Mo hinh hgc sau Long short-Term memory
phat hién tan cong DDos

TOM TAT

Gan day, cac mdi de doa tin cong Tir chdi dich vu phéan tan-Distributed Denial of Service (DDoS) dang tr6
nén phure tap, tinh vi, gdy ra thach thtre cho cac hé thong bao v¢ thong thudng. Viéc phat hién som cac dau hiéu tan
cong rat quan trong, dé bao vé va chong lai cac mbi de doa tin cong. Nghién ciru dé xuét su dung mod hinh dya trén
ky thuat Hoc siu Mang bd nhé Dai-Ngan - Long Short-Term Memory (LSTM). K§ thuat nay gdm mot sd thuét toan
lua chon va trich xuét dic trung, dugc tu dong cap nhat trong qua trinh huén luyén. Véi ) luong dir liéu nho, LSTM
van hoat dong nhanh va chinh xac. Nghién ctru da tién hanh thir nghiém trén tap dit liéu CICDD0S2019 va két qua
cho théiy mé hinh dat duoc cac chi s6 hiéu suit nhu sau: Do chinh xéac (Accuracy) dat 95%, Precision dat 96%, do
phu (Recall) dat 93% va diém F1 (F1 Score) 13 95%. Muc tiéu cia nghién ctru, dwa ra dugc mot mo hinh c6 kha
nang xtr 1y dir liéu chudi va luu trit théng tin hoc dugce 1au dai. Co thé tich hop mé hinh vao cac hé théng giam sat va
bao mat mang, cai thién kha nang phat hién phan tmg vdi cac mdi de doa tin cong mang ngay cang phirc tap.
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Deep learning model using Long short-Term memory
for DDoS attack detection

ABSTRACT

Recently, Distributed Denial of Service (DDoS) attack threats have become increasingly complex and
sophisticated, posing challenges to traditional protection systems. Early detection of attack signs is crucial for
safeguarding against these threats. This study proposes the use of a model based on Long Short-Term Memory
(LSTM) deep learning techniques. This approach includes several feature selection and extraction algorithms that
are automatically updated during training. Even with a small amount of data, LSTM performs quickly and
accurately. Experiments were conducted on the CICDD0S2019 dataset, and results show that the model achieved
performance metrics as follows: Accuracy of 95%, Precision of 96%, Recall of 93%, and F1 Score of 95%. The goal
of the research is to develop a model capable of processing sequential data and retaining learned information over
the long term. This model can be integrated into network monitoring and security systems, enhancing the ability to
detect and respond to increasingly complex cyberattack threats.

Keyword: DDoS, DoS, LSTM, Deep Learning, Machine Learning

1. INTRODUCTION

The rapid development of services through the
Internet, such as financial and banking
transactions, communication,  e-commerce,
online shopping, online payments, healthcare,
and education, presents significant challenges
for user safety. There are currently numerous
methods of network attacks aimed at disruption,
among which the two fundamental attack
methods are Denial of Service (DoS) attacks,
which aim to prevent legitimate users from
accessing network resources, and Distributed
Denial of Service (DDoS) attacks, which
represent a more advanced form of DoS attacks.
The primary difference between DoS and DDoS
attacks lies in the scope of the attack. DoS attack
traffic primarily originates from one or a few
source hosts, whereas DDoS attack traffic
originates from a large number of hosts
dispersed across the Internet.

There are two DDoS attack methods. The first
involves the attacker sending specially crafted
packets that cause errors in the transmission
protocol or the application running on the
victim's machine; a typical example of this
method is exploiting security vulnerabilities in
the protocols or services on the victim's
machine. The second, more common DDoS
attack method can be categorized into two
forms: the first form disrupts the user's
connection to the service server by flooding the
network transmission or exhausting bandwidth
and network resources. The second form

disrupts the service provided to the user by
depleting the resources of the service server,
such as CPU processing time, memory, disk
bandwidth, and database capacity. This type of
attack includes application-layer flooding
attacks. These attacks are expected to become
increasingly complex as Internet technologies
evolve. Traditional methods for assessing the
risks of DDoS attacks often have low accuracy
and slow response times. To address this issue,
cybersecurity experts and scholars are
researching the use of Machine Learning (ML)
and Deep Learning (DL) techniques for DDoS
detection [1]. ML and DL methods hold
tremendous potential for detecting network
attacks due to their ability to classify more
accurately and effectively [2]. Currently,
methods such as Random Forest (RF), K-
Nearest Neighbors (KNN), and Naive Bayes are
in use. For deep learning, techniques such as
Artificial Neural Networks (ANN), Deep Neural
Networks (DNN), and Recurrent Neural
Networks (RNN) are commonly employed [3].
After surveying and evaluating multiple
methods, this research decided to implement the
Long Short-Term Memory (LSTM) deep
learning architecture. The LSTM architecture
can capture information based on temporal
correlation, which is a critical characteristic of
DDos traffic, thus enabling effective prediction
of network traffic. The goal of this paper is to
construct an LSTM deep learning model that
achieves higher accuracy than existing machine



