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TOM TAT

Cho v, 1 14 cac trong chuin tic trén hinh ciu don vi Bx clia mot khong gian Hilbert phitc
vGi s6 chiéu tlty ¥ va ¢ 1a mot ham chinh hinh trén By, ¢ 14 mot anh xa ty chinh hinh cia
Bx. Trong bai bao nay, ching t6i nghién ctu cac dac trung cho tinh bi chdn va tinh compact
clia toan ti hop c6 trong Wy, ,, f — ¢ - (f o @), tit khong gian kiéu Bloch B, (Bx) dén khong
gian tang trudng (nho) H;°(Bx), Hj)(Bx) thong qua tinh chat clia 1, cdc phiém ham danh gia
diém 5(12(”;)3 X ), va, cac han ché clia cac dai lugng nay lén cac khong gian con m-chiéu véi m > 2.

Chiing t6i cling tinh duge chinh xac cong thiic clia chuin toan ti Wi o

Twu khoéa: Todn td hop co trong, khong gian Bloch, khong gian tdng trudng, tinh by chdn, tinh
compact.
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ABSTRACT

Let v, u be normal weights on the unit ball By of an Hilbert space X with arbitrary dimension
and 1 be a holomorphic function on Bx and ¢ a holomorphic self-map of Bx. In this work,
we characterize the boundedness and the compactness of weighted composition operators Wy, ,,
f = - (f o), from the Bloch-type spaces B,(Bx) to the (little) growth spaces H;°(Bx),
7{2(3 x) via function theoretic properties of the symbol ¢ and the point evaluation function

B, (Bx)
Ou(z)

, specifically, of the restrictions of functions ¥, ¢ to the m-dimensional subspaces for

some m > 2. We obtain also the formula of the operator norm of Wy, .

Keywords: Bloch spaces, growth spaces, compactness, boundedness, weighted composition oper-

ator
1. INTRODUCTION

Let &1, & be spaces of holomorphic functions
on the unit ball Bx of a Banach space X, ¢
be a holomorphic function on Bx and ¢ a
holomorphic self-map of Byx. The weighted
composition operator, defined by symbols ¢
and @, maps from &; to & and is defined by

Wtb,w(f) = chgo(f) =19 (foyp)

where My, represents the multiplication oper-
ator with symbol ) and C,, is the composition
operator with symbol .

In recent years, there has been significant
interest in studying weighted composition op-
erators. A famous theorem developed by Ba-
nach asserts that for a compact metric space
K, the surjective linear isometries of C(K)
are given by T'f = u(f o ¢) where |u(z)| =1

for all x € K, and ¢ : K — K is a homeo-
morphism. Inspired by this theorem, ongoing
research on the characterization of isometries
in Banach spaces of analytic functions has re-
vealed that weighted composition operators
define the isometries of many such spaces, in-
cluding the Hardy space HP (for 1 < p < oo,
p # 2), the weighted Bergman space, and the
disk algebral

For a comprehensive overview of various
aspects of the theory of (weighted) compo-
sition operators acting on several spaces of
holomorphic functions, we refer to a stan-
dard reference. '@ There is extensive literature
on weighted composition operators and inte-
gral operators between specific holomorphic
function spaces. To address these spaces in a
unified way, certain frameworks for Banach
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spaces of holomorphic functions on the unit
disk have been introduced B# For instance,
in reference, @ established certain topological
and function-theoretic conditions for the do-
main space and provided criteria for bound-
edness and compactness, along with esti-
mates for the operator norm and the essential
norm of the weighted composition operators
that map to the weighted-type space or the
Bloch-type space on the unit disk. In recent
years, there has been significant interest in
the study of weighted composition operators.
More recently, attention has also focused on
composition operators and operator-valued
multipliers in various vector-valued analytic
function spaces, particularly when X is an
infinite-dimensional Hilbert space BB

In this paper, we aim to consider the
compactness and boundedness of Wy, , when
&1 is a general Banach space of holomorphic
functions and and &> is either growth space
H°(Bx) or the little growth space Hg(BX)
determined as follows:

Hy (Bx)

={fen o sw u@IE) <o}
My (Bx)

= {femrmx): lm w)lf(e)] =0},

where J#(Bx) is the space of holomorphic
functions on Bx and p is a normal weight on
Byx.

