
To¡n tû hñp câ trång tø khæng gian kiºu Bloch 
v o khæng gian t«ng tr÷ðng tr¶n h¼nh c¦u �ìn và 

cõa khæng gian Hilbert

*

TÂM T�T

Cho ν, µ l  c¡c trång chu©n t­c tr¶n h¼nh c¦u �ìn và BX cõa mët khæng gian Hilbert phùc

vîi sè chi·u tòy þ v  ψ l  mët h m ch¿nh h¼nh tr¶n BX , φ l  mët ¡nh x¤ tü ch¿nh h¼nh cõa

BX . Trong b i b¡o n y, chóng tæi nghi¶n cùu c¡c �°c tr÷ng cho t½nh bà ch°n v  t½nh compact

cõa to¡n tû hñp câ trång Wψ,φ, f 7→ ψ · (f ◦ φ), tø khæng gian kiºu Bloch Bν(BX) �¸n khæng

gian t«ng tr÷ðng (nhä) H∞
µ (BX), H0

µ(BX) thæng qua t½nh ch§t cõa ψ, c¡c phi¸m h m �¡nh gi¡

�iºm δ
Bν(BX)
φ(z) , v  c¡c h¤n ch¸ cõa c¡c �¤i l÷ñng n y l¶n c¡c khæng gian con m-chi·u vîi m ≥ 2.

Chóng tæi công t½nh �÷ñc ch½nh x¡c cæng thùc cõa chu©n to¡n tû Wψ,φ.

Tø khâa: To¡n tû hñp câ trång, khæng gian Bloch, khæng gian t«ng tr÷ðng, t½nh bà ch°n, t½nh

compact.
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Weighted composition operators from
Bloch-type spaces into growth spaces

on the unit ball of a Hilbert space

ABSTRACT
Let ν, µ be normal weights on the unit ball BX of an Hilbert space X with arbitrary dimension and 

ψ be a holomorphic function on BX and φ a holomorphic self-map of BX . In this work, we characterize 
the boundedness and the compactness of weighted composition operators Wψ,φ, f 7→ ψ · (f ◦ φ), from 
the Bloch-type spaces Bν (BX) to the (little) growth spaces Hµ

∞(BX), H0
µ(BX) via function theoretic 

properties of the symbol ψ and the point evaluation function

δ
Bν(BX)
φ(z) , specifically, of the restrictions of functions ψ, φ to the m-dimensional subspaces for

some m ≥ 2. We obtain also the formula of the operator norm of Wψ,φ.

Keywords: Bloch spaces, growth spaces, compactness, boundedness, weighted composition oper-

ator

1. INTRODUCTION

Let E1, E2 be spaces of holomorphic functions

on the unit ball BX of a Banach space X, ψ

be a holomorphic function on BX and φ a

holomorphic self-map of BX . The weighted

composition operator, defined by symbols ψ

and φ, maps from E1 to E2 and is defined by

Wψ,φ(f) =MψCφ(f) = ψ · (f ◦ φ)

whereMψ represents the multiplication oper-

ator with symbol ψ and Cφ is the composition

operator with symbol φ.

In recent years, there has been significant

interest in studying weighted composition op-

erators. A famous theorem developed by Ba-

nach asserts that for a compact metric space

K, the surjective linear isometries of C(K)

are given by Tf = u(f ◦ φ) where |u(x)| = 1

for all x ∈ K, and φ : K → K is a homeo-

morphism. Inspired by this theorem, ongoing

research on the characterization of isometries

in Banach spaces of analytic functions has re-

vealed that weighted composition operators

define the isometries of many such spaces, in-

cluding the Hardy space Hp (for 1 ≤ p ≤ ∞,

p ≠ 2), the weighted Bergman space, and the

disk algebra.1

For a comprehensive overview of various

aspects of the theory of (weighted) compo-

sition operators acting on several spaces of

holomorphic functions, we refer to a stan-

dard reference. 2 There is extensive literature

on weighted composition operators and inte-

gral operators between specific holomorphic

function spaces. To address these spaces in a

unified way, certain frameworks for Banach
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spaces of holomorphic functions on the unit

disk have been introduced.3,4 For instance,

in reference, 3 established certain topological

and function-theoretic conditions for the do-

main space and provided criteria for bound-

edness and compactness, along with esti-

mates for the operator norm and the essential

norm of the weighted composition operators

that map to the weighted-type space or the

Bloch-type space on the unit disk. In recent

years, there has been significant interest in

the study of weighted composition operators.

More recently, attention has also focused on

composition operators and operator-valued

multipliers in various vector-valued analytic

function spaces, particularly when X is an

infinite-dimensional Hilbert space.5,6,7,8,9,10

In this paper, we aim to consider the

compactness and boundedness of Wψ,φ when

E1 is a general Banach space of holomorphic

functions and and E2 is either growth space

H∞
µ (BX) or the little growth space H0

µ(BX)

determined as follows:

H∞
µ (BX)

=
{
f ∈ H (BX) : sup

z∈BX

µ(z)|f(z)| <∞
}
,

H0
µ(BX)

=
{
f ∈ H∞

µ (BX) : lim
∥z∥→1

µ(z)|f(z)| = 0
}
,

where H (BX) is the space of holomorphic

functions on BX and µ is a normal weight on

BX .