learning  techniques in classifying and
forecasting DDoS attacks.

In the field of network security, numerous
studies have utilized machine learning
techniques to classify DDoS threats, including
algorithms such as K-Nearest Neighbors (KNN),
Logistic Regression, Random Forest (RF),
Support Vector Machine (SVM), and Naive
Bayes classification [4]. KNN identifies the K
nearest neighbors of the input data. A voting
technique is used to classify test data. Several
studies have employed KNN to classify DDoS
attacks with quite effective results. Research
using SVM has distinguished between normal
and malicious network traffic based on IP
address interaction features [5]. This model
demonstrated good discrimination between
malicious and normal traffic flows. Zheng et al.
utilized RF to classify DDoS attacks, achieving
classification performance with a precise feature
set [6]. Naive Bayes, a classification algorithm
based on Bayes' theorem, has been effectively
used for classifying DDoS attacks when features
are independent. Riadi applied the Naive Bayes
method to detect DDoS attacks using mean and
standard deviation, achieving favorable results.
Ahanger developed an Artificial Neural Network
(ANN) model to detect DDoS network attacks,
obtaining certain results [7]. Zubair Hasan,
Sattar, and Zahid Hasan conducted research on
using a Deep Convolutional Neural Network
(DCNN) model to detect and mitigate DDoS
attacks [8]. Given that network traffic is often
vast and data-rich, traditional machine learning
algorithms  can  struggle with  analysis.
Consequently, DCNN has proven an effective
solution in this case. Research results indicated
that DCNN outperformed traditional machine
learning algorithms such as Naive Bayes, SVM,
and KNN, with accuracies of 80%, 87%, and
92%, respectively. This marks a significant
advancement in processing and protecting
networks against increasingly sophisticated and
complex DDoS attacks [9].

According to research by Zhu, Ye, and Xu, deep
learning models like Feedforward Neural
Networks (FNN) and Convolutional Neural
Networks (CNN) have proven effective in
analyzing network traffic and detecting DDoS
attacks [10]. Experiments on the NSL-KDD
dataset demonstrated that deep learning models
achieved superior accuracy in detecting

anomalies and network incidents compared to
other machine learning technigues such as RF,
Logistic Regression, and SVM. This indicates
that utilizing deep learning techniques is a viable
option for enhancing network security. In
monitoring unusual activities on networks via
Intrusion Detection Systems (IDS), Alzahrani
and Hong proposed using Artificial Neural
Network models [11].

Recently, research on the CICDD0S2019 sample
dataset for predicting DDoS attacks has yielded
quite high accuracy results. Each research effort
applied a unique technique with its strengths. In
the study by Ahuja et al. [12], the prediction
accuracy achieved was 95.6%.

2. RESEARCH METHODOLOGY

Recurrent Neural Networks (RNNs) are a type
of neural network designed to process sequential
data. The main idea behind RNNs is to use a
memory mechanism to retain information from
previous computation steps, enabling accurate
predictions  for subsequent steps. The
architecture of an RNN can be represented as a
series of recurrent units. Each unit connects to
the previous unit, forming a directed cycle. At
each time step, the recurrent unit receives the
current input, combines it with the hidden state
from the previous step, generates an output, and
updates the hidden state for the next time step.
This process repeats for each input in the
sequence, allowing the RNN to gather
information about relationships and patterns
over time.

The computation process of an RNN at three
consecutive time steps involves the following: at
time step t, the current input X; is concatenated
with the hidden state H,—; from the previous time
step, which is then fed into a fully connected
layer with an activation function @. The output
of this layer is the hidden state H; at time step t,
which also serves as input for the output layer
O The model parameters Wy, and Whp, along
with H;, are used to compute the hidden state
Hw1 at the next time step t+1. This process
allows the RNN to understand and retain
important information across time steps, making
it suitable for tasks that require processing
sequential data, such as time series prediction.
The architectural model of the RNN is
illustrated in Figure 1.
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Figure 1. RNN Architecture.

