

1-manuscript-RCHSe-Te-HCOOH_ Plagchecked.docx

By t. trung qnujs

5 Liên kết hydrogen không có điển C_{sp^2} -H...O/Se/Te and O-H...Se/Te trong các hệ phức giữa acid formic acid và selenoformaldehyde, telluroformaldehydes

Tóm tắt

Trong nghiên cứu này, độ bền các phức cũng như các liên kết hydrogen và đặc trưng của chúng trong hệ giữa acid formic với các dẫn xuất aldehyde được khảo sát một cách đầy đủ. Nhìn chung, độ bền của các phức **được tăng cường đáng kể đối với** các nhóm thê cho hoặc nhận electron trong các dẫn xuất aldehyde. Các phức với sự thay thế Se được tìm thấy bền hơn so với các phức thê Te. Các phức đối với sự thê halogen được đánh giá kém bền hơn các phức của dẫn xuất thê $-CH_3$ và $-Cl$. Các kết quả thu được chỉ ra độ bền đáng kể của liên kết O-H...Se/Te trong việc làm bền các phức so với C-H...O. Các kết quả tính toán cũng cho thấy rằng độ bền các liên kết hydrogen không có điển giảm theo thứ tự $O-H...Se > O-H...Te \sim C-H...O > C-H...Se/Te$. Sự chuyển dời xanh của liên kết C-H trong các phức khảo sát ở các liên kết hydrogen C-H...Se mạnh hơn so với C-H...Te. Phân tích NBO thấy rằng xu hướng chuyển dời xanh của tần số dao động liên kết $C_{sp^2}H$ phụ thuộc chính vào sự giảm mật độ electron ở orbital phản liên kết $\sigma^*(C_{sp^2}H)$ trong quá trình hình thành phức. Sự chuyển dời độ của tần số dao động liên kết O-H trong các liên kết hydrogen không có điển O-H...Se/Te được quyết định bởi sự tăng đáng kể mật độ electron tại orbital phản liên kết $\sigma^*(O-H)$ so với sự tăng cường đặc trưng s ở nguyên tử O trong quá trình tạo phức.

5
Từ khóa: liên kết hydrogen không có điển O/ C_{sp^2} -H...O/Se/Te, Se/Te-aldehydes, acid formic.

5 The C_{sp^2} -H...O/Se/Te and O-H...Se/Te nonconventional hydrogen bonds in the systems of formic acid with selenoformaldehydes and telluroformaldehydes

ABSTRACT

In this study, a thorough investigation into the stability of complexes as well as the hydrogen bonds along with their characteristics in the systems between formic acid and chalcoaldehyde derivatives. Generally, the strength of complexes is enhanced irrespective of electron donating or withdrawing substitution in chalcoaldehyde derivatives. It is found that the complexes involving Se-substitution are slightly more stable than Te-one. The halogenated complexes are less stable than CH_3 - and NH_2 -substituted or 4, in which the largest stability belongs to the complexes involving NH_2 -substituted group. The obtained results show a dominant role of O-H...Se/Te compared to C-H...O in contributing to the stabilization of complexes. Calculated results indicate that the strength of nonconventional hydrogen bonds decreases in the order of O-H...Se > O-H...Te ~ C-H...O > C-H...Se/Te. The larger blue shift of C-H bond in the complexes investigated is observed in C-H...O compared to C-H...Se/Te. Following complexation, the magnitude of C-H blue shift is larger in the case of C-H...O than in C-H...Te. NBO analysis shows that the blue-shifted stretching frequency of C_{sp^2} -H depends mainly on a decrease of electron density at $\sigma^*(C_{sp^2}$ -H) orbital. The redshift of O-H stretching frequency in O-H...Se/Te nonconventional hydrogen bonds in these systems is determined by a considerable increase of electron density at $\sigma^*(O-H)$ orbitals overcoming a s-character enhancement of O site upon complexation.

Keywords: O/ C_{sp^2} -H...O/Se/Te nonconventional hydrogen bonds, Se/Te-aldehydes, formic acid.

1. INTRODUCTION

Hydrogen bonds play an extremely important role because of their great properties in molecular information recognition, protein folding, structural rearrangement of nucleic acids, crystallization, polymerization, supramolecular chemistry, solvation, or in organic synthesis.^{1,2} Many investigations were performed to understand the characteristics of hydrogen bonds as well as their importance in arrangement of molecules, reaction mechanism, as well as adsorption process, surface phenomena.³⁻⁶ Notably, non-classical hydrogen bonds of the form C-H...O/N, C-H... π , C-H...X (X= F, Cl, Br) were detected in many molecular clusters, proteins, DNA, RNA, crystal structures of many materials, and surface reactions. Besides, organic synthesis methods based on the activation of C-H groups in intermediate complexes are one of the issues of current interest due to their importance in controlling the formation of desired products.^{7,8} Experimental, Raman and theoretical findings of blue-shifted C-H bonds involved in C-H...O/N/ π hydrogen bonds have been reported, of which the most abundant is the C-H...O/N form.⁹⁻¹⁷ With these interesting findings on

1
nonconventional hydrogen bonds, several models have been proposed to explain the nature of blue-shifted hydrogen bonding in individual systems, but none of them can be universally applied to other complex systems stabilized by hydrogen bonds.^{9,16-20} Given the important role of hydrogen bonds in biological systems, the strength and properties of classical hydrogen bonds O-H...S, S-H...O/S have been studied and reported, for example, in some dimers of H_2O , H_2S , and $H_2O\cdots H_2S$ system, by both theoretical and experimental methods.^{21,22} Many nonconventional hydrogen bonds have been discovered recently and play important roles in proteins, catalysis... Indeed, the hydrogen bonds O/N-H...Se/Te were recently discovered experimentally.²³⁻²⁵ However, systematic studies of the O-H...Se/Te hydrogen bond system to understand their strength and properties have not been reported. In addition, the influence of this O-H...Se/Te hydrogen bond on the strength and characteristics of the C_{sp^2} -H...Se/Te hydrogen bond has not been considered and evaluated in literature.

In addition, the compounds having carbonyl group, including aldehydes, carboxylic acid, their

halogenated and amides derivatives, are commonly found not only in the biologic structures such as proteins, lipid-membranes but also in other biologically active compounds like drugs. Theoretical studies on the ¹⁰ ¹⁰s of carboxylic acids and amides indicated that the origin of stabilization in the studied complexes is charge-delocalization.^{2,26} The experimental and theoretical investigations into O-H redshift and C_{sp}²-H blueshift in the hydrogen bonds in the complexes of formic acid, acetic acid, and acetaldehyde was reported.²⁷⁻²⁹ Besides, strength and nature of blue- ³⁰ redshifting hydrogen bonds were examined in mono- and dihydrated complexes of the formamide, aldehydes and hydroxyl derivatives.²⁶ carboxylic acids.³⁰⁻³² More recently, the C_{sp}²-H blue shift in the C_{sp}²-H···O hydrogen bonds have been reported for the complexes of aldehydes with formic acid, adding water into chalcogenoaldehydes, and in the binary systems of acetaldehyde and thioacetaldehyde with the substituted carboxylic and thiocarboxylic acids.^{16,33,34}