Growth spaces are a significant and in-
triguing class of Banach spaces of holomor-
phic functions. They have been investigated
in various contexts, with numerous general
and specialized references available 23]

Some key properties of these spaces, when
By is the unit disk B C C, include the fol-
lowing:

e For a normal weight p, H7°(B) D H™
if and only if lim|;_,; p£(2z) = 0. On the
other hand, if limsup,|_,; u(z) > 0,
then Hj, = {0};

o The identity map I : H°(B)) —

(H;X (B), 7¢o) is continuous.

e The bidual [H},(B)]” isometrically iso-
morphic to H;°(B);

e The point evaluation functionals 67
on ’Hg(IB%) are bounded and can be
uniquely extended to point evaluation
functionals on H;°(B) with the same
norms;

e The operator BY(B) — HX(B), f —
f”, is an isometric isomorphism, where
Bg(B) is the subspace of the Bloch
space B, (B) of functions with f(0) = 0.
It is important to note that the Bloch
space consists of functions character-
ized by the growth of their derivatives,
making it closely related to growth
spaces;

e The maps z ~— 07¢ is continuous, and
|62]| goes to infinity as |z| — 1.

These are just a few of the reasons moti-
vating our research.

In Section [2, we review the key condi-
tions for spaces of holomorphic functions that
will be used to establish the boundedness and
compactness of these operators, as well as to
provide estimates for their essential norms in
our context.

To characterize the boundedness and
compactness, and building on the ideas from
BP with minor modifications, we establish
in Section [3] a connection between func-
tions in the growth space H;°(Bx) and and
their restrictions to finite-dimensional sub-
spaces. Specifically, we show that if the re-
strictions of a function to m-dimensional sub-
spaces (for m > 2) have uniformly bounded
growth norms, then the function belongs to
the growth space H;°(B;,), and vice versa.

In Section [d] we characterize the bound-
edness and the compactness of Wy, , from
B,(Bx) into H°(Bx) and into H)(Bx) as
well as calculate the operator norms. We



will show that these characterizations are
completely determined by their behaviour
on ™ and on the point evaluation func-

. BV(B)() By(Bx) [m]
tions 6¢[m](z) and 5@("0(2), where "™ and

cp[m] are the restrictions of 1 and ¢, respec-
tively, on the m-dimensional subspaces and
Om) = (¥1,---

Throughout this paper, we use the no-

7‘)0771)’ m Z 2.

tions a < b and a < b for non negative quan-
tities a and b to mean a < Cb and, respec-
tively, C™1b < a < Cb for some inessential
constant C > 0.

2. PRELIMINARIES AND AUXIL-
TARY RESULTS

Let X be a complex Hilbert space of arbitrary
dimension, Y a Banach space. Denote by Bx
the closed unit ball of X, and use B,, instead
of Ben. Fix an orthonormal basis (eg)rer of
X. Then any z € X can be expressed as

z:E 2ECk, Z:E ZECL-

kel kel

2.1. Mo6bius transformations

The analogues of M6bius transformations on
a Hilbert space X are the mappings P, :
Bx — By, a € By, defined as follows:

a — Pa(z) - SaQa(z)
1—(z,a)

(I)a(z) = , 2 € Bx
(2.1)
where s, = /1 —||a||?, Pu(2) ﬁi’ﬁga, and
Qolz) =2 — |<|':‘TQ>a for z € Bx.
We define ®¢(z) = —=.
Denote by Aut(Bx) the group of auto-

morphisms of the unit ball By.
For details on Mobius transformations,
we refer to K. Zhu’s book. 4

2.2. Banach spaces of holomorphic
functions

#(Bx,Y) is denoted by the vector space
of Y-valued holomorphic functions on By.

An element f € #(Bx,Y) is named locally
bounded holomorphic on Bx if for every

z € By there exists a neighbourhood U, of
0 € X such that f(U,) is bounded. Put

H1.8(Bx,Y)
= {f € A (Bx,Y): f is locally bounded on BX}.

For f € s (Bx), its complex gradient and
radial derivative are defined by

VG = (52),

_yof

o 0z
ker Ok

Rf(z) : (2)(zker) = (2, Vf(2)),
respectively. Thus, V f(z) is the unique ele-
ment in X representing the linear operator
f'(z) € X', hence,

)
@ =3 5@ e
kel
= (z,Vf(z)), =zelX.
It is clear that
[Rf(2) < IVfEII=]l, =€ Bx.