Growth spaces are a significant and in-

triguing class of Banach spaces of holomor-

phic functions. They have been investigated

in various contexts, with numerous general

and specialized references available.12,13

Some key properties of these spaces, when

BX is the unit disk B ⊂ C, include the fol-

lowing:

� For a normal weight µ, H∞
µ (B) ⊃ H∞

if and only if lim|z|→1 µ(z) = 0. On the

other hand, if lim sup|z|→1 µ(z) > 0,

then H0
µ = {0};

� The identity map I : H∞
µ (B)) →

(H∞
µ (B), τco) is continuous.

� The bidual [H0
µ(B)]′′ isometrically iso-

morphic to H∞
µ (B);

� The point evaluation functionals δHz
on H0

µ(B) are bounded and can be

uniquely extended to point evaluation

functionals on H∞
µ (B) with the same

norms;

� The operator B0
µ(B) → H∞

µ (B), f 7→
f ′′, is an isometric isomorphism, where

B0
µ(B) is the subspace of the Bloch

space Bµ(B) of functions with f(0) = 0.

It is important to note that the Bloch

space consists of functions character-

ized by the growth of their derivatives,

making it closely related to growth

spaces;

� The maps z 7→ δHz is continuous, and

∥δHz ∥ goes to infinity as |z| → 1.

These are just a few of the reasons moti-

vating our research.

In Section 2, we review the key condi-

tions for spaces of holomorphic functions that

will be used to establish the boundedness and

compactness of these operators, as well as to

provide estimates for their essential norms in

our context.

To characterize the boundedness and

compactness, and building on the ideas from
5,9 with minor modifications, we establish

in Section 3 a connection between func-

tions in the growth space H∞
µ (BX) and and

their restrictions to finite-dimensional sub-

spaces. Specifically, we show that if the re-

strictions of a function tom-dimensional sub-

spaces (for m ≥ 2) have uniformly bounded

growth norms, then the function belongs to

the growth space H∞
µ (Bm), and vice versa.

In Section 4, we characterize the bound-

edness and the compactness of Wψ,φ from

Bν(BX) into H∞
µ (BX) and into H0

µ(BX) as

well as calculate the operator norms. We
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will show that these characterizations are

completely determined by their behaviour

on ψ[m] and on the point evaluation func-

tions δBν(BX)

φ[m](z)
and δ

Bν(BX)
φ(m)(z)

, where ψ[m] and

φ[m] are the restrictions of ψ and φ, respec-

tively, on the m-dimensional subspaces and

φ(m) = (φ1, . . . , φm), m ≥ 2.

Throughout this paper, we use the no-

tions a ≲ b and a ≍ b for non negative quan-

tities a and b to mean a ≤ Cb and, respec-

tively, C−1b ≤ a ≤ Cb for some inessential

constant C > 0.

2. PRELIMINARIES AND AUXIL-
IARY RESULTS

LetX be a complex Hilbert space of arbitrary

dimension, Y a Banach space. Denote by BX
the closed unit ball of X, and use Bn instead

of BCn . Fix an orthonormal basis (ek)k∈Γ of

X. Then any z ∈ X can be expressed as

z =
∑
k∈Γ

zkek, z =
∑
k∈Γ

zkek.

2.1. M�obius transformations

The analogues of M�obius transformations on

a Hilbert space X are the mappings Φa :

BX → BX , a ∈ BX , defined as follows:

Φa(z) =
a− Pa(z)− saQa(z)

1− ⟨z, a⟩
, z ∈ BX

(2.1)

where sa =
√
1− ∥a∥2, Pa(z) = ⟨z,a⟩

∥a∥2 a, and

Qa(z) = z − ⟨z,a⟩
∥a∥2 a for z ∈ BX .

We define Φ0(z) = −z.
Denote by Aut(BX) the group of auto-

morphisms of the unit ball BX .

For details on M�obius transformations,

we refer to K. Zhu's book. 14

2.2. Banach spaces of holomorphic
functions

H (BX , Y ) is denoted by the vector space

of Y -valued holomorphic functions on BX .

An element f ∈ H (BX , Y ) is named locally

bounded holomorphic on BX if for every

z ∈ BX there exists a neighbourhood Uz of

0 ∈ X such that f(Uz) is bounded. Put

HLB(BX , Y )

=
{
f ∈ H (BX , Y ) : f is locally bounded on BX

}
.