9

Further, a theoretical study on the nature of hydrogen bonds for formamide and its heavy complexes (NH₂CYH···XH; Y = O, S, Se, Te; X = F, HO, NH₂) was performed using density functional theory calculations and the quantum chemistry analyses.³⁵ Noticeably, the C_{sp}²-H···O/S/Se/Te hydrogen bonds were evaluated in the XCHO···nH₂Z and dimers of chalcogenoaldehyde derivatives systems.^{36,37} However, the two hydrogen-bond systems between selenoformaldehyde or telluroformaldehyde and carboxylic acid along with their derivatives in consideration of the strength and the shifting of stretching frequency has not yet been observed clearly. In addition, the effects of various X substituents relating to the strength of nonconventional hydrogen bonds, which have essential role in stabilizing complexes as well as the shifts in C_{sp}²-H or O-H stretching frequency need to be addressed. Furthermore, the existence and role of various interactions following complexation such as O-H···Se/Te and C_{sp}²-H···O/Se/Te hydrogen bonds should be examined in the complexes of Se/Te derivatives to have insights into the nonconventional hydrogen bonds. In this work, the interaction complexes between aldehyde (XCHZ) and formic acid (HCOOH), with X = H, F, Cl, Br, CH₃, NH₂, and Z = ¹⁵Te, are selected to have thorough insights into the effects of different X and Z on the polarity of C_{sp}²-H and the gas phase basicity of Z, as well as their role to the stability and

10 characteristics of O-H···Se/Te, C_{sp}²-H···Se/Te nonconventional hydrogen bonds, and the complex strength.³

2. COMPUTATIONAL METHODS

Geometry optimizations for all the structures considered, including the monomers and complexes, are carried out at the ¹³MP2/6-311++G(3df,2pd) level of theory. Harmonic vibrational frequencies are subsequently performed at the same level to identify the true equilibrium structures on the potential energy surface and to ¹⁶mate their zero-point energies (ZPE). The interaction energy of each complex is calculated as the difference in the single-point energy of the ¹⁴complex and the correlated monomers and corrected for basis set superposition errors (BSSE) at the CCSD(T)/6-311++G(3df,2pd)//MP2/6-311++G(3df,2pd) level. Particularly, ΔE^* is represented as the difference in total electronic energy between the complexes (E_c) and the sum of XCHZ and HCOOH optimized monomers (E_{m1}, E_{m2}) given by the ¹⁵expression: $\Delta E^* = E_c - (E_{m1} + E_{m2})$ (1). Moreover, deprotonation enthalpy (DPE) is defined as the enthalpy change for the deprotonation reactions: XC(Z)H → XCZ⁻ + H⁺ (2) and ¹⁴HCOOH → HCOO⁻ + H⁺ (3) and is considered as DPE of C-H and O-H bonds in both XC³² and YCOOH monomers. Proton affinity (PA) is defined as the enthalpy change for the protonation reaction: XC(Z)H + H⁺ → XC(ZH⁺)H (4) and is considered ³PA at the Se and Te sites in XCHZ monomers. All calculations mentioned above are carried out by employing the Gaussian 16 program.³⁸

2

The Atoms-in-Molecules (AIM) analysis to search critical points and to estimate electron densities and Laplacians is performed at the MP2/6-311++G(3df,2pd) level using the AIMall program.^{39,40} The local electron energy density (H(r)) at the bond critical point (BCP) is computed by the equation: H(r) = G(r) + V(r) (5), in which V(r) and G(r) are the corresponding electron potential and kinetic energy density. The individual energy of each hydrogen bond (E_{HB}) is estimated using the formula E_{HB} = 0.5V(r).⁴¹ The natural bond orbital (NBO) analysis using NBO 5.0 software with results of the intra- and intermolecular hyperconjugation energies and orbital occupancies was performed at the ω B97X-D/6-311++G(3df,2pd) level.^{42,43} This range-separated hybrid functional (ω B97X-D) has been proved to be suitable for treating non-covalent interaction.⁴⁴ Besides,

Symmetry Adapted Perturbation Theory (SAPT) calculations using the Psi4 program with the def2-TZVPD basis set are applied to unravel the different contributions of energy components to the stability of examined complexes.⁴⁵ The individual components of the interaction energy, including the electrostatic (E_{elec}), induction (E_{ind}), and dispersion (E_{disp}), are estimated particularly.

3. RESULTS AND DISCUSSION

3.1. Stable geometry and AIM analysis

The interaction of XCHZ with HCOOH induces 36 stable complexes, denoted by XZ-n (with X = H, F, Cl, Br, CH₃, NH₂; Z = Se, Te and n = 1-3) with three geometries XZ-n displayed in Figure 1. The sp²-hybridized carbon atom in XCHZ is labeled hereafter as C_{sp2}. Each complex contains a ring that is stabilized by two intermolecular contacts, including O-H···Se/Te and C_{sp2}-H···O in XZ-1, C-H···Se/Te and C_{sp2}-H···O in XZ-2 and XZ-3. All H···O, H···Se and H···Te intermolecular distances

(Table S1) are in the range of 2.18–2.45 Å, 2.33–2.20 Å and 2.65–3.33 Å, respectively, that in general are shorter or close to the sums of van der Waals radii of relevant atoms (being 2.72 Å for O···O, 3.00 Å for H···Se and 3.16 Å for H···Te). These results roughly suggest the presence of O···Se/Te and C_{sp2}-H···O/Se/Te nonconventional hydrogen bonds in the complexes. The presence of these intermolecular contacts through the bonding critical points (green points in Figure S1) is also confirmed by the values of electron density and Laplacian at BCPs (Table S1) and the values of local electron energy densities (H(r)) at BCPs.⁴⁰ Moreover, the H···Se/Te distances in C_{sp2}-O-H···Se/Te contacts are also close to those reported in literature for complexes between NH₂CHSe and NH₂CHTe, with HF/H₂O/NH₃.⁴⁶ The intermolecular contact distances with the presence of chalcogen atoms (O, S, Se, Te) in hydrogen bonds were also reported in some studies.^{16,33,35,47}

Figure 1: Optimized geometries and topological features of complexes XCHZ and HCOOH (X = H, F, Cl, Br, CH₃, NH₂ and Z = Se, Te) at MP2/6-311++G(3df,2pd)

As shown in Table S1, the decreasing tendency of strength for hydrogen bonds is in the sequence of O-H···Se to O-H···Te ~ C-H···O and then to C-H···Se/Te. Indeed, the E_{HB} values indicate that the strength of C-H···O (-7.4 ÷ -15.6 kJ·mol⁻¹) is 2.1 times as large as that of C-H···Se/Te (-3.3 ÷ -5.5 kJ·mol⁻¹) and the strength of O-H···Se (-16.8 ÷ -23.1 kJ·mol⁻¹) is 1.5 times as large as that of O-H···Te (-12.5 ÷ -13.8 kJ·mol⁻¹). Along with the results of individual hydrogen bond energies⁴⁶ literature by Khanh et al.¹⁶, it is found that the ability of hydrogen bonds decrease in going from O-H···O >> O-H···S > O-H···Se > O-H···Te. These results are also supported by a previous

investigation of hydrogen bonding complexes containing chalcogen atoms.³³ The second correlation of individual hydrogen bond energy (E_{HB}) versus intermolecular distances R(C-H···O/Se/Te) is obtained according to expression $E_{\text{HB}} = -134.24 + 85.52R(\text{C-H···O/Se/Te}) - 13.98R^2(\text{C-H···O/Se/Te})$ ($R^2 = 0.96$) as given in Figure 2. However, a highly linear correlation of individual bond energy (E_{HB}) with respect to intermolecular distances R(O-H···Se/Te) is observed as expression $E_{\text{HB}} = 29.205R(\text{O-H···Se/Te}) - 78.638$ ($R^2 = 0.98$). The obtained results indicate that the shorter intermolecular distance is the stronger the nonconventional hydrogen bond is, and vice versa.