Now, let £ C s#(Bx) be a Banach space.

For each z € By, the point-evaluation
functional §¢ at z defined by 65(f) := f(2)
for all f € £. Thus,

LF) < IFISEN,

where [|05 || = sup{|f(2)| : f € & [If]| < 1}.
For all ® = (®;)er € Aut(Bx), for every
j>1,m>2andall f €&, we write

fe&zeBy, (22)

Dy = (Pry. .., Br),

Feo®my = (f-®1yeees ).

Below, we present a comprehensive list of
conditions, some of which will be necessary
for characterizing the boundedness, compact-
ness, or determining the essential norm of the
operators discussed in this work.

(el) & includes the constant functions.

(e2) The closed unit ball Bg is 7.,- compact.



(e3) There are m > 2 and constant C' > 0
such that for all & € Aut(By), for all
feé& @ -fek,

1@ - fIl < ClFIL 5 e{L,....m}.

Remark 2.1. It follows from (el) that
inf.epy |65]] > 0, and in particular, the fol-
lowing equivalent conditions are satisfied:

(ela) On each compact set, |65 is bounded
from below by a positive constant;

(elb) The functions in £ do not all vanish at
each point z € Bx.

Indeed, since the function 1 € &, for every
z € Bx we have ||6¢]| > H1T|| It is obvious that
(ela) = (elb). Now, assume that (elb) holds
but (ela) fails. Then we can find a compact
subset K of By and a sequence {z, }n,>1 € K
and zp € K such that z, — 20 and ||6¢ || — 0.
This implies that f(z9) = 0 for all f € &,

which is incompatible with (elb).

By the uniform boundedness principle,
we can easily prove the following:

Proposition 2.1. The mapping 6° : Bx —
C, z — ||6¢]|, is bounded on compact subsets
of Bx for every Banach space £ of holomor-
phic functions on Bx.

3. GROWTH SPACES AND BLOCH-
TYPE SPACES

For a normal weight v on Bx, we write

vy [T
Be= [

Remark 3.1. Since v is positive, continuous,
My, i= Minyeo 5 v(t) > 0. Moreover, it fol-
lows from (W7) that v is strictly decreasing
on [4,1), hence, maxycp 1y v(t) =1 M, < oo.
Then, it is easily seen that

M,
v(2)IN(z) < R, := 5m +1-4 <o0. (3.1)
v,0

for every z € By.

We define bounded holomorphic spaces
H>(Bx),
H7°(Bx), little growth holomorphic spaces
H{(Bx), Bloch-type spaces B, (Bx), and lit-
tle Bloch-type spaces B, o(Bx) on the unit

growth  holomorphic  spaces

ball Bx as follows:

H*(Bx) = {f € #(Bx):

sup [7(2)] < oo},
Hyx(Bx) = {f € #(Bx)

sup u(2)f(2)| < oo},
z€Bx

Ho(Bx) = { f € H2(Bx)
lim u(2)|f(2)| = 0},

l[=l—1

B.(Bx) = {f € #(Bx) : | 5, (5) =
sup v(:)|Rf ()] < oo}
2€Bx

It is easy to check that H*(Bx),
H;°(Bx) and B, (Bx) are Banach under fol-
lowing norms

Il = sup 1£(2),
z€Bx

1f 250 == sup u(2)|f(2)],
zEBx

1fll8,(Bx) = [FON+ 1 flls8, (Bx)>

respectively.
Now we consider the holomorphic func-

tion
glz) =14 252", zeBy, (32
k>ko
where ko = [logQ ﬁ], nE = [ﬁ] with

ry = v1(1/2%) for every k > 1. Here, the
symbol [z] represents the greatest integer less
than or equal to z. By Theorem 2.3 T 4(¢)
is increasing on [0, 1) and

l9(2)l < g(llz]]) € R, =z € By,
= inf
0<Ch tel[r(l) 1)1/(75)9(15)

)

< Sup v(t)g(t) (3.3)

< sup v(z)|g(z)| =: C2 < 0.
z€By
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Lemma 3.1. Let v be a normal weight on
Bx. Then there is C' > 0 such that for every
z € By,

[F(2)] < 1(2) " fllaeBy)s | € HiZ (Bx),
(3.4)
f(2)] < CA+L () f B, (Bx): | € Bu(Bx).
(3.5)

Proof. The inequality (3.4) is obvious. The
inequality (3.5) was proved in ¥ (Proof of
Theorem 3.2). O

Lemma 3.2. For every v normal weight v
on Bx, we have

(1) 118275 = 1/u(2);

B, (B
(2) 6559 =1+ IL(2).