To manage data and feed it into the model, the
LSTM model will utilize three gates known as
the forget gate, input gate, and output gate.
These gates are the core components of the
LSTM model and are responsible for the overall
control of the model. The forget gate determines
which parts of the old information should be
discarded based on the previous hidden state and
the current input value. The input gate decides
what new data should be allowed into the
network based on relevant information that
should be introduced to the LSTM's memory
state, referred to as the cell state. The output
gate determines the new hidden state based on
the updated cell state and the current input
value.

The computational formulas for the gates are as
follows:

Fiey = o(wy[h—y), Xe| + by) (1)
I[t} = a(w; [[h{t—l}-Xt] + b:‘]) 2)
Oy = o(Wp * [h{t—l]-Xt] + bg) 3)

1
) = @)
2
tanh(x) = o= 1 ®)
Et = tanh(wc ] [ht—llXt] + bc) (6)
Ct = Ft'C{t—l} +It Et (7)
ht = Ut.tanh({ft) (8)

Where: h.y) is the previous hidden state, x; is the
current input value, Fq, Ipand O, are the values
of the forget, input, and output gates,
respectively, and W and b are the weights and
biases, respectively (1). The sigmoid function
sigmoid (o) is used to extract information from
both the most recent input and the previous
hidden layer. The range of the sigmoid function
sigmoid varies from 0 to 1, while the range of
the tanh function varies from -1 to 1. If the value
of the sigmoid function is close to 1, it retains
the data; if it is close to O, it discards the data.
The architectural model of LSTM is illustrated
in the Figure2.
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Figure 2. LSTM Architecture.



3. RESULTS AND DISCUSSION
3.1. Experimental Environment

This experiment was conducted using Python
version 3.9, along with machine learning
libraries such as TensorFlow and Scikit-learn,
and other supporting libraries. The computer
used for this experiment was equipped with an
8-core processor and 16 threads, along with
32GB of RAM. Additionally, a GPU was
utilized to accelerate computation, specifically
the NVIDIA GeForce RTX 3080.

3.2. Dataset

This study employed the CICDD0S2019 sample
dataset. The “DDoS Evaluation Dataset
(CICDD0S2019)” was published by the
Canadian Institute for Cybersecurity on October
31, 2019, and contains 225,745 samples across
85 columns in CSV format. This dataset
provides a diverse set of information about
various types of network traffic and attack
manifestations [13]. Many studies have been
conducted on this dataset with different
exploitation aspects, including some machine
learning models like Convolutional Neural
Networks (CNNs) [14], achieving certain
results. However, since DDoS attack data is in
the form of continuous time series, applying
CNN models may not be effective. This model is
not optimized for sequential data and often loses
temporal order information due to pooling
operations. In particular, CNNs do not capture
long-term correlations well in time series data.
Furthermore, when using CNNs for time series,
preprocessing data to convert it into an

appropriate format can be complex and time-
consuming.

The classification process identified 128,027
samples belonging to the DDoS group and
97,718 samples belonging to the BENIGN
group. The distribution of labels in the dataset is
relatively balanced between the two groups,
with approximately 43.3% of samples identified
as benign and 56.7% identified as DDoS attacks.

Balancing the labels in the dataset is an
important factor when training the model. This
ensures that the model not only understands
network  attacks but also effectively
differentiates them from legitimate activities. In
practice, there are many factors affecting the
model's performance, leading to prediction
processes that may not meet expectations.

3.3. Data Visualization

Visualizing the changes in various features over
time in the dataset helps identify attack patterns
through normal and abnormal traffic. By doing
S0, one can observe the changes in variables and
gain a better understanding of trends and cycles
in the real-time data. The variation of features
over time can provide crucial information during
data analysis and model training. The data at
each timestamp in the DDoS SDN dataset was
visualized by grouping the data by timestamp
and counting the number of rows in each group,
displaying it as a chart to observe the
distribution of data over time and recognize
special manifestations within the data.
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Figure 4. Chart Representing Data Over Time.
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In addition, to compare the number of
connections from DDoS attacks and non-DDoS
connections (Benign) over time in the dataset,
the rows labeled “BENIGN” were grouped by
timestamp, and the counts in each group were
displayed as a chart. This allows for the

observation of fluctuations between attacks and
non-attack activities within the system. The goal
is to support early detection of attacks and assess
their impact in real time.
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Figure 5. Chart Showing the Number of Attack and Normal Connections Over Time