¹³ On the basis of individual hydro²⁴ bond energy given in Table S1 of ESI, it can be suggested that the C-H···O hydrogen bonds play a main role in stabilizing **XZ-2** and **XZ-3** along with an additional role of the C-H···Se/Te ones. Nevertheless, for **XZ-1** complexes, the C-H···O hydrogen bonds serve as a supplementary factor along with a substantial importance of the O-H···Se/Te ones in complex stabilization. In order to clarify the relationship between the strength of nonconventional hydrogen bond and $r_{H\cdots O/Z}/\sum r_{vdW}$ ratio, the $r_{H\cdots Z}/\sum r_{vdW}$ ratios are gathered and plotted in Table S12 and Figures S2, S3 of ESI. The results show that there is a good agreement between the $r_{H\cdots Z}/\sum r_{vdW}$ ratio and E_{HB} of nonconventional hydrogen bonds in investigated complexes. Indeed, the $r_{H\cdots Z}/\sum r_{vdW}$ ratios of C-H···O hydrogen bonds in the **XSe/Te-1** are smaller than those in **XSe/Te-2**,

and **XSe/Te-3**, being consistent with the larger strength of C-H···O hydrogen bonds in **XSe/Te-1** compared to **XSe/Te-2**, ¹ and **XSe/Te-3**. The $r_{H\cdots Z}/\sum r_{vdW}$ ratio of C-H···O in the complexes increases in the order of $\text{NH}_2 < \text{Br} < \text{F} < \text{CH}_3 < \text{H}$, along with the decrease in the strength of C-H···O hydrogen bonds in the sequence of $\text{NH}_2 > \text{Br} > \text{F} > \text{CH}_3 > \text{H}$ substituted derivatives. It is worth noted that the O-H···Se/Te hydrogen bonds are much more stronger than the C_{sp2}-H···Se/Te ones, which is proven by the much smaller $r_{H\cdots Z}/\sum r_{vdW}$ ratio of O-H···Se/Te that that of C_{sp2}-H···Se/Te hydrogen bonds. For ¹**Z-2** and **XZ-3**, the $r_{H\cdots Z}/\sum r_{vdW}$ ratios of C-H···Se/Te are larger than the ⁵ of C-H···O, being in line with the weaker strength of the C-H···Se/Te than the C-H···O.

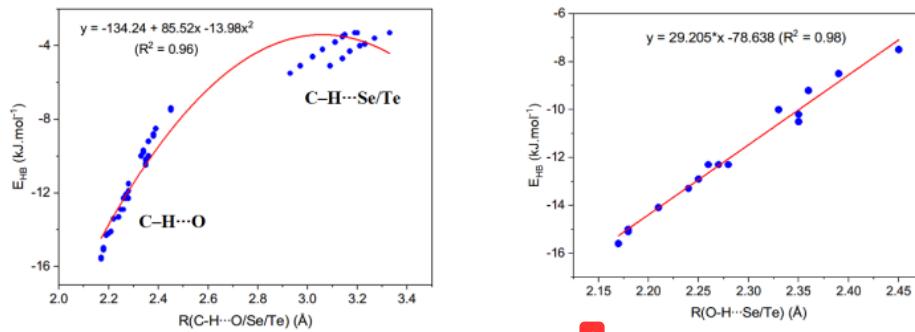


Figure 2: The relationships between E_{HB} and $R(C\text{-H}\cdots\text{O/Se/Te})$ in the complexes

⁴³ Table 1: Deprotonation enthalpies of C_{sp2}-H (DPE) and proton affinities at Z sites (PA) at the CCSD(T)/6-311++G(3df,2pd) (in kJ·mol⁻¹)

Monomer	HCHSe	FCHSe	CICHSe	BrCHSe	CH ₃ CHSe	NH ₂ CHSe
PA(Se)	775.0	737.9	766.3	773.0	811.7	860.0
DPE(C _{sp2} -H)	1623.6	1567.2	1551.7	1539.0	1620.7	1595.6
Monomer	HCHTe	FCHTe	CICHTe	BrCHTe	CH ₃ CHTe	NH ₂ CHTe
PA(Te)	812.2	780.7	802.7	807.9	841.0	884.6
DPE(C _{sp2} -H)	1612.7	1561.0	1550.7	1540.8	1615.5	1582.3

¹ In order to examine the effect of the proton-donor or proton-acceptor ability of the isolated monomers on the strength of intermolecular interactions, deprotonation enthalpies (DPE) of C_{sp2}-H and proton affinities (PA) at the Se/Te sites of XCHZ are calculated and given in Table 1. With the same Z in XCHZ, the strength of O-H···Z hydrogen bonds in **XZ-1** decreases in the order of $\text{NH}_2 > \text{CH}_3 > \text{H} > \text{Cl/Br}$ substitutions (cf. Table S1), which are in a good agreement with a decrease of gas-phase basicity (PA) at Se/Te site in **XZ-1** (cf. Table 1). However, a decrease of strength of C-H···O hydrogen bonds in **XZ-1** is in the order of

$\text{NH}_2 > \text{F/Cl/Br} > \text{CH}_3 > \text{H}$ substitutions, which differs from trend of the polarity of C_{sp2}-H bond in the isolated XCHZ. As a result, the strength of **XZ-1** is mainly proposed by the presence of O-H···Z. Similarly, a decrease in gas-phase basicity at Se/Te site in the sequence of $\text{NH}_2 > \text{CH}_3 > \text{H} > \text{F/Cl/Br}$ substitutions in XCHZ causes a reduction of strength of C-H···Z hydrogen bonds in **XZ-2**, **XZ-3** decreasing in the same tendency. The strengthening trend of C-H···O hydrogen bonds in **XZ-2** and **XZ-3** is also suitable for an increase in the polarity of C_{sp2}-H bond in XCHZ in the order of $\text{H} < \text{CH}_3 < \text{NH}_2 < \text{F/Cl/Br}$ substitution (cf. Table S1). With the

1 alike X in XCHZ, the stronger strength of O-H \cdots Se hydrogen bonds compared to O-H \cdots Te ones is observed in XZ-1. However, for the same X in the isolated XCHZ, proton affinity at Te site is larger than that at Se one (cf. Table 1), and accordingly these hydrogen bonds should be assigned by a larger electrostatic attraction of H and Se relative to H and Te.