For f ∈ H (BX), its complex gradient and

radial derivative are defined by

∇f(z) =
( ∂f
∂zk

(z)
)
k∈Γ

,

Rf(z) :=
∑
k∈Γ

∂f

∂zk
(z)(zkek) = ⟨z,∇f(z)⟩,

respectively. Thus, ∇f(z) is the unique ele-

ment in X representing the linear operator

f ′(z) ∈ X ′, hence,

f ′(z)(x) =
∑
k∈Γ

∂f

∂zk
(z)(xkek)

= ⟨x,∇f(z)⟩, x ∈ X.

It is clear that

|Rf(z)| ≤ ∥∇f(z)∥∥z∥, z ∈ BX .

Now, let E ⊂ H (BX) be a Banach space.

For each z ∈ BX , the point-evaluation

functional δEz at z defined by δEz (f) := f(z)

for all f ∈ E . Thus,

|f(z)| ≤ ∥f∥∥δEz ∥, f ∈ E , z ∈ BX , (2.2)

where ∥δEz ∥ = sup{|f(z)| : f ∈ E , ∥f∥ ≤ 1}.
For all Φ = (Φj)j∈Γ ∈ Aut(BX), for every

j ≥ 1, m ≥ 2 and all f ∈ E , we write

Φ(m) = (Φ1, . . . ,Φm),

f · Φ(m) = (f · Φ1, . . . , f · Φm).

Below, we present a comprehensive list of

conditions, some of which will be necessary

for characterizing the boundedness, compact-

ness, or determining the essential norm of the

operators discussed in this work.

(e1) E includes the constant functions.

(e2) The closed unit ball BE is τco- compact.
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(e3) There are m ≥ 2 and constant C > 0

such that for all Φ ∈ Aut(BX), for all

f ∈ E , Φj · f ∈ E ,

∥Φj · f∥ ≤ C∥f∥, j ∈ {1, . . . ,m}.

Remark 2.1. It follows from (e1) that

infz∈BX
∥δEz ∥ > 0, and in particular, the fol-

lowing equivalent conditions are satisfied:

(e1a) On each compact set, ∥δEz ∥ is bounded

from below by a positive constant;

(e1b) The functions in E do not all vanish at

each point z ∈ BX .

Indeed, since the function 1 ∈ E , for every
z ∈ BX we have ∥δEz ∥ ≥ 1

∥1∥ . It is obvious that

(e1a) ⇒ (e1b). Now, assume that (e1b) holds

but (e1a) fails. Then we can find a compact

subset K of BX and a sequence {zn}n≥1 ∈ K

and z0 ∈ K such that zn → z0 and ∥δEzn∥ → 0.

This implies that f(z0) = 0 for all f ∈ E ,
which is incompatible with (e1b).

By the uniform boundedness principle,

we can easily prove the following:

Proposition 2.1. The mapping δE : BX →
C, z 7→ ∥δEz ∥, is bounded on compact subsets

of BX for every Banach space E of holomor-

phic functions on BX .

3. GROWTH SPACES AND BLOCH-
TYPE SPACES

For a normal weight ν on BX , we write

I1ν (z) :=

∫ ∥z∥

0

dt

ν(t)
.

Remark 3.1. Since ν is positive, continuous,
mν,δ := mint∈[0,δ] ν(t) > 0. Moreover, it fol-

lows from (W1) that ν is strictly decreasing

on [δ, 1), hence, maxt∈[0,1) ν(t) =: Mν < ∞.

Then, it is easily seen that

ν(z)I1ν (z) < Rν := δ
Mν

mν,δ
+1−δ <∞. (3.1)

for every z ∈ BX .

We define bounded holomorphic spaces

H∞(BX), growth holomorphic spaces

H∞
µ (BX), little growth holomorphic spaces

H0
µ(BX), Bloch-type spaces Bν(BX), and lit-

tle Bloch-type spaces Bν,0(BX) on the unit

ball BX as follows:

H∞(BX) =
{
f ∈ H (BX) :

sup
z∈BX

|f(z)| <∞
}
,

H∞
µ (BX) =

{
f ∈ H (BX) :

sup
z∈BX

µ(z)|f(z)| <∞
}
,

H0
µ(BX) =

{
f ∈ H∞

µ (BX) :

lim
∥z∥→1

µ(z)|f(z)| = 0
}
,

Bν(BX) :=
{
f ∈ H (BX) : ∥f∥sBν(BX) :=

sup
z∈BX

ν(z)|Rf(z)| <∞
}
.

It is easy to check that H∞(BX),

H∞
µ (BX) and Bν(BX) are Banach under fol-

lowing norms

∥f∥∞ := sup
z∈BX

|f(z)|,

∥f∥H∞
µ

:= sup
z∈BX

µ(z)|f(z)|,

∥f∥Bν(BX) := |f(0)|+ ∥f∥sBν(BX),

respectively.