During the data analysis process, a series of
tasks were undertaken to further explore the
characteristics and relationships among them in
the DDoS SDN dataset. First, the label
distribution of the classification features was
identified to gain a better understanding of their
distribution within the dataset. The next step
involved analyzing and interpreting TCP flags
such as PSH, FIN, SYN, RST, ACK, URG, and
ECE, in order to understand their messages and

impacts on the network. Finally, variables were
visualized grouped by labels in the data, helping
to identify the distribution and relationships
between the labels in the dataset. This provided
detailed and clear information about the dataset,
supporting the analysis process and aiding in
decision-making during system implementation
as well as network security and management.



Label
EEE BENIGN 120000 4
I DDos

120000
100000 100000 -

80000 - 80000 A

Label
N BENIGN
I DDoS

Label
EEE BENIGN 120000 4
I DDoS

00000

80000

o
c
=1
8 60000 + 60000 A 60000 A
40000 + (40000 4 40000 A
20000 1 20000 A 20000 A
0- 0- 0-
0 1 0 1 o 1
Fwd PSH Flags FIN Flag Count SYN Flag Count
80000 +
Label Label 70000 - Label
120000 - = BENIGN (79000 A = BENIGN mEN BENIGN
m DDoS @ DDoS  |60000 4 B DDoS
100000 4 60000 A
50000 4
80000 500007
2 40000 A
= (40000 4
S 60000 -
30000 A
30000 1
40000
20000 4 20000 A
20000 4 10000 4 10000 4
0- 0-
0 1 0 1 0 1
RST Flag Count PSH Flag Count ACK Flag Count
Label Label Label
120000 B BENIGN 120000 1 B BENIGN 120000 1 mmm BENIGN
s DDoS s DDoS s DDOS
100000 4 100000 4 00000 A
80000 80000 + 80000 +
—
c
=
g 60000 + 60000 A 60000 A
40000 + (40000 + 40000
20000 1 20000 1 20000 A

0 1
URG Flag Count

0

ECE Flag Count

Figure 6. Chart Showing Grouped Labels in the Dataset

3.4. Data Normalization

The process of cleaning and transforming data is
a crucial part of data preparation. First, constant
features were removed, as these do not provide
useful information since they do not change
across data samples. This step helps reduce the
size of the dataset and eliminate unnecessary
noise.

Next, redundant features—those that can be
inferred from other features—were removed.
This helps lower computational costs and

1 BENIGMN

DDos

Label

prevents the model from becoming overly
complex. In this dataset, constant features such
as 'Flow ID', 'Destination IP', 'Source IP',
'Destination Port’, and 'Source Port' were
eliminated. Since the Flow ID is unique, and
during an attack, these IPs often operate
anonymously or as fake IPs, the IP and Port
fields needed to be removed. Observing the
‘Protocol' field, it contained three protocols:
"UDP, TCP, POP3", with TCP accounting for
85.5%, while the other two protocols contributed
little and did not aid in predicting the target
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variable. As a result, the dataset, after
refinement, consisted of 225,745 rows and 73
columns.

The next step involved label encoding for the
categorical features using LabelEncoder to
convert the labels into binary format. After that,
a correlation analysis was performed among the
features in the dataset to understand their
relationships.

Finally, feature selection was conducted by
removing columns with high correlations to
minimize multicollinearity and redundancy in
the dataset. This process was repeated to
examine the correlations between the features
and the target variable, aiming to retain the most
meaningful and independent features. This helps
refine the feature set and improve the prediction
performance of the model.

The LSTM model was trained on the normalized
data. The dataset was divided into training data

(trainX) and corresponding labels (trainY) to
adjust the model weights. The model was trained
over 100 epochs. To manage training on small
batches of data, the data was split into batches of
1024 samples each. To evaluate the model's
performance and prevent overfitting, 20% of the
training data was used as validation data. The
training process was displayed for each epoch,
allowing for tracking the model's progress and
understanding the variations of metrics such as
loss and accuracy over iterations. Finally,
information about the training process was
stored in the variable historylog, which included
the metric values during training and validation
after each epoch. This aids in analyzing and
evaluating the model's performance once
training is complete. The processes of data
collection, processing, and model training are
illustrated in the overall model as shown in
Figure 7.