3

3.2. Interaction energy and SAPT analysis

17 Interaction energies (ΔE^*) of complexes, including both ZPE and BSSE correction at the CCSD(T)/6-311++G(3df,2pd)//MP2/6-311++G(3df,2pd) level are listed in Table 2, and their relationship is plotted in Figure 3. Generally, the interaction energies values in the range of -7.1 and -37.2 kJ.mol $^{-1}$ indicate that the obtained complexes are quite stable on the potential energy surface, in which the XZ-1 complexes are 2 \div 3 times as stable as XZ-2 and XZ-3 complexes. The considerable strength of XZ-1 is suggested by the presence of O-H \cdots Z hydrogen bond with respective to the remaining nonconventional C-H \cdots O/Z hydrogen bonds. The reason for the larger stability of XZ-2 relative to XZ-3 should be the larger gas phase basicity of O

12

Table 2: Interaction energy corrected by both ZPE and BSSE (ΔE^* , kJ.mol $^{-1}$) of the complexes RCHZ \cdots HCOOH at CCSD(T)/6-311++G(3df,2pd)//MP2/6-311++G(3df,2pd)

Complex	ΔE^*	Complex	ΔE^*	Complex	ΔE^*
HSe-1	-24.4	HSe-2	-10.7	HSe-3	-7.3
FSe-1	-23.9	FSe-2	-13.0	FSe-3	-8.1
ClSe-1	-24.9	ClSe-2	-12.9	ClSe-3	-8.4
BrSe-1	-24.7	BrSe-2	-12.9	BrSe-3	-8.6
CH ₃ Se-1	-28.4	CH ₃ Se-2	-12.3	CH ₃ Se-3	-8.9
NH ₂ Se-1	-37.2	NH ₂ Se-2	-16.6	NH ₂ Se-3	-11.7
HTe-1	-22.3	HTe-2	-10.2	HTe-3	-7.1
FTe-1	-22.9	FTe-2	-12.7	FTe-3	-8.1
ClTe-1	-23.6	ClTe-2	-12.7	ClTe-3	-8.3
BrTe-1	-23.5	BrTe-2	-12.6	BrTe-3	-8.5
CH ₃ Te-1	-25.8	CH ₃ Te-2	-11.8	CH ₃ Te-3	-8.4
NH ₂ Te-1	-34.7	NH ₂ Te-2	-16.6	NH ₂ Te-3	-11.4

2 It is important to consider the substituent effects of X and Z in XCHZ monomers on the strength of interactions in the investigated complex. The interaction energy of XSe-n is ca. 0.1–2.6 kJ.mol $^{-1}$ slightly more negative than that of XTe-n, about for the same X in XCHZ derivatives. This indicates a slightly less strength of XTe-n as compared to XSe-n, which should be resulting from stronger electrostatic force of Se and H atoms overcoming Te and H atoms.³³ Generally, the

19 site of >C=O as compared to that of O site of -OH in formaldehyde acid. Both of them are stabilized by the nonconventional hydrogen bonds including C-H \cdots Z and C-H \cdots O.

2 It is found that the most stable XZ-1 of XCHZ \cdots HCOOH in the present work have a comparable strength of XCHO \cdots HCOOH complexes and slightly larger than that of XCHS \cdots HCOOH.¹⁶ The XZ-1 complexes are more stable than the binary complexes of small aldehydes, and less stable than dimers of typical carboxlic acids. Indeed, the interaction energies of HCHO \cdots HCHO, HCHO \cdots H₂S, HCHS \cdots HCHS are in turn -12.3, -11.7, -10.7 kJ.mol $^{-1}$ at CCSD(T)-F12/heavy-aug-cc-pVTZ level of theory.⁴⁸ The complexes of HCHO \cdots HCHO and CH₃CHO \cdots CH₃COOH have interaction energies of -21.0 and -22.4 kJ.mol $^{-1}$ at MP2/aug-cc-pVTZ.⁴⁹ The very large interaction energies of CH₃COOH \cdots CH₃COOH and COOH \cdots HCOOH at MP2/aug-cc-pVTZ are -60.7 kJ.mol $^{-1}$ and -56.9 kJ.mol $^{-1}$.⁵⁰

4

strength of XZ-n complexes is enhanced irrespective of electron donating or withdrawing X substitution (cf. Table 2 and Figure 3). For the alike Z, it is found that the halogenated complexes are less stable than CH₃- and NH₂-substituted ones, in which the largest stability belongs to the complexes H₂Z-n with more negative values of 2.8–13.3 kJ.mol $^{-1}$. This implies a significant role of O-H \cdots Se/Te and C-H \cdots O/Se/Te nonconventional

hydrogen bonds in contributing to the stability of $\text{NH}_2\text{Z-n}$ compared to other complexes.

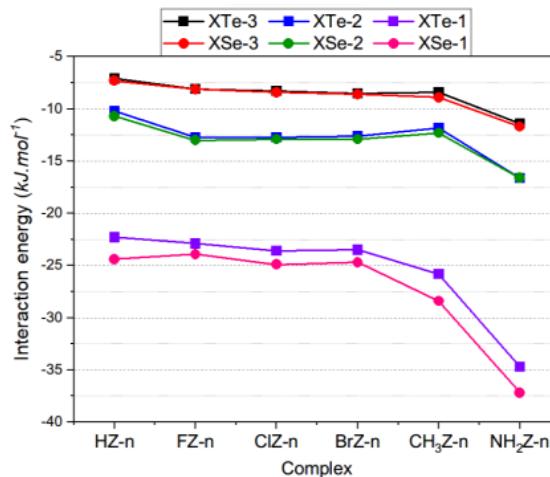


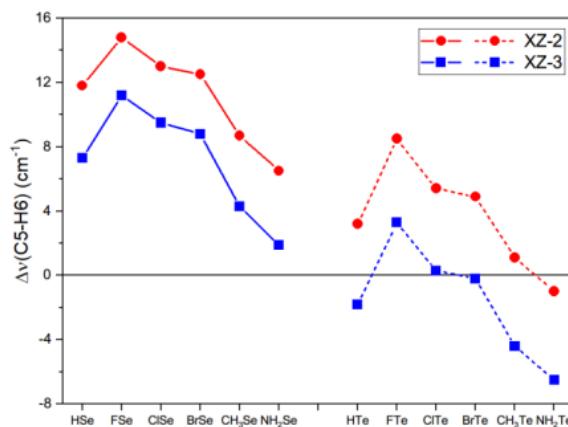
Figure 3: The relationship of the interaction energies and different X substitutions

As seen from Table 2, the interaction energy of complexes indeed increases in the substituting order: $\text{F} < \text{H} < \text{Br} \sim \text{Cl} < \text{CH}_3 < \text{NH}_2$ for **XSe-1** and $\text{H} < \text{F} < \text{Br} \sim \text{Cl} < \text{CH}_3 < \text{NH}_2$ for **XT-1**. This result is suitable for the changing trend in the strength of $\text{O}-\text{H}\cdots\text{Se/Te}$ bonds in the complexes, affirming a main role of $\text{O}-\text{H}\cdots\text{Se/Te}$ bonds along with an additional role of $\text{C}-\text{H}\cdots\text{O}$ hydrogen bonds in stabilizing **XZ-1**. The energetic components based on the SAPT2+ approach, which contribute to the stability of complexes investigated, are shown in Table S2. The obtained results show that the stability of complexes are mainly contributed by three terms including electrostatic, dispersion, and induction with contributing percentages of *ca.* 8–53%, 7–46% and 7–63% respectively. The dominating role of electrostatic components contributing to the complex strength is also reported in the complexes of $\text{XCHO}\cdots\text{HCOOH}$ and $\text{XCHS}\cdots\text{HCOOH}$.¹⁶

3.3. Characteristics of $\text{C}_{\text{sp}2}\text{-H}\cdots\text{Se/Te}$ and $\text{O}\cdots\text{Se/Te}$ hydrogen bonds

The formation of $\text{C}-\text{H}\cdots\text{Z}$, $\text{C}-\text{H}\cdots\text{O}$ and $\text{O}-\text{H}\cdots\text{Z}$ interactions in complexes are further clarified by the change in lengths (Δl , \AA) and the stretching frequencies ($\Delta\nu$, cm^{-1}) of $\text{O}-\text{H}$ and $\text{C}_{\text{sp}2}\text{-H}$ bond participating in the considered hydrogen bonds. The results at MP2/6-311++G(3df,2pd) are gathered in Table 3.