Now we consider the holomorphic func-

tion

g(z) := 1 +
∑
k>k0

2kznk , z ∈ B1, (3.2)

where k0 =
[
log2

1
ν(δ)

]
, nk =

[
1

1−rk

]
with

rk = ν−1(1/2k) for every k ≥ 1. Here, the

symbol [x] represents the greatest integer less

than or equal to x. By Theorem 2.3 15, g(t)

is increasing on [0, 1) and

|g(z)| ≤ g(∥z∥) ∈ R, z ∈ B1,

0 < C1 := inf
t∈[0,1)

ν(t)g(t)

≤ sup
t∈[0,1)

ν(t)g(t)

≤ sup
z∈B1

ν(z)|g(z)| =: C2 <∞.

(3.3)
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Lemma 3.1. Let ν be a normal weight on

BX . Then there is C > 0 such that for every

z ∈ BX ,

|f(z)| ≤ µ(z)−1∥f∥H∞
µ (BX), f ∈ H∞

µ (BX),

(3.4)

|f(z)| ≤ C(1+I1ν (z))∥f∥Bν(BX), f ∈ Bν(BX).
(3.5)

Proof. The inequality (3.4) is obvious. The

inequality (3.5) was proved in 9 (Proof of

Theorem 3.2).

Lemma 3.2. For every ν normal weight ν

on BX , we have

(1) ∥δH
∞
ν (BX)

z ∥ = 1/ν(z);

(2) ∥δBν(BX)
z ∥ ≍ 1 + I1ν (z).

Proof. (1) It is obvious.

(2) It follows easily from the definition of

δ
Bν(BX)
z and (3.5) that

∥δBν(BX)
z ∥ ≲ 1 + I1ν (z).

Now we consider the function f0 defined by

f0(z) = (1+C2)
−1(1+

∫ ∥z∥

0
g(t)dt), z ∈ BX ,

where g is defined by (3.2). It is clear that

f0 ∈ Bν(BX) and by (3.3), it is easy to see

that ∥f0∥Bν(BX) ≤ 1. Then, in view of (3.3)

again, this yields that

∥δBν(BX)
z ∥ ≥ |f0(z)|

≥ max
{ 1

1 + C2
,

C1

1 + C2

}
(1 + I1ν (z)).

It is easy to prove the following:

Corollary 3.3. H∞
ν (BX), Bν(BX) satisfy

the properties (e1), (e2), (e3).

We will demonstrate below that the anal-

ysis of growth spaces on BX can be re-

duced to studying functions defined on finite-

dimensional subspaces. It is worth noting

that similar results for Bloch-type spaces

were recently studied in 9.

For each finite subset F ⊂ Γ, without

loss of generality we may assume that F =

{1, . . . ,m}, we denote by Bm the unit ball of

span{ek, k ∈ F}. For each m ∈ N, we write

µ[m] := µ
∣∣
span{e1,...,em},

z[m] := (z1, . . . , zm) ∈ Bm.

For m ≥ 2, we denote by

OSm := {x = (x1, . . . , xm),

xk ∈ X, ⟨xk, xj⟩ = δkj}

the family of orthonormal systems of order

m.

For every x ∈ OSm fixed and f ∈
H (BX), we define

fx(z[m]) = f

( m∑
k=1

zkxk

)
.

Then∥∥∥∇fx(z[m])
∥∥∥ =

∥∥∥∥∇f( m∑
k=1

zkxk

)∥∥∥∥. (3.6)

Definition 3.1. We denote

H∞
µ,aff(BX)

:= {f ∈ H (BX) : ∥f∥H∞
µ,aff(BX) <∞}

where

∥f∥H∞
µ,aff(BX) := sup

∥x∥=1
∥f(·x)∥H∞

µ (B1),

with f(·x) : B1 → C given by f(·x)(λ) =

f(λx) for every λ ∈ B1, and

∥f(·x)∥H∞
µ (B1) = sup

λ∈B1

µ(λx)|f(λx)|.

It is easy to verify that ∥·∥H∞
µ,aff(BX) is a norm

on H∞
µ,aff(BX), called the affine norm, more-

over, (H∞
µ,aff(BX), ∥ · ∥H∞

µ,aff(BX)) is a Banach

space.

Proposition 3.4. Let f ∈ H (BX). The fol-

lowing are equivalent:

(1) f ∈ H∞
µ (BX);
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(2) supx∈OSm
∥fx∥H∞

µ[m]
(Bm) < ∞ for every

m ≥ 2;

(3) supx∈OSm
∥fx∥H∞

µ[m]
(Bm) < ∞ for some

m ≥ 2.

Moreover, for each m ≥ 2

∥f∥H∞
µ (BX) = sup

x∈OSm

∥fx∥H∞
µ[m]

(Bm). (3.7)

Proof. (1) ⇒ (2): Let m ≥ 2 and z[m] :=

(z1, . . . , zm) ∈ Bm. Since
∥∥∑m

j=1 zjej
∥∥ =∥∥z[m]

∥∥, we get
∥fx∥H∞

µ[m]
(BX)

= sup
z[m]∈Bm

µ[m](z[m])|fx(z[m])|

≤ sup
z∈BX

µ(z)
∣∣∣f(∑

j∈F
zjej

)∣∣∣
≤ ∥f∥H∞

µ (BX) <∞.

