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Mô hình học sâu Long short-Term memory  

phát hiện tấn công DDos 

 

 

TÓM TẮT 

Gần đây, các mối đe dọa tấn công Từ chối dịch vụ phân tán-Distributed Denial of Service (DDoS) đang trở 

nên phức tạp, tinh vi, gây ra thách thức cho các hệ thống bảo vệ thông thường. Việc phát hiện sớm các dấu hiệu tấn 

công rất quan trọng, để bảo vệ và chống lại các mối đe dọa tấn công. Nghiên cứu đề xuất sử dụng mô hình dựa trên 

kỹ thuật Học sâu Mạng bộ nhớ Dài-Ngắn - Long Short-Term Memory (LSTM). Kỹ thuật này gồm một số thuật toán 

lựa chọn và trích xuất đặc trưng, được tự động cập nhật trong quá trình huấn luyện. Với số lượng dữ liệu nhỏ, LSTM 

vẫn hoạt động nhanh và chính xác. Nghiên cứu đã tiến hành thử nghiệm trên tập dữ liệu CICDDoS2019 và kết quả 

cho thấy mô hình đạt được các chỉ số hiệu suất như sau: Độ chính xác (Accuracy) đạt 95%, Precision đạt 96%, độ 

phủ (Recall) đạt 93% và điểm F1 (F1 Score) là 95%. Mục tiêu của nghiên cứu, đưa ra được một mô hình có khả 

năng xử lý dữ liệu chuỗi và lưu trữ thông tin học được lâu dài. Có thể tích hợp mô hình vào các hệ thống giám sát và 

bảo mật mạng, cải thiện khả năng phát hiện phản ứng với các mối đe dọa tấn công mạng ngày càng phức tạp. 

Từ khóa: DDoS, DoS, LSTM, Học sâu, Học máy. 
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ABSTRACT 
Recently, Distributed Denial of Service (DDoS) attack threats have become increasingly complex and 

sophisticated, posing challenges to traditional protection systems. Early detection of attack signs is crucial for 

safeguarding against these threats. This study proposes the use of a model based on Long Short-Term Memory 

(LSTM) deep learning techniques. This approach includes several feature selection and extraction algorithms that 

are automatically updated during training. Even with a small amount of data, LSTM performs quickly and 

accurately. Experiments were conducted on the CICDDoS2019 dataset, and results show that the model achieved 

performance metrics as follows: Accuracy of 95%, Precision of 96%, Recall of 93%, and F1 Score of 95%. The goal 

of the research is to develop a model capable of processing sequential data and retaining learned information over 

the long term. This model can be integrated into network monitoring and security systems, enhancing the ability to 

detect and respond to increasingly complex cyberattack threats. 

Keyword: DDoS, DoS, LSTM, Deep Learning, Machine Learning 

1. INTRODUCTION 

The rapid development of services through the 

Internet, such as financial and banking 

transactions, communication, e-commerce, 

online shopping, online payments, healthcare, 

and education, presents significant challenges 

for user safety. There are currently numerous 

methods of network attacks aimed at disruption, 

among which the two fundamental attack 

methods are Denial of Service (DoS) attacks, 

which aim to prevent legitimate users from 

accessing network resources, and Distributed 

Denial of Service (DDoS) attacks, which 

represent a more advanced form of DoS attacks. 

The primary difference between DoS and DDoS 

attacks lies in the scope of the attack. DoS attack 

traffic primarily originates from one or a few 

source hosts, whereas DDoS attack traffic 

originates from a large number of hosts 

dispersed across the Internet. 

There are two DDoS attack methods. The first 

involves the attacker sending specially crafted 

packets that cause errors in the transmission 

protocol or the application running on the 

victim's machine; a typical example of this 

method is exploiting security vulnerabilities in 

the protocols or services on the victim's 

machine. The second, more common DDoS 

attack method can be categorized into two 

forms: the first form disrupts the user's 

connection to the service server by flooding the 

network transmission or exhausting bandwidth 

and network resources. The second form 

disrupts the service provided to the user by 

depleting the resources of the service server, 

such as CPU processing time, memory, disk 

bandwidth, and database capacity. This type of 

attack includes application-layer flooding 

attacks. These attacks are expected to become 

increasingly complex as Internet technologies 

evolve. Traditional methods for assessing the 

risks of DDoS attacks often have low accuracy 

and slow response times. To address this issue, 

cybersecurity experts and scholars are 

researching the use of Machine Learning (ML) 

and Deep Learning (DL) techniques for DDoS 

detection [1]. ML and DL methods hold 

tremendous potential for detecting network 

attacks due to their ability to classify more 

accurately and effectively [2]. Currently, 

methods such as Random Forest (RF), K-

Nearest Neighbors (KNN), and Naive Bayes are 

in use. For deep learning, techniques such as 

Artificial Neural Networks (ANN), Deep Neural 

Networks (DNN), and Recurrent Neural 

Networks (RNN) are commonly employed [3]. 

After surveying and evaluating multiple 

methods, this research decided to implement the 

Long Short-Term Memory (LSTM) deep 

learning architecture. The LSTM architecture 

can capture information based on temporal 

correlation, which is a critical characteristic of 

DDoS traffic, thus enabling effective prediction 

of network traffic. The goal of this paper is to 

construct an LSTM deep learning model that 

achieves higher accuracy than existing machine 
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learning techniques in classifying and 

forecasting DDoS attacks. 