Considering the nonconventional hydrogen bonds of $\text{C}-\text{H}\cdots\text{Se/Te}$, the $\text{C}-\text{H}$ length in **XZ-2** and


XZ-3 decreases slightly in the range of 0.07–0.93 \AA , accompanied by an increase in their stretching frequency of 1.9–14.8 cm^{-1} as compared to the corresponding values of isolated monomers. These changes show that $\text{H}\cdots\text{Z}$ interactions in the complexes belong to blue-shifting hydrogen bonds. Following complexation, the larger blue shift of $\text{C}-\text{H}$ bond in the complexes investigated is observed in $\text{C}-\text{H}\cdots\text{O}$ compared to $\text{C}-\text{H}\cdots\text{Se/Te}$, and has a much smaller magnitude than that in the complexes of $\text{XCHO}\cdots\text{HCOOH}$. It was found that $\text{C}-\text{H}\cdots\text{Se/Te}$ nonconventional hydrogen bonds in dimers of RCHZ ($\text{R}=\text{H, F, Cl, Br or CH}_3$, $\text{Z}=\text{Se, Te}$) are redshifted.¹⁶ In the present work, a small $\text{C}_{\text{sp}2}\text{-H}$ elongation of 0.10–0.52 \AA along with a decrease in stretching frequency of 0.2–6.5 cm^{-1} is found in the case of **NH₂Se-3**, **BrTe-3**, **HTe-3**, **CH₃Te-3**, and **NH₂Te-3**, indicating red shifting hydrogen bonds. These values are quite close to a report of hydrogen bonded complexes between aldehydes and hydrogen chalcogenides.³⁶ The largest shortening of $\text{C}-\text{H}$ bond length is observed for **FZ-2** and **FZ-3**, associated with the strongest electron-withdrawing group being F, where the smallest is observed in **NH₂Z-2** and **NH₂Z-3**. Besides, the blue shift of $\text{C}-\text{H}$ bond in $\text{C}_7\text{H}_6\cdots\text{Z}$ interaction in **XZ-2** and **XZ-3** decreases in the substituting order: $\text{F} > \text{Cl} > \text{Br} > \text{H} > \text{CH}_3 > \text{NH}_2$. This result is consistent with increased basicity at the Se/Te site in XCHZ (Table 1). The magnitude of the $\text{C}_{\text{sp}2}\text{-H}$ shift with the Z same is more strongly affected by electron-withdrawing groups (F, Cl, Br) than by electron-donating groups (CH_3 , NH_2). The

2 magnitude of C5–H6 stretching frequency blueshifts are larger 12 C–H···Se than for C–H···Te, which is in an align with the increasing tendency of the proton affinity at Te relative to Se 16 (cf. Table 1). Furthermore, the larger blueshift of C–H bond in

C–H···Z hydrogen bonds of **XZ-2** in comparison 28h that of **XZ-3** is observed, which relate to the more important role of C–H···O hydrogen bond in **XZ-2** compared to that in **XZ-3**, toward the blueshift of C–H stretching frequency.

6 *Table 3:* Changes in bond lengths (in mÅ) and their corresponding stretching frequencies (in cm⁻¹) at MP2/6-311++G(3df,2pd)

Complex	HSe-1	FSe-1	ClSe-1	BrSe-1	CH ₃ Se-1	NH ₂ Se-1	HTe-1	FTe-1	ClTe-1	BrTe-1	CH ₃ Te-1	NH ₂ Te-1
Δr(C1H2)	0.42	0.76	1.54	1.77	-0.37	0.22	1.09	0.51	1.37	1.55	-0.08	0.69
Δv(C1H2)	8.4	3.8	-4.5	-6.8	18.9	8.1	0.3	7.2	-2.4	-4.6	14.3	1.6
Δr(O8H9)	15.32	12.49	13.24	13.17	16.80	21.18	13.97	12.20	12.78	12.69	15.09	19.24
Δv(O8H9)	326.2	-266.6	-284.0	-282.5	-355.5	-439.4	-299.5	-261.9	-274.6	-273.1	-322.1	-402.6
Complex	HSe-2	FSe-2	ClSe-2	BrSe-2	CH ₃ Se-2	NH ₂ Se-2	HTe-2	FTe-2	ClTe-2	BrTe-2	CH ₃ Te-2	NH ₂ Te-2
Δr(C1H2)	0.17	0.21	0.76	0.92	-0.34	0.18	0.84	0.04	0.72	0.89	-0.20	0.53
Δv(C1H2)	7.8	7.8	3.0	1.2	15.6	6.9	-0.3	10.0	3.3	1.0	12.8	1.3
Δr(C5H6)	-0.73	-0.93	-0.79	-0.76	-0.47	-0.30	-0.52	-0.78	-0.65	-0.60	-0.28	-0.07
Δv(C5H6)	11.8	14.8	13.0	12.5	8.7	6.5	7.3	11.2	9.5	8.8	4.3	1.9
Complex	HSe-3	FSe-3	ClSe-3	BrSe-3	CH ₃ Se-3	NH ₂ Se-3	HTe-3	FTe-3	ClTe-3	BrTe-3	CH ₃ Te-3	NH ₂ Te-3
Δr(C1H2)	-0.07	-0.33	-0.17	-0.07	-0.48	-0.21	0.51	-0.36	-0.09	-0.04	-0.43	-0.05
Δv(C1H2)	10.1	13.4	13.6	12.6	16.7	12.5	3.5	13.6	12.5	11.8	15.2	9.9
Δr(C5H6)	-0.07	-0.43	-0.20	-0.17	0.09	0.24	0.18	-0.16	0.06	0.10	0.38	0.52
Δv(C5H6)	3.2	8.5	5.4	4.9	1.1	-1.0	-1.8	3.3	0.3	-0.2	-4.4	-6.5

17 *Figure 4:* The relationship between the change in C–H stretching frequency and different X substitutions in **XZ-2** and **XZ-3**

3 For **XZ-3**, the C–H stretching frequency in C–H···O hydrogen bond 5 displays a blueshift with a small contraction and an increase of stretching frequency ($\Delta r = -0.04 \div -0.48 \text{ m}\text{\AA}$ and $\Delta v = 9.9 \div 16.7 \text{ cm}^{-1}$), except for a small elongation in **HTe-3**.

5 Besides, the blueshift of the C–H bond observed in **XZ-13** emphasized by a slight enhancement of its bond length and corresponding stretching frequency (except for **HTe-2** with a slight redshift of C–H stretching frequency). The slight redshift is observed in **ClZ-1** and **BrZ-1**, while most **XZ-1**

1 structures indicate a blue shift of C-H stretching frequency in C-H···O hydrogen bonds. The redshift for **ClZ-1** and **BrZ-1** should be designated to the largest polarity of the C_{sp2}-H bonds in ClCHZ and BrCHZ monomers (Z = Se, Te).¹⁶ As shown in Table 3, a C-H bond contraction and an increase in its stretching frequency in XSe-n are larger than those in XTe-n. This observation is induced by the larger polarity of the C-H bond in XCHTe than in XCHSe. Meanwhile, with the same Z in XZ-3, the larger blueshift in CH₃Z-3 in comparison with **F/Cl/BrZ-3** comes from the smaller polarity of the C-H bond in CH₃Z-3. A very small blue shift of C_{sp2}-H in C-H···O in XCHZ···HCOOH (Z=Se, Te) as compared to the considerable blue shift of that in XCHO···HCOOH (up to 10 cm⁻¹) was attained.¹⁶ This shows that a profound role of O-H···O relative to O-H···Se/Te in increasing the very considerable blue shift of C_{sp2}-H stretching frequency. In the other words, it implies a noticeable role of O compared to S, Se and Te atom in determining a significant blue shift of C-H stretching frequency following complexation.