(3.8)

In particular, we obtain (2).

(2) ⇒ (3): This is evident.

(3) ⇒ (1): Assume that

sup
x∈OSm

∥fx∥H∞
µ[m]

(Bm) <∞

for some m ≥ 2. We fix z ∈ BX \ {0}.
Consider x = ( z

∥z∥ , x2, . . . , xm) ∈ OSm and

z[m] := (∥z∥, 0, . . . , 0) ∈ Cm. Then ∥z[m]∥ =

∥z∥ and∣∣fx(z[m])
∣∣ = ∣∣∣f( m∑

k=1

zkxk

)∣∣∣ = |f(z)|.

This yields that

∥f∥H∞
µ (BX) = sup

z∈BX

µ(z)|f(z)|

≤ sup
z∈BX

µ[m](z[m])|fx(z[m])|

≤ sup
x∈OSm

∥fx∥H∞
µ[m]

(Bm) <∞.

(3.9)

Thus f ∈ H∞
µ (BX).

On the other hand, it is clear that

sup
x∈OSm

∥fx∥H∞
µ[m]

(Bm) ≤ ∥f∥H∞
µ (BX)

for every m ≥ 2. (3.10)

Hence, we obtain (3.7) from (3.8), (3.9) and

(3.10).

Remark 3.2. In the case m = 1, the propo-

sition is not true. Indeed, we consider µ(z) :=

1− ∥z∥2, and f : BX → C given by

f(z) :=
∞∑
n=1

〈en
n

− z√
n
, en

〉
, z ∈ BX .

Then f ∈ H (BX) because

∞∑
n=1

∣∣∣〈en
n

− z√
n
, en

〉∣∣∣2
≤

∞∑
n=1

1

n2
+ ∥z∥2 +

∞∑
n=1

2

n3/2
<∞.

For each x =
∑∞

n=1⟨x, en⟩en ∈ OS1 and for

every z[1] := zk ∈ B1 for some k ≥ 1, we have

fx(z[1]) = f(zkxk) =
1

k
− zkxk√

k
,

and thus, since |fx(z[1])| ≤ 2, we get

sup
x∈OS1

∥fx∥H∞
µ (B1)

= sup
x∈OS1

(1− ∥z[1]∥2)|fx(z[1])| ≤ 2.

However, since

(1−∥z∥2)|f(z)|

= (1− ∥z∥2)
∣∣∣∣ ∞∑
n=1

〈en
n

− z√
n
, en

〉∣∣∣∣
→

∞∑
n=1

1

n
as z → 0,

we obtain that f ̸∈ H∞
µ (BX).

By employing a similar argument as in

the proof of Proposition 2.3 in 9, we can eas-

ily obtain the following result, for which the

proof will be omitted.

Proposition 3.5. H∞
µ (BX) = H∞

µ,aff(BX).

Moreover,

∥f∥H∞
µ (BX) ≤ ∥f∥H∞

µ,aff(BX)

≲ ∥f∥H∞
µ (BX), f ∈ H∞

µ (BX).
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4. BOUNDEDNESS AND COM-
PACTNESS CRITERIA

Consider the weighted composition operator

Wψ,φ from Bν(BX) into H∞
µ (BX) and into

H0
µ(BX) defined by

(Wψ,φf)(z) := ψ(z) · (f ◦ φ)(z), z ∈ BX .

The component operators are the multi-

plication operator Mψf = ψ · f and the com-

position operator Cφf = f ◦ φ, which cor-

respond to the cases when the composition

symbol φ is the identity function on B and

the multiplication symbol ψ is the constant

function 1, respectively.

Theorem 4.1. The following are equivalent:

(1) Wψ,φ : Bν(BX) → H∞
µ (BX) is bounded;

(2) M [m]
ψ,φ,µ := sup

z∈Bm

µ[m](z)|ψ[m](z)|∥δBν(BX)

φ[m](z)
∥

<∞ for some m ≥ 2;

(3) Mψ,φ,µ

:= sup
z∈BX

µ(z)|ψ(z)|∥δBν(BX)
φ(z) ∥ <∞.

In this case, we have

∥Wψ,φ∥ =Mψ,φ,µ. (4.1)

Proof. (3) ⇒ (2): It is clear.

(1) ⇒ (3): Suppose Wψ,φ : Bν(BX) →
H∞
µ (BX) is bounded. Fix z ∈ BX . For each

f ∈ Bν(BX) with ∥f∥Bν(BX) ≤ 1, we have

µ(z)|ψ(z)||f(φ(z))| ≤ ∥Wψ,φf∥H∞
µ (BX)

≤ ∥Wψ,φ∥∥f∥Bν(BX) ≤ ∥Wψ,φ∥.

By definition of δBν(BX) (see Proposition 2.1),

by taking the supremum over all f within the

closed unit ball of Bν(BX), we obtain:

µ(z)|ψ(z)|∥δBν(BX)
φ(z) ∥ ≤ ∥Wψ,φ∥.