Label the dataset as
Safe, Attack

Data normalization Train the model

T

Data preprocessing

Sample dataset

Figure 7. Proposed LSTM model
3.5. Performance Evaluation

The initial loss during training was quite high
but gradually decreased over the epochs,
indicating that the model was learning. The
validation loss also decreased, although at a

Accuracy, Recall, Precision,

IDS model | ——— »
F1 score

Model test dataset

lower rate, suggesting that the model
generalized reasonably well to new, unseen data
not used during training
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Figure 8. Representation of the Model's Loss Value

although it improved at a slower rate compared

In addition, the accuracy during the initial to the training process

learning phase was average, but it quickly
increased to reach an optimal level. The
validation accuracy followed a similar trend,
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To evaluate the performance of machine
learning and deep learning algorithms, selecting
appropriate evaluation criteria is crucial. This
study uses the metrics of Accuracy, Precision,
Recall, and F1-score to assess the model's
performance. Formula (9) calculates accuracy,
with values ranging from 0 to 1:

Precision measures the ratio of correctly
predicted cases among those predicted as
positive. It is calculated by dividing the number
of true positives by the total number of cases
predicted as positive (true positives plus false
positives).

According to the formula:

True Positive (TP) (9)

Precision =
True Positive (TP) +False Positive (FP)

Recall measures the ratio of correctly predicted
cases among all actual positive cases. It is
calculated by dividing the number of true
positives by the total number of actual positive
cases (true positives plus false negatives), as
given by the formula:
Recall = . .T?'ue Positive (TP) .

True Positive (TP) + False Negative(FN) (10)

Accuracy measures the ratio of correct
predictions (including both positive and negative
predictions) to the total number of data points. It
is calculated using the formula:

TP+ TN
TP +TN + FP + PN (11)

Accuracy =

The F1 score is a harmonic mean of Recall and
Precision, calculated using the following
formula:

2 x Precision x Recall
Precision + Recall (12)

F1 Score =

Based on these performance evaluation metrics,
the quality of the proposed model can be
assessed, allowing for appropriate decisions to
improve the model in the future

3.6. Results

This study focuses on evaluating the
performance of the Long Short Term Memory
(LSTM) model wusing the CICDD0S2019
dataset. This dataset is divided into two parts:
one part is used to train the model, and the other
is reserved for testing. Performance metrics such
as Accuracy, Recall, F1-score, and Precision are
used for comparison.

The CICDD0S2019 dataset has been the subject
of various studies with high accuracy; however,
each technique has its unigue characteristics.
The Optimized MLP-CNN Model [15] is
suitable for detecting complex patterns from
non-sequential data. While CNNs excel at
spatial feature extraction, they are not as
effective in handling time series data.

The LSTM model is better suited for scenarios
requiring time series analysis, especially for
DDoS attacks that exhibit prolonged or
repetitive characteristics. The results of the
model's performance evaluation on the test set
are presented in Table 1, providing an overview
of the model's predictive capability in real-world
conditions. This plays a crucial role in the
assessment.

Table 1. Performance Results of the Model on the Test Dataset

Reference Dataset Accuracy | Precision | Recall F1-score Method
Long Short-
Term Memory CICDDo0S2019 0,95 0,96 0,93 0,95 LSTM
Model
Ahujaetal [12] | CICDD0S2019 0,95 0,96 0,92 0,94 CNN
Thakkar, A. and | ~~poson1g | 99,05 9990 | 9998 | 99,79 MLP-CN
Lohiya, R [15]

4. CONCLUSION

Timely detection of remote DDoS attacks is
crucial for ensuring cybersecurity and protecting
personal information. This study proposes the
use of Long Short Term Memory (LSTM) deep
learning model for forecasting DDoS attacks,
with experimental results demonstrating its
superior effectiveness compared to traditional

machine learning methods. The LSTM model
has proven flexible in feature selection and
extraction, achieving an accuracy of up to 93%

in classifying DDoS attacks. This significantly
surpasses other traditional models when trained
and evaluated on the same dataset. Utilizing the
LSTM model for DDoS attack detection can
serve as a foundation for research on high-
accuracy intrusion detection. Integrating the
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LSTM model into software-defined networks
could be a beneficial choice, and further
research on reinforcement learning using
updated traffic patterns can adapt to new types
of attacks. This proposal offers a novel solution
to current network security challenges,
effectively detecting and responding to DDoS
attacks, supported by the proven high
performance of the LSTM model.
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