2 On the other hand, for O-H···Se/Te hydrogen bonds in XZ-1 form, the bond elongation of 12.5–21.2 mÅ for O-H···Se and 12.2–19.2 mÅ and O-H···Te is observed which is accompanied by a remarkable decrease of 266.6–439.4 cm⁻¹ and 261.9–402.6 cm⁻¹ in their stretching frequency, respectively (cf. Table 3). These changes show the redshift of O-H stretching frequencies involved in the O-H···Se/Te nonconventional hydrogen bonds. Particularly, with the same X in XCHZ, the redshift phenomenon in the O-H···Se hydrogen bonds is larger than the O-H···Te ones. In the case of the same Z, the redshift of O-H···Z hydrogen bonds is found in the increasing order of F/Cl/Br < H < CH₃ < NH₂ substitutions, which is in good agreement with the enhancement of proton affinity of chalcogen atom in the XCHZ (Table 1). The obtained result of O-H stretching frequency redshift in the hydrogen bond is similar to previous reports in complexes of chalcogen derivatives and formic acid.^{16,33}

3.4. NBO analysis

1 In order to clarify the strength and characteristics of hydrogen bonds and complexes investigated, the NBO analysis is carried out at 6-311++G(3df,2pd) as presented in Table 4. The

4 positive values of electron density transfer (EDT) for most of complexes (0.0003–0.0587 e) imply that the electron density is transferred mainly from XCHZ to H₅OH. This tendency is caused by the very large second-order perturbative energy of electron transfer n(Z3)→σ*(C5–H6) (7.02–20.57 kJ.mol⁻¹) and n(Z3)→σ*(O8–H9) (65.42–109.35 kJ.mol⁻¹) in comparison to n(O7/O8)→σ*(C1–H2) (2.88–14.59 kJ.mol⁻¹), except for **FSe-2**, **ClSe-2** and **BrSe-2** with the negative values of EDT. Hence, the interactions of n(Z3)→σ*(C5–H6) and n(Z3)→σ*(O8–H9) electron density transfers play dominant role in stabilizing most of complexes as compared to those of the n(O7/O8)→σ*(C1–H2) transfers, except for a larger role of n(O7)→σ*(C1–H2) (10.58–11.41 kJ.mol⁻¹) compared to n(Z3)→σ*(C5–H6) (7.02–7.48 kJ.mol⁻¹) interaction found in **FSe-2**, **ClSe-2** and **BrSe-2** (cf. Table 4). This should be due to the larger polarity of C-H bond in XCHSe (with X=F, Cl, Br), leading to the larger ability of electron acceptance of σ*(C1–H2) orbital.

2 The very large E_{inter} values of n(Z3)→σ*(O8–H9) in **XZ-1** compared to n(Z3)→σ*(C5–H6) in **XZ-2** and **XZ-3** indicate that the much stronger electron density transfers from lone pair of electrons from Z3 to σ*(O8–H9) orbitals are much more stronger than from Z3 to σ*(C5–H6) ones. Moreover, E_{inter}[n(O7/O8)→σ*(C1–H2)] is larger for **XZ-1** than **XZ-2** and **XZ-3**, implying a stronger electron density transfer in **XZ-1**. These obtained results of E_{inter} are in good consistency with the trend in stability of hydrogen bond as analyzed in AIM part above.

2 For changing X in XCHZ, E_{inter}[n(Z3)→σ*(C5–H6)] in **XZ-2**, **XZ-3** and E_{inter}[n(Z3)→σ*(O8–H9)] in **XZ-1** increase in the order of F/Cl/Br < H < CH₃ < NH₂ substituents, which is in good agreement with the increasing trend of the proton affinity at Z3 site (Table 1). In other words, the intermolecular charge density transfers from XCHZ to HCOOH are raised by the presence of electron-donating groups such as CH₃ and NH₂, and are diminished by electron-withdrawing substituents. It is noted that the increase in values of E_{inter}[n(O18)→σ*(C1–H2)] is attained by the substitution of electron-donating or electron-withdrawing groups.

5 Table 4: Electron density transfer (EDT), hyperconjugation interaction energies (E_{inter}, in kJ.mol⁻¹), and changes of electron density (Δσ*, in electron) and s-character percentage of atom involving hydrogen bond (Δ%, in %)

Complex	HSe-1	FSe-1	ClSe-1	BrSe-1	CH ₃ Se-1	NH ₂ Se-1	HTe-1	FTe-1	CITe-1	BrTe-1	CH ₃ Te-1	NH ₂ Te-1
ED ²	0.051	0.036	0.039	0.038	0.052	0.059	0.050	0.039	0.041	0.040	0.050	0.056
E _{inter} [n(O7)→σ*(C1-H2)]	9.28	12.54	13.21	12.25	9.91	14.59	7.36	9.99	10.83	10.03	8.23	13.54
E _{inter} [n(Z3)→σ*(O8-H9)]	84.06	68.05	70.77	68.76	90.54	109.35	75.32	65.42	67.51	66.00	77.16	95.35
Δσ*(C1-H2)	-0.002	-0.002	-0.002	-0.002	-0.002	-0.002	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001
Δ% _s (C1)	1.51	1.68	1.71	1.71	1.52	1.74	1.43	1.66	1.72	1.74	1.43	1.71
Δσ*(O8-H9)	0.052	0.042	0.045	0.045	0.055	0.064	0.051	0.044	0.046	0.046	0.053	0.061
Δ% _s (O8)	3.37	2.97	3.07	3.03	3.57	4.07	3.05	2.78	2.85	2.83	3.23	3.70
Complex	HSe-2	FSe-2	ClSe-2	BrSe-2	CH ₃ Se-2	NH ₂ Se-2	HTe-2	FTe-2	CITe-2	BrTe-2	CH ₃ Te-2	NH ₂ Te-2
EDT ²	0.003	-0.002	-0.002	-0.002	0.003	0.003	0.005	0.001	0.001	0.001	0.004	0.004
E _{inter} [n(O7)→σ*(C1-H2)]	7.61	10.58	11.41	10.78	7.61	10.45	6.65	8.69	9.78	9.32	6.98	10.7
E _{inter} [n(Z3)→σ*(C5-H6)] ¹¹	9.41	7.02	7.48	7.48	11.37	14.59	10.91	9.03	9.28	9.28	12.79	16.39
Δσ*(C1-H2)	-0.001	-0.002	-0.002	-0.002	-0.002	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001
Δ% _s (C1)	1.13	1.3	1.44	1.5	1.1	1.21	1.12	1.31	1.46	1.52	1.11	1.26
Δσ*(C5-H6)	0.001	-0.001	-0.001	-0.001	0.001	-0.001	0.003	0.002	0.002	0.002	0.003	0.002
Δ% _s (C5)	0.50	0.38	0.39	0.38	0.61	0.86	0.45	0.37	0.37	0.37	0.55	0.80
Complex	HSe-3	FSe-3	ClSe-3	BrSe-3	CH ₃ Se-3	NH ₂ Se-3	HTe-3	FTe-3	CITe-3	BrTe-3	CH ₃ Te-3	NH ₂ Te-3
EDT ²	0.007	0.002	0.002	0.002	0.006	0.007	0.009	0.005	0.005	0.005	0.008	0.010
E _{inter} [n(O8)→σ*(C1-H2)]	3.51	5.68	5.89	5.39	3.64	4.85	2.88	4.39	4.93	4.51	2.97	4.47
E _{inter} [n(Z3)→σ*(C5-H6)] ¹¹	12.5	9.45	10.03	9.82	14.3	18.22	14.71	12.46	12.79	12.58	16.59	20.57
Δσ*(C1-H2)	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	0.001
Δ% _s (C1)	0.72	0.84	0.94	0.97	0.68	0.76	0.72	0.85	0.96	1.00	0.68	0.80
Δσ*(C5-H6)	0.003	0.001	0.002	0.002	0.003	0.002	0.005	0.004	0.004	0.004	0.005	0.005
Δ% _s (C5)	0.72	0.64	0.64 ¹	0.63	0.83	1.15	0.66	0.62	0.61	0.60	0.75	1.09