Proof. (1) It is obvious.
(2) It follows easily from the definition of

55/ Bx) and 1} that
162X || S 1+ 1)(2).

Now we consider the function fy defined by

el
fo(z):(l—l—Cg)_l(l—i—/O g(t)dt), =€ By,

where ¢ is defined by . It is clear that
fo € B,(Bx) and by (3.3), it is easy to see
that || folls,(Bx) < 1. Then, in view of
again, this yields that

168 B | > | fo(2))
1 4
14+ 02" 1+ Cy

Fa+ B,
O

> max{

It is easy to prove the following;:

Corollary 3.3.  H°(Bx), B, (Bx) satisfy
the properties (el), (e2), (e3).

We will demonstrate below that the anal-
ysis of growth spaces on Bx can be re-
duced to studying functions defined on finite-
dimensional subspaces. It is worth noting

that similar results for Bloch-type spaces
were recently studied in &.

For each finite subset I' C I', without
loss of generality we may assume that F' =
{1,...,m}, we denote by B,,, the unit ball of
span{ey, k € F'}. For each m € N, we write

[m] .
ILL H‘span{eh € }7
Zjm] = (21, -+ 2m) € By,

For m > 2, we denote by
OSpm ={z = (z1,...,Tm),
T € X, <l’k,$j> = 5kj}

the family of orthonormal systems of order
m.

For every z € OSp,
A (Bx), we define

Jo(2m) = f<§:2kl‘k)-

k=1

fixed and f €

Then

[¥ )| ~ Hw(g;lzkxk) | 6o

Definition 3.1. We denote

Hu aff(BX)

={f e A(Bx): |fllae Bx) < o0}

where

sup £ 2)l3e (30):

[l]l=1

with f(-z) : By — C given by f(-z)(\) =
f(Az) for every A € By, and

172} e 1) = sup p(A2) [ f M)

1l 2eze, 0 (Bx) =

It is easy to verify that ||+ [l _(py) is a norm
,a

on H;° ¢(Bx), called the affine norm, more-
over, (H;7,4(Bx), | - HHff’aﬁr By)) is a Banach
space.

Proposition 3.4. Let f € #(Bx). The fol-
lowing are equivalent:

(1) f e Hr(Bx);
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(2) supeos,, HfﬂcHH‘”[m](Bm) < oo for every
"
m > 2;

(3) supeos,, HfﬂcHHO‘[‘m](IB%m) < oo for some
m
m > 2.

Moreover, for each m > 2

sup ||fz||7-t J (Br)- (3.7)

1 3420 (Bx) = JSup
Proof. (1) = (2): Let m > 2 and 2, =
(21,...,2m) € Bp,. Since HZT:?ZJ‘GJH =
2t we get

||f:r||7-t 4 (Bx)

= sup  p"™ (2| o (2m)]
Z[m]EBm

< sup p(z ‘f( zjej)‘
z€EBx jEF

(3.8)

<1 e () < 00

In particular, we obtain (2).
(2) = (3): This is evident.
(3) = (1): Assume that

sup foHH"O [(Br) < OO
z€OSm,

for some m > 2. We fix z € By \ {0}.
Consider z = (Hj—”,xg,...,wm) € 05, and
Z[m] = (HZH,O,...,O) € C™. Then ||Z[m]” =
|lz]| and

| fo(2pm)) ‘ (izkwk)’ fZ)I.

k=1
This yields that
[f I3 (Bx) = sup u(2)|f(2)]

zEBx
< s ™ )| (2o (3.9)
< sup HfacHH
€08,

Thus f € H?(Bx).
On the other hand, it is clear that

Em) < 0.

sup || fallze

S ) < e (5

for every m > 2. (3.10)

Hence, we obtain (3.7) from (3.8)), (3.9) and

(3-10). O

Remark 3.2. In the case m = 1, the propo-
sition is not true. Indeed, we consider pu(z) :=
1 —||z||?, and f: Bx — C given by

f(z) = i <% - %,en>, z € Bx.

n=1

Then f € J#(Bx) because
o0
e - o

N
—l\n Vn
— 1 2
§Z$+||z||2+zm<oo.
n=1 n=1

For each z = > > | (x,en)e, € OS; and for
every z[y) := 2 € By for some k > 1, we have

2

N 1 ZETk
f(zpay) = E vk

and thus, since |f(2[))] < 2, we get

fe(2p)) =

sup || fz |3z 81
€085,

= sup (1= [lzpul*)Ifa (el < 2.