Taking the supremum over all z ∈ BX yields

Mψ,φ,µ ≤ ∥Wψ,φ∥ <∞. (4.2)

(2) ⇒ (1): Assume M [m]
ψ,φ,µ <∞ for some

m ≥ 2. Let f ∈ Bν(BX) with ∥f∥Bν(BX) ≤ 1.

We write zx :=
∑m

k=1 zkxk for each x ∈ OSm.

It should be noted that ∥zx∥ = ∥z[m]∥ and

hence µ[m](z[m]) = µ[m](zx). Then

∥(Wψ,φ(f))x∥H∞
µ[m]

(Bm)

= sup
zx∈Bm

µ[m](zx)|ψ[m](zx)(f ◦ φ)x(z[m])|

≤M
[m]
ψ,φ,µ <∞

for every x ∈ OSm. By (3.7), Wψ,φ is

bounded because

∥Wψ,φ(f)∥H∞
µ (BX)

= sup
x∈OSm

∥(Wψ,φ(f))x∥H∞
µ[m]

(Bm)

≤M
[m]
ψ,φ,µ <∞.

(4) ⇒ (2): For z ∈ BX , we have

µ(z)|ψ(z)||f(φ(z))| ≤ µ(z)|ψ(z)|∥δBν(BX)
φ(z) ∥

≤Mψ,φ,µ <∞.

Consequently,

∥Wψ,φf∥H∞
µ (BX) ≤Mψ,φ,µ <∞. (4.3)

Finally, from (4.2), (4.3) we deduce (4.1).

We next characterize the compactness of

Wψ.φ. As shown in 10, we can demonstrate

the following:

Lemma 4.2 (10, Lemma 2.10). Let E ,F be

two Banach spaces of holomorphic functions

on BX . Assume that

(1) δEz are continuous for every z ∈ BX ;

(2) The closed unit ball of E is τco-compact.

(3) T : (E , τco) → (F , τco) is continuous.

Then, T is compact if and only if for each

bounded sequence {fn} in E satisfying fn ⇒
0 on compact sets, then ∥Tfn∥F → 0.

Theorem 4.3. Assume that the operator

Wψ,φ : Bν(BX) → H∞
µ (BX) is bounded.

Then, the following are equivalent:
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(1) There exists m ≥ 2 such that

lim
r→1

sup
∥φ(m)(z)∥>r

µ(z)|ψ(z)|∥δBν(BX)
φ(m)(z)

∥ = 0,

(4.4)

where φ(m) := (φ1, . . . , φm).

(2) Wψ,φ is compact.

Proof. First, we show that ψ ∈ H∞
µ (BX). In-

deed, by the boundedness of Wψ,φ and Theo-

rem 4.1, we have Mψ,φ,µ < ∞. Then, by Re-

mark 2.1, infz∈BX
∥δBν(BX)
φ(z) ∥ =: α > 0. Con-

sequently,

αµ(z)|ψ(z)| < Mψ,φ,µ, z ∈ BX .

This means ψ ∈ H∞
µ (BX).

(2) ⇒ (1): Suppose Wψ,φ : Bν(BX) →
H∞
µ (BX) is compact. Fixm ≥ 2. It is obvious

that (4.4) holds if φ(m)(BX) is relatively com-

pact in BX . So assume φ(m)(BX)∩∂BX ̸= ∅.
Then we can find sequence {zn}n≥1 ⊂ BX
such that ∥φ(m)(z

n)∥ → 1. By the defini-

tion of δBν(BX)
φ(m)(z

n), with ε > 0 is given we

can find a sequence {fn}n≥1 ⊂ Bν(BX) with
∥fn∥Bν(BX) ≤ 1 for every n ≥ 1 satisfying

|fn(φ(m)(z
n))| > ∥δBν(BX)

φ(m)(z
n)∥ − ε. (4.5)

By the condition (e2), without loss of gener-

ality, we may assume that fn ⇒ 0 in Bν(BX)
on compact subsets ofBX and {fn}n≥1 is uni-

formly bounded on compact sets.

For each n ≥ 1, denote an := φ(zn) and

consider the automorphism Φan ∈ Aut(BX)

defined by (2.1). For each j ∈ {1, . . . ,m}, put

Gan,j := (an(m))j · fn − ((Φan)(m))j · fn.

By (e3), Gan,j ∈ Bν(BX). It is an easy calcu-

lation to show that for every w ∈ BX ,

|Gan,j(w)| = |(an(m))j · fn(w)− ((Φan)(m)(w))j |

≤
3
√

1− ∥an(m)∥2

1− ∥w∥
|fn(w)|.