(EDT, E_{inter} at ωB97X-D/6-311++G(3df,2pd); Δσ*, Δ%_s at MP2/6-311++G(3df,2pd))

² The C1-H2 stretching frequency blueshift in C1-H2···O7/O8 is caused by a small decrease of electron density at σ*(C1-H2) orbital from 0.001e to 0.002e (excepting for a very slight increase of σ*(C_{sp2}-H) occupation in NH₂Te-3). Generally, the blueshift of C5-H6 stretching frequency in ⁸XSe-n complexes is emphasized by a slight increase in electron density at σ*(C5-H6) from -0.001e to 0.005e. The O8-H9 stretching frequency redshift is induced by a large increase in electron density at σ*(O8-⁸) orbital from 0.042e to 0.064e. The larger blueshift of C5-H6 stretching frequency is observed in XSe-n compared to XTe-n. Indeed, the electron density of the σ*(C5-H6) orbital gets a larger increase when Se is replaced by Te, and s-character percentage of C5 is smaller for C5-H6···Te3 than C5-H6···Se3. The larger blueshift of C5-H6···Se3 bonds, which relates directly to the smaller values of Δσ*(C5-H6), is found in XZ-2 in comparison to XZ-3. Moreover, the substitution of

² the H atom in HCHZ by electron-donating groups (CH₃, NH₂) leads to an enhancement of C_{sp2}-H stretching frequency involving C_{sp2}-H···Z hydrogen bonds. At the same time, the corresponding diminishment is caused by the presence of electron-withdrawing groups (F, Cl, Br). Consequently, it can be underlined that the larger contraction of the C_{sp2}-H bond and its stretching frequency blueshift is identified by a decrease in the population of electron density at σ*(C5-H6) orbitals and an increase in the percentage of s-character of C_{sp2} atom. This observation is similar to results obtained in complexes of aldehydes and carboxylic acids.^{16,33,36}

For C1-H2⁸O7/O8 hydrogen bonds, the stronger blueshift of C1-H2 stretching frequency in XSe-n compared to that in XTe-n relates to a larger decrease of electron density in σ*(C1-H2) orbital. The larger redshift phenomenon in the O8-H9···Se hydrogen bonds compared to the O8-H9···Te ones

8f. Table 4) arises from a significant enhancement in occupation of $\sigma^*(\text{O8}-\text{H9})$ orbital. For the X substituent in XCHZ, the increase in electron density of $\sigma^*(\text{O8}-\text{H9})$ orbital and s-character percentage of the O8 site is smaller for halogenated derivatives than for CH_3 and NH_2 substitutions. Consequently, it can be suggested that the increasing occupation of $\sigma^*(\text{O8}-\text{H9})$ orbital is the main factor in determining red-shifting hydrogen bonds in all examined complexes.

1-manuscript-RCHSe-Te-HCOOH_Plagchecked.docx

ORIGINALITY REPORT

35%

SIMILARITY INDEX

PRIMARY SOURCES

1	www.ncbi.nlm.nih.gov Internet	640 words — 9%
2	onlinelibrary.wiley.com Internet	414 words — 6%
3	Nguyen Truong An, Ngan Vu Thi, Nguyen Tien Trung. "Profound Importance of Conventional O-H···O Hydrogen Bond versus Considerable Blue Shift of Csp2-H bond in the Complexes of Substituted Carbonyls and Carboxyls", <i>Physical Chemistry Chemical Physics</i> , 2024 <small>Crossref</small>	327 words — 5%
4	pdfs.semanticscholar.org Internet	146 words — 2%
5	Nguyen Thi Thanh Cuc, Cam-Tu Dang Phan, Nguyen Thi Ai Nhun, Minh Tho Nguyen, Nguyen Tien Trung, Vu Thi Ngan. "Theoretical Aspects of Nonconventional Hydrogen Bonds in the Complexes of Aldehydes and Hydrogen Chalcogenides", <i>The Journal of Physical Chemistry A</i> , 2021 <small>Crossref</small>	137 words — 2%
6	www.rsc.org Internet	98 words — 1%
7	pubs.rsc.org Internet	

64 words — 1 %

8 Nguyen Tien Trung, Pham Ngoc Khanh, Alfredo J. Palace Carvalho, Minh Tho Nguyen. " Remarkable shifts of C -H and O-H stretching frequencies and stability of complexes of formic acid with formaldehydes and thioformaldehydes ", Journal of Computational Chemistry, 2019
Crossref

9 Surjendu Bhattacharyya, Ved Prakash Roy, Sanjay Wategaonkar. "Acid-Base Formalism Extended to Excited State for O-H…S Hydrogen Bonding Interaction", The Journal of Physical Chemistry A, 2016
Crossref

10 Samira Gholami, Mohammad Aarabi, Sławomir J. Grabowski. "Coexistence of Intra- and Intermolecular Hydrogen Bonds: Salicylic Acid and Salicylamide and Their Thiol Counterparts", The Journal of Physical Chemistry A, 2021
Crossref

11 vjs.ac.vn
Internet

12 Le Thi Tu Quyen, Bui Nhat Tung, Pham Ngoc Thach, Nguyen Ngoc Tri, Nguyen Tien Trung. "Characteristics of nonconventional hydrogen bonds and stability of dimers of chalcogenoaldehyde derivatives: a noticeable role of oxygen compared to other chalcogens", RSC Advances, 2024
Crossref

13 Nguyen Thi Hong Man, Pham Le Nhan, Vien Vo, Duong Tuan Quang, Nguyen Tien Trung. "An insight into CH…N hydrogen bond and stability of the complexes formed by trihalomethanes with ammonia and its

monohalogenated derivatives", International Journal of Quantum Chemistry, 2017

Crossref

14 csdlkhoaahoc.hueuni.edu.vn 33 words – < 1 %
Internet

15 tailieu.vn 32 words – < 1 %
Internet

16 Nguyen Tien Trung, Nguyen Thi Thu Trang, Vu Thi Ngan, Duong Tuan Quang, Minh Tho Nguyen. 31 words – < 1 %
"Complexes of carbon dioxide with dihalogenated ethylenes: structure, stability and interaction", RSC Advances, 2016
Crossref