€085,

However, since

(1-1l=1®)If(=)]
== (2 - e,

1
% J—
Z - as z — 0,
n=1
we obtain that f & H;°(Bx).

By employing a similar argument as in
the proof of Proposition 2.3 in @, we can eas-
ily obtain the following result, for which the

proof will be omitted.

Proposition 3.5. H;7(Bx) = H q(Bx).
Moreover,
[ lrge (Bx) < N Flleze 5 (Bx)

S W llusesxy:  f € HE (Bx).



4. BOUNDEDNESS AND
PACTNESS CRITERIA

COM-

Consider the weighted composition operator
Wy, from B,(Bx) into ’Hff(BX) and into
H{)(Bx) defined by

(Wyof)(2) = 4(2) - (fep)(2), =z € Bx.

The component operators are the multi-
plication operator M, f = - f and the com-
position operator C,f = f o ¢, which cor-
respond to the cases when the composition
symbol ¢ is the identity function on B and
the multiplication symbol v is the constant
function 1, respectively.

Theorem 4.1. The following are equivalent:

(1) Wy, : By(Bx) — H;°(Bx) is bounded;

[m] . [m] [m] B (Bx)
@) ML, o= sup W IS

< oo for some m > 2;

(3) Mypp -
= sup () (=) 6% P < oo.

z€Bx

In this case, we have
HWw,@H =Mypu (4.1)

Proof. (3) = (2): It is clear.

(1) = (3): Suppose Wy, : B,(Bx) —
H;°(Bx) is bounded. Fix 2z € Bx. For each
f € B,(Bx) with || f||5,(By) < 1, we have

p()PIF (D] < [IWy o fllrze x)

< Wyl fll5,(Bx)

By definition of 68 (Bx) (see Proposition,
by taking the supremum over all f within the
closed unit ball of B, (B

< ”Ww,vH-

x ), we obtain:

B, (B
(05 ) < Wyl
Taking the supremum over all z € By yields

Mypu < |[Wy el < oo (4.2)

(2) = (1): Assume M[m] o < 00 for some
m > 2. LethB(BX)Wlth] ) < L.
We write z, := > -, 2k, for each T 6 OSm.
It should be noted that |z;|| = ||z}l and
= ul™(2,). Then

hence pl™ (2{m))

Wy (F)allress, @)
= sup u[mkzx)w[ J(22)(f © ©)2(zpm)|

2z €EBm

[m]
<M¢¢M<oo

for every z € OS,. By (3.7, Wy, is

bounded because
HWw go( )H”H"O (Bx)
= sup |(Wepo(f))e ||7-l g (Brm)

zeO
[m]
<Mw¢# < 00.

(4) = (2): For z € Bx, we have
W] < pe ] [05 5]
< MT/’»%# < 0.

Consequently,
HWw,sofHHﬁo(BX) < My < 00. (4.3)

Finally, from (4.2)), (4.3) we deduce (4.1). O

We next characterize the compactness of

1LO)

Wy.p. As shown in ¥, we can demonstrate

the following:

Lemma 4.2 (I Lemma 2.10). Let £, F be
two Banach spaces of holomorphic functions
on Byx. Assume that

(1) 6¢ are continuous for every z € By;
(2) The closed unit ball of £ is 7.,-compact.

(3) T: (€ 7e0) —

Then, T is compact if and only if for each

(F,Teo) is continuous.

bounded sequence {f,} in £ satisfying f, =
0 on compact sets, then ||T'f,||x — 0.

Theorem 4.3. Assume that the operator
Wy @ Bu(Bx) — H;(Bx) is bounded.
Then, the following are equivalent:



(1) There exists m > 2 such that

p(NEI182 ) =0,
(4.4)

lim sup
"1y (2) >

where @) == (@1, - -, Pm)-
(2) Wy, is compact.