Then, by (2.2),

|Gan,j(w)| ≤
3
√

1− ∥an(m)∥2

1− ∥w∥
∥δw∥,

consequently, by Proposition 2.1, and since

∥an(m)∥ = ∥φ(m)(z
n)∥ → 1 as n→ ∞, for each

j ∈ {1, . . . ,m}, Gan,j ⇒ 0 on compact sub-

sets of BX Now by the condition (e3), there

exists C > 0 such that for all j ∈ {1, . . . ,m},
we have

∥Gan,j∥Bν(BX)

≤ ∥an(m)∥∥fn∥Bν(BX) + ∥((Φan)(m))j · fn∥Bν(BX)

≤ (C + 1)∥fn∥Bν(BX) ≤ C + 1 ∀n ≥ 1.

Therefore, since Wψ,φ is compact, By (2.2)

and Lemma 4.2, ∥ψ ·((Gan)j◦φ)∥H∞
µ (BX) → 0

as n→ ∞ for every j ∈ {1, . . . ,m}. Note that
Φan(a

n) = 0. Therefore, by (4.5), we have

µ(zn)|ψ(zn)|∥φ(m)(z
n)∥(∥δBν(BX)

φ(m)(z
n)∥ − ε)

≤ µ(zn)|ψ(zn)|∥φ(m)(z
n)∥|fn(φ(m)(z

n))|

= µ(zn)|ψ(zn)|

√√√√ m∑
j=1

|(Gan,j)(φ(m)(zn))|2

=

√√√√ m∑
j=1

∥ψ · ((Gan,j) ◦ φ)∥2H∞
µ (BX)

→ 0 as n→ ∞.

Consequently,

limn→∞µ(z
n)|ψ(zn)|∥δBν(BX)

φ(m)(z
n)∥

< ε lim
n→∞

µ(zn)|ψ(zn)| ≤ ε∥ψ∥H∞
µ (BX).

This implies that (4.4) holds because ε is ar-

bitrary.

(1) ⇒ (2): Assume that (4.4) holds

for some m ≥ 2. By Lemma 4.2, it suf-

fices to prove that if {fn}n≥1 ⊂ Bν(BX),
∥fn∥Bν(BX) ≤ 1 for all n ≥ 1 and

fn ⇒ 0 on compact subsets of BX then

∥Wψ,φfn∥H∞
µ (BX) → 0 as n→ ∞.

Let {fn}n≥1 be such a sequence. Given

ε > 0. Then we can choose a number r ∈
(0, 1) such that µ(z)|ψ(z)|∥δφ(m)(z)∥ < ε

whenever ∥φ(m)(z)∥ > r. Since |fn(w)| ≤
∥δBν(BX)
w ∥ for all w ∈ BX , if ∥φ(m)(z)∥ >

9
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r, then µ(z)|ψ(z)||fn(φ(m)(z)| < ε. Thus

µ(z)|ψ(z)||fn(φ(m)(z)| < ε when ∥φ(z)∥ > r,

because ∥φ(z)∥ ≥ ∥φ(m)(z)∥ > r for every

z ∈ BX .

Now, we consider the case ∥φ(z)∥ ≤ r.

Then ∥φ(m)(z)∥ ≤ r. Note that

B[φ(m), r]

:=
{
φ(m)(y) : ∥φ(m)(y)∥ < r, y ∈ BX

}
⊂ Bm ⊂ Cm

is relatively compact for every 0 ≤ r < 1,

by the hypothesis, fn → 0 uniformly on

B[φ(m), r]. Then, there exists N ∈ N such

that |fn(w)| < ε/∥ψ∥H∞
µ (BX) for all n ≥ N,

w ∈ B[φ(m), r]. Thus,

µ(z)|ψ(z)||fn(φ(m)(z)| < ε if ∥φ(z)∥ ≤ r.

We will now examine the boundedness

and compactness of the operator Wψ,φ map-

ping into H0
µ(BX).

Theorem 4.4. The following are equivalent:

(1) ψ ∈ H0
µ(BX), and there is m ≥ 2, such

that or every 0 ≤ r < 1, k ≥ 1 :

φ(m)(rBX) is relatively compact; (4.6)

lim
∥z∥→1

µ(z)|ψ(z)|∥δBν(BX)
φ(k)(z)

∥ = 0; (4.7)

(2) W 0
ψ,φ : Bν(BX) → H0

µ(BX) is compact.

Proof. (1) ⇒ (2): Suppose (1) holds. Fix

f ∈ Bν(BX). We show that Wψ,φf = ψ · (f ◦
φ) ∈ H∞

µ (BX). Since µ(z)|ψ(z)|f(φ(k)(z)) →
µ(z)|ψ(z)|f(φ(z)) as k → ∞ for each z ∈ BX ,

and H0
µ(BX) is closed in H∞

µ (BX), it suffices

to show that ψ ·(f ◦φ(k)) ∈ H0
µ(BX) for every

k ≥ 1. Given k ≥ 1. By the hypothesis (1),

for given ε > 0 there is r ∈ (0, 1) such that

µ(z)|ψ(z)||f(φ(k)(z))|

≤ µ(z)|ψ(z)|∥δBν(BX)
φ(k)(z)

∥∥f∥Bν(BX)

≤ ε∥f∥Bν(BX) for ∥z∥ > r.