17 www.timtailieu.vn 31 words – < 1 %
Internet

18 Nguyen Truong An, Ngan Vu Thi, Nguyen Tien Trung. " Profound importance of the conventional O-H...O hydrogen bond a considerable blue shift of the C -H bond in complexes of substituted carbonyls and carboxyls ", 25 words – < 1 %
Physical Chemistry Chemical Physics, 2024
Crossref

19 Nguyen Truong An, Nguyen Thi Duong, Nguyen Ngoc Tri, Nguyen Tien Trung. " Role of O-H...O/S conventional hydrogen bonds in considerable C -H blue-shift in the binary systems of acetaldehyde and thioacetaldehyde with substituted carboxylic and thiocarboxylic acids ", RSC Advances, 2022 25 words – < 1 %
Crossref

20 Pham N. Khanh, Cam-Tu D. Phan, Dai Q. Ho, Quan Van Vo, Vu T. Ngan, Minh Tho Nguyen, Nguyen T. Trung. "Insights into the cooperativity between 20 words – < 1 %

multiple interactions of dimethyl sulfoxide with carbon dioxide and water", Journal of Computational Chemistry, 2018

Crossref

21 Nguyễn Thị Minh Huệ, Lâm Ngọc Thiềm. "Phương pháp tính hóa học lượng tử và một số ứng dụng của nó trong hóa học hiện đại", Vietnam Journal of Chemistry, 2018 18 words – < 1%
Crossref

22 Nguyen Tien Trung, Nguyen Phi Hung, Tran Thanh Hue, Minh Tho Nguyen. "Existence of both blue-shifting hydrogen bond and Lewis acid-base interaction in the complexes of carbonyls and thiocarbonyls with carbon dioxide", Physical Chemistry Chemical Physics, 2011 12 words – < 1%
Crossref

23 Cubero, E.. "Electron density topological analysis of the C-H...O anti-hydrogen bond in the fluoroform-oxirane complex", Chemical Physics Letters, 19990910 11 words – < 1%
Crossref

24 Kim, Kyung Hyun, and Yongho Kim. "Theoretical Studies for Lewis Acid-Base Interactions and C-H...O Weak Hydrogen Bonding in Various CO₂ Complexes", The Journal of Physical Chemistry A, 2008. 11 words – < 1%
Crossref

25 Michał K. Cyrański. "Structural and spectroscopic properties of an aliphatic boronic acid studied by combination of experimental and theoretical methods", The Journal of Chemical Physics, 2008 10 words – < 1%
Crossref

26 Nguyen Tien Trung, Tran Thanh Hue, Minh Tho Nguyen. "Remarkable Blue Shifts of C-H and N-H Stretching Frequencies in the Interaction of 10 words – < 1%

Monosubstituted Formaldehyde and Thioformaldehyde with Nitrosyl Hydride", The Journal of Physical Chemistry A, 2009

Crossref

27 Robert W. Gora, Sławomir J. Grabowski, Jerzy Leszczynski. "Dimers of Formic Acid, Acetic Acid, Formamide and Pyrrole-2-carboxylic Acid: an Ab Initio Study", The Journal of Physical Chemistry A, 2005
Crossref

10 words – < 1 %

28 mts.intechopen.com Internet
10 words – < 1 %

29 "Abstracts", Nippon kagaku zassi, 1963. Crossref
9 words – < 1 %

30 Bo Jing, Qing-zhong Li, Bao-an Gong, Zhen-bo Liu, Wen-zuo Li, Jian-bo Cheng, Jia-zhong Sun. " The prominent enhancing effect and mechanism of the methyl group in the X···Y (X=O, S, H CO, H CS, (H C) O, (H C) S; Y=HCN, HNC) hydrogen-bonded complex ", Molecular Physics, 2011
Crossref

9 words – < 1 %

31 John L. Holmes, Christiane Aubry, Paul M. Mayer. "Assigning Structures to Ions in Mass Spectrometry", CRC Press, 2006
Publications

9 words – < 1 %

32 T. Wróblewski. "Ab initio and density functional theory calculations of proton affinities for volatile organic compounds", The European Physical Journal Special Topics, 05/2007
Crossref

9 words – < 1 %

33 Thomas Steiner. "C–H···O hydrogen bonding in crystals", Crystallography Reviews, 2003
Crossref

9 words – < 1 %

34 rcastoragev2.blob.core.windows.net 9 words – < 1 %
Internet

35 www.intechopen.com 9 words – < 1 %
Internet

36 www.mdpi.com 9 words – < 1 %
Internet

37 www.vnio.org.vn 9 words – < 1 %
Internet

38 Emilio L. Angelina, Nélida M. Peruchena. "Strength and Nature of Hydrogen Bonding Interactions in Mono- and Di-Hydrated Formamide Complexes.", *The Journal of Physical Chemistry A*, 2011
Crossref 8 words – < 1 %

39 Pascal D. C. Dietzel, Reinhard K. Kremer, Martin Jansen. "Tetraorganylammonium Superoxide Compounds: Close to Unperturbed Superoxide Ions in the Solid State", *Journal of the American Chemical Society*, 2004
Crossref 8 words – < 1 %

40 Yoshiyuki Okamoto, Takefumi Yano. "The reaction of diorganyl diselenides and ditellurides with organic mercury compounds. A convenient method for the synthesis of unsymmetrical organic selenides and tellurides", *Journal of Organometallic Chemistry*, 1971
Crossref 8 words – < 1 %

41 revistaselectronicas.ujaen.es 8 words – < 1 %
Internet

42 www.researchgate.net 8 words – < 1 %
Internet

43 Nguyen Thi Thanh Cuc, Nguyen Truong An, Vu Thi Ngan, Asit. K. Chandra, Nguyen Tien Trung. "Importance of water and intramolecular interaction governs substantial blue shift of C –H stretching frequency in complexes between chalcogenoaldehydes and water ", RSC Advances, 2022

Crossref

44 Pablo Sanz, Manuel Yáñez, Otilia Mó. "Competition between X···H···Y Intramolecular Hydrogen Bonds and X···Y (X = O, S, and Y = Se, Te) Chalcogen–Chalcogen Interactions", The Journal of Physical Chemistry A, 2002

Crossref

45 Pavel Hobza, Vladimír Špirko, Heinrich L. Selzle, Edward W. Schlag. "Anti-Hydrogen Bond in the Benzene Dimer and Other Carbon Proton Donor Complexes", The Journal of Physical Chemistry A, 1998

Crossref

46 Gabor L. Hornyak, Joydeep Dutta, H.F. Tibbals, Anil Rao. "Introduction to Nanoscience", CRC Press, 2019

Publications

47 Jun Luo, Hongjing Dai, Chenglu Zeng, Dawang Wu, Maoqi Cao. "A Theoretical Study of the Halogen Bond between Heteronuclear Halogen and Benzene", Molecules, 2022

Crossref

48 Pham Ngoc Khanh, Vu Thi Ngan, Nguyen Thi Hong Man, Nguyen Thi Ai Nhung, Asit K. Chandra, Nguyen Tien Trung. " An insight into C –H... π hydrogen bonds and stability of complexes formed by acetylene and its substituted derivatives with benzene and borazine ", RSC Advances, 2016

49 Phan Dang Cam-Tu, Vu Thi Ngan, Nguyen Tien Trung. "General trends in structure, stability and role of interactions in the complexes of acetone and thioacetone with carbon dioxide and water", Chemical Physics, 2020

6 words – < 1%

EXCLUDE QUOTES OFF
EXCLUDE BIBLIOGRAPHY OFF

EXCLUDE SOURCES OFF
EXCLUDE MATCHES OFF