Proof. First, we show that ¢ € H°(Bx). In-
deed, by the boundedness of W, , and Theo-

rem we have My, , < co. Then, by Re-
mark inf.ep, HéB”(BX | =: a > 0. Con-

»(2)
sequently,
ap(z)(2)] < Mypu, 2 € Bx.
This means ¢ € H;7(Bx).
(2) = (1): Suppose Wy, : B,(Bx) —

H7°(Bx) is compact. Fix m > 2. It is obvious
that holds if ¢(,,,)(Bx) is relatively com-
pact in Bx. So assume ¢,y (Bx)N0Bx # @.
Then we can find sequence {z"},>1 C Bx
such that |l (2")|| — 1. By the defini-
tion of 65(”:?(’;2), with ¢ > 0 is given we
can find a sequence {f,},>1 C By (Bx) with
I fullB,(Bx) < 1 for every n > 1 satisfying

[ Fnpim) (27))] >

By the condition (e2), without loss of gener-

B, (B
85 BX) ) —

com el € (4.5)

ality, we may assume that f,, = 0 in B, (Bx)
on compact subsets of Bx and { fy, },,>1 is uni-
formly bounded on compact sets.

= (2") and
consider the automorphism ®,» € Aut(Bx)
defined by (2.1)). For each j € {1,...

Ganj = (a?m))j o= ((Ran)m))j * -

By (e3), Gan j € B,(Bx). It is an easy calcu-
lation to show that for every w € By,

|Gan (W) = [(a(my)j - Fn(w) = ((an) (m) (w))]

Wl
| fu(w)].

1= [Jw]

For each n > 1, denote a”

,m}, put

Then, by ([2.2),

3, /1 llaf,, 12
G ()] < e 8]

1 — [fwl]

consequently, by Proposition and since
Ha(m | = llo@m)(z")|| = 1 asn — oo, for each
j€A{l,...,m}, Ggn; = 0 on compact sub-
sets of BX Now by the condition (e3), there
exists C' > 0 such that for all j € {1,...,m},

we have

1GanjllB,(Bx)
< a1 falls, (Bx) + 1((Par)(m)); - fulls, (Bx)
<(C+DIfulls,Byy <C+1 Vn=>1

Therefore, since Wy, , is compact, By

and Lemma L3} - ((Gan);09)lyze () — 0
asn — oo for every j € {1,...,m}. Note that

Pyn(a™) = 0. Therefore, by (4.5), we have

p(z") (") llom
< p(2") [ (2"

= u(Z) (") | D 1(Gan ) (9(my (7)) 2
j=1

GOS0 =€)

M@y O fnlean) ()]

= an

—0 asn — co.

a",] OSO)HHoo(BX)

Consequently,

M550 |

©(m) (™)
<e lim p(2")|¢(")] < el[ Pl ree y)-

limy, oo pt(2

This implies that holds because ¢ is ar-
bitrary.

(1) = (2): Assume that holds
for some m > 2. By Lemma it suf-
fices to prove that if {f,},>1 C B,(Bx),
Ifallg,(Bx)y < 1 for all n > 1 and
fn = 0 on compact subsets of Bx then
Wy fnll e (Bx) — 0 as n — oo.

Let {fn}n>1 be such a sequence. Given
€ > 0. Then we can choose a number r €
(0,1) such that p(=)()[I0,, ol < <
w(E) > 7. Sinee [fu(w)| <
150 P for all w € By, if |l@mm)(2)] >

whenever /o


Dell
Highlight


r, then p(2)[(2)||fn(pm)(2)] < e. Thus
Ul ()] < & when [ ()] > 7.
because [|p(2)[ = [l¢om)(2)]| > r for every
z € Bx.
Now, we consider the case |[p(2)]] < 7.

Then [[¢()(2)]| < 7. Note that
Blom), T ]
= {0 (®) : leem Wl <.y € Bx}
CcB, C (Cm

is relatively compact for every 0 < r < 1,
by the hypothesis, f, — 0 uniformly on
Bl¢(m),7]. Then, there exists N € N such
that |fn(w)| < e/||[¥llme(py) for all n = N,
w e m Thus,

p(@) ) (o) (2)] <e if flp)] <7
O

We will now examine the boundedness
and compactness of the operator W, , map-
ping into H,(Bx).