(4.8)

On the other hand, assumption (1) implies

that

sup∥z∥≤rµ(z)|ψ(z)||f(φ(k)(z))|

≤ µ(z)|ψ(z)|∥δBν(BX)
φ(k)(z)

∥∥f∥Bν(BX) <∞.

(4.9)

Consequently, ψ ·(f ◦φ(k)) ∈ H∞
µ (BX).More-

over, by (4.8), ψ · (f ◦ φ(k)) ∈ H0
µ(BX).

We also obtain from (4.8) and (4.9) that

W 0
ψ,φ is bounded.

The compactness of the operator W 0
ψ,φ

can now be established by following a sim-

ilar argument as in the proof of Theorem 4.3

and using condition (4.6).

(2) ⇒ (1): First, since W 0
ψ,φ is bounded

and 1 ∈ Bν(BX) it is easy to check that

ψ ∈ H0
µ(BX).

In order to prove (4.6), first we have to

show the following claim:

1

2
∥z−w∥ ≤ ∥δH

∞
µ (BX)

z −δH
∞
µ (BX)

w ∥, z, w ∈ BX .

(4.10)

Indeed, by direct calculation, it is easy to

check that

1

2
∥z − w∥

≤

√
1− (1− ∥z∥2)(1− ∥w∥2)

|1− ⟨z, w⟩|2

= ϱX(z, w),

where ϱX is the pseudohyperbolic metric in

BX (see 16 p.99). On the other hand, we also

have

ϱX(z, w) = sup
f∈H∞(BX)
∥f∥∞≤1

ϱ(f(z), f(w))

(see (3.4) in 5), where ϱ(x, y) =
∣∣ x−y
1−xy

∣∣ is

the pseudohyperbolic metric in B1. Note that,

since the function η 7→ η

1−f(z)f(w)
is holomor-

phic from B1 into B1 and f(z) − f(w) 7→ 0,

10



it follows from Schwarz's lemma that

ϱX(z, w)

≤ sup
f∈H∞(BX)
∥f∥∞≤1

|f(z)− f(w)|

≤ sup
f∈H∞(BX)
∥f∥∞≤1

|δH
∞
µ (BX)

z (f)− δ
H∞

µ (BX)
w (f)|

= ∥δH
∞
µ (BX)

z − δ
H∞

µ (BX)
w ∥.

Hence, (4.10) is proved.

Next, we prove (4.6). For r ∈ (0, 1),

the set Vr := {δH
∞
µ (BX)

z : ∥z∥ ≤ r} ⊂
(H∞

µ (BX))
′ is bounded. Then, since Wψ,φ is

compact, the set

(Wψ,φ)
∗(Vz) =

{
ψ(z)δ

Bν(BX)
φ(z) : ∥z∥ ≤ r

}
is relatively compact in [Bν(BX)]′.

We know that, for every K ⊂ [Bν(BX)]′

and every bounded subset D ⊂ C, if the set

{tη : t ∈ D, η ∈ A} is relatively compact

in Bν(BX) then A ⊂ [Bν(BX)]′ is also rela-

tively compact. With this in mind, since the

set {ψ(z) : ∥z∥ ≤ r} is bounded, the set

{δBν(BX)
z , ∥z∥ ≤ r} is relatively compact.

Then, it follows from (4.10) that φ(rBX)

is relatively compact, so is φ(m)(rBX) for

m ≥ 2.

Finally, we prove (4.7). Assume that

there exist m ≥ 1, ϱ > 0 and

{zn}n≥1 ⊂ BX , ∥zn∥ → 1 such that

µ(zn)|ψ(zn)|∥δφ(m)(z
n)∥ > ϱ for all n ≥

1. Then, we may choose {fn}n≥1 ⊂
Bν(BX) such that ∥fn∥Bν(BX) ≤ 1 and

|fn(φ(m)(z
n))| > ∥δBν(BX)

φ(m)(z
n)∥ − ϱ/2 for every

n ≥ 1. Thus

µ(zn)|ψ(zn)||f(φ(m)(z
n))|

> ϱ− ϱ/2µ(zn)|ψ(zn)|.

Therefore, since ψ ∈ H0
µ(BX), W

0
ψ,φfn /∈

H0
µ(BX). This contradicts the boundedness

of W 0
ψ,φ.

Remark 4.1. In the case where dimX <∞,

and by following the proof of Theorem 4.4,

the following statements are equivalent:

(1) lim
∥z∥→1

µ(z)|ψ(z)|∥δBν(BX)
φ(k)(z)

∥ = 0 for every

k ≥ 1 and ψ ∈ H∞
µ (BX);

(2) W 0
ψ,φ : Bν(BX) → H0

µ(BX) is compact;

(3) W 0
ψ,φ : Bν(BX) → H0

µ(BX) is bounded.
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