MXN +MXN∗ +M∗XN +M∗XN∗ =

NXM +NXM∗ +N∗XM +N∗XM∗,

MXN −MXN∗ +M∗XN −M∗XN∗ =

NXM +NXM∗ −N∗XM −N∗XM∗,

MXN +MXN∗ −M∗XN −M∗XN∗ =

NXM −NXM∗ +N∗XM −N∗XM∗,

MXN −MXN∗ −M∗XN +M∗XN∗ =

NXM −NXM∗ −N∗XM +N∗XM∗.

By adding side-by-side the above identities, we have

MXN = NXM.

Similarly, by adding the first and the third, then sub-
tracting the second and the fourth identities, side-by-
side, we additionally obtain

MXN∗ = N∗XM.

ii) This is an immediate consequence of the first part
with noting that X∗ = X and

M +M∗ = U(ΛM + ΛM )U∗,

M −M∗ = U(ΛM − ΛM )U∗,

N +N∗ = V (ΛN + ΛN )V ∗,

N −N∗ = V (ΛN − ΛN )V ∗,

where M = UΛMU∗, N = V ΛNV ∗ are eigen-
value decomposition of the normal matrices M and N

(ΛM ,ΛN are complex diagonal and U, V are unitary
matrices).
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