Theorem 4.4. The following are equivalent:

(1) ¢ € H)(Bx), and there is m > 2, such
that orevery 0 <r <1,k >1:

¢ (m)(rBx) is relatively compact; (4.6)

lim pu(2)(=) 167031 = 0;

llzl— k) (2 (4.

(2) W’g,@ : B,(Bx) — Hg(BX) is compact.

Proof. (1) = (2): Suppose (1) holds. Fix
f € B,(Bx). We show that Wy, ,f =4 - (fo
) € Hzx(Bx). Since u(2)|(2)| (g (=) —
w(2)|Y(2)| f(¢(2)) as k — oo for each z € By,
and H))(Bx) is closed in H°(Bx), it suffices
to show that 1+ (fopny) € 7-[2(BX) for every
k > 1. Given k > 1. By the hypothesis (1),
for given € > 0 there is 7 € (0,1) such that

@S (e (2))]
@IS S 1 s, () (48)
<elflls, ) for |2ll >
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On the other hand, assumption (1) implies
that

sup|. < (2) [V (2) ]| f (@) (2))]
< ()2 >rua¢(jx>uufug ) < 0.
(4.9)
Consequently, - (fogo y) € "2 (Bx). More-
over, by (4.8), ¥ - (f o o)) € HO(BX)

We also obtain from . ) and ( . ) that
Wg’w is bounded.

The compactness of the operator Wgw
can now be established by following a sim-
ilar argument as in the proof of Theorem
and using condition (4.6)).

(2) = (1): First, since ng is bounded
and 1 € B,(Bx) it is easy to check that
¢ € Hj(Bx).

In order to prove , first we have to
show the following claim:

w(Bx) M (B

_oi X)) L w e By.

(4.10)

Indeed, by direct calculation, it is easy to
check that

*HZ wl| < (o

1
e —wl
(A~ [=P)(1 — [lw])
= \/1‘ TEERTIE
= QX(Z,TU),

where ox is the pseudohyperbolic metric in
Bx (see“¥ p.99). On the other hand, we also
have

ox(z,w) = sup  o(f(2), f(w))
fEHOO(Bx)
[[flloe<1
(see (3.4) in B), where o(z,y) = !1 xy‘ is
the pseudohyperbolic metric in B;. Note that,
since the function 1 — W is holomor-
phic from B; into B; and f(z) — f(w) — 0,



it follows from Schwarz’s lemma that

QX(va)
< sup  [f(z) = f(w)]
JeEH>(Bx)
[ fllo<1
HP (B HEC (B
< sup  [OIFI(p) —an Y g
feEH>(Bx)
[l flloo<1

Hence, is proved.

Next, we prove (4.6). For r € (0,1),
the set V, := {(5??‘0(8)() |z < r} C
(Hy*(Bx))" is bounded. Then, since Wy, ,, is
compact, the set

(W) (V2) = { 2o ) s 12l < v}

is relatively compact in [B,(Bx)]'.

We know that, for every K C [B,(Bx)]
and every bounded subset D C C, if the set
{tn : t € D,n € A} is relatively compact
in B,(Bx) then A C [B,(Bx)] is also rela-
tively compact. With this in mind, since the
set {¥(2) : ||z|]| < r} is bounded, the set
{55" Xzl £ r}ois relatively compact.
Then, it follows from that ¢(rBx)
is relatively compact, so is ¢(y)(rBx) for
m > 2.

Finally, we prove (4.7). Assume that
there exist m > 1, o > 0 and
{z"}n>1 C Bx, ||z"]] — 1 such that
B 6, o]l > 0 for all n >
1. Then, we may choose {fu}n>1 C

B,(Bx) such that |[f.lg,(8y) < 1 and

n B.(B
[Falm (D] > 155755011 = o/2 for every

n > 1. Thus
(") (") f (o (27))]
>0 —0/2u(z")[¢(2")].
Therefore, since 1 € Hj(Bx), W127¢fn ¢

’Hg(BX). This contradicts the boundedness
of Wdo),go‘ O

Remark 4.1. In the case where dim X < oo,
and by following the proof of Theorem
the following statements are equivalent:

11

. BV(BX) —
”ihrglu(z)\w(2)1115¢(k)(2) | = 0 for every

k> 1 and ¢ € H?(Bx);

(1)

(2) thm : By(Bx) — ’Hg(BX) is compact;

(3) Wg,w : B,(Bx) — Hg(BX) is bounded.
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