In the field of network security, numerous 

studies have utilized machine learning 

techniques to classify DDoS threats, including 

algorithms such as K-Nearest Neighbors (KNN), 

Logistic Regression, Random Forest (RF), 

Support Vector Machine (SVM), and Naive 

Bayes classification [4]. KNN identifies the K 

nearest neighbors of the input data. A voting 

technique is used to classify test data. Several 

studies have employed KNN to classify DDoS 

attacks with quite effective results. Research 

using SVM has distinguished between normal 

and malicious network traffic based on IP 

address interaction features [5]. This model 

demonstrated good discrimination between 

malicious and normal traffic flows. Zheng et al. 

utilized RF to classify DDoS attacks, achieving 

classification performance with a precise feature 

set [6]. Naive Bayes, a classification algorithm 

based on Bayes' theorem, has been effectively 

used for classifying DDoS attacks when features 

are independent. Riadi applied the Naive Bayes 

method to detect DDoS attacks using mean and 

standard deviation, achieving favorable results. 

Ahanger developed an Artificial Neural Network 

(ANN) model to detect DDoS network attacks, 

obtaining certain results [7]. Zubair Hasan, 

Sattar, and Zahid Hasan conducted research on 

using a Deep Convolutional Neural Network 

(DCNN) model to detect and mitigate DDoS 

attacks [8]. Given that network traffic is often 

vast and data-rich, traditional machine learning 

algorithms can struggle with analysis. 

Consequently, DCNN has proven an effective 

solution in this case. Research results indicated 

that DCNN outperformed traditional machine 

learning algorithms such as Naive Bayes, SVM, 

and KNN, with accuracies of 80%, 87%, and 

92%, respectively. This marks a significant 

advancement in processing and protecting 

networks against increasingly sophisticated and 

complex DDoS attacks [9]. 

According to research by Zhu, Ye, and Xu, deep 

learning models like Feedforward Neural 

Networks (FNN) and Convolutional Neural 

Networks (CNN) have proven effective in 

analyzing network traffic and detecting DDoS 

attacks [10]. Experiments on the NSL-KDD 

dataset demonstrated that deep learning models 

achieved superior accuracy in detecting 

anomalies and network incidents compared to 

other machine learning techniques such as RF, 

Logistic Regression, and SVM. This indicates 

that utilizing deep learning techniques is a viable 

option for enhancing network security. In 

monitoring unusual activities on networks via 

Intrusion Detection Systems (IDS), Alzahrani 

and Hong proposed using Artificial Neural 

Network models [11]. 

Recently, research on the CICDDoS2019 sample 

dataset for predicting DDoS attacks has yielded 

quite high accuracy results. Each research effort 

applied a unique technique with its strengths. In 

the study by Ahuja et al. [12], the prediction 

accuracy achieved was 95.6%. 

2. RESEARCH METHODOLOGY 

Recurrent Neural Networks (RNNs) are a type 

of neural network designed to process sequential 

data. The main idea behind RNNs is to use a 

memory mechanism to retain information from 

previous computation steps, enabling accurate 

predictions for subsequent steps. The 

architecture of an RNN can be represented as a 

series of recurrent units. Each unit connects to 

the previous unit, forming a directed cycle. At 

each time step, the recurrent unit receives the 

current input, combines it with the hidden state 

from the previous step, generates an output, and 

updates the hidden state for the next time step. 

This process repeats for each input in the 

sequence, allowing the RNN to gather 

information about relationships and patterns 

over time. 

The computation process of an RNN at three 

consecutive time steps involves the following: at 

time step t, the current input Xt is concatenated 

with the hidden state Ht−1 from the previous time 

step, which is then fed into a fully connected 

layer with an activation function ∅. The output 

of this layer is the hidden state Ht at time step t, 

which also serves as input for the output layer 

Ot. The model parameters Wxh and Whh, along 

with Ht, are used to compute the hidden state 

Ht+1 at the next time step t+1. This process 

allows the RNN to understand and retain 

important information across time steps, making 

it suitable for tasks that require processing 

sequential data, such as time series prediction. 

The architectural model of the RNN is 

illustrated in Figure 1. 

.



4 

 

 

Figure 1. RNN Architecture.   

 
To manage data and feed it into the model, the 

LSTM model will utilize three gates known as 

the forget gate, input gate, and output gate. 

These gates are the core components of the 

LSTM model and are responsible for the overall 

control of the model. The forget gate determines 

which parts of the old information should be 

discarded based on the previous hidden state and 

the current input value. The input gate decides 

what new data should be allowed into the 

network based on relevant information that 

should be introduced to the LSTM's memory 

state, referred to as the cell state. The output 

gate determines the new hidden state based on 

the updated cell state and the current input 

value.  

The computational formulas for the gates are as 

follows: 

)  (1) 

 )  (2) 

 (3) 

  (4) 

  (5) 

  (6) 

  (7) 

  (8) 

Where: h(t-1) is the previous hidden state, xt is the 

current input value, F(t), I(t) and O(t) are the values 

of the forget, input, and output gates, 

respectively, and W and b are the weights and 

biases, respectively (1). The sigmoid function 

sigmoid (σ)  is used to extract information from 

both the most recent input and the previous 

hidden layer. The range of the sigmoid function 

sigmoid varies from 0 to 1, while the range of 

the tanh function varies from -1 to 1. If the value 

of the sigmoid function is close to 1, it retains 

the data; if it is close to 0, it discards the data. 

The architectural model of LSTM is illustrated 

in the Figure2. 

  

 
Figure 2. LSTM Architecture.   
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3. RESULTS AND DISCUSSION 

 3.1. Experimental Environment 

This experiment was conducted using Python 

version 3.9, along with machine learning 

libraries such as TensorFlow and Scikit-learn, 

and other supporting libraries. The computer 

used for this experiment was equipped with an 

8-core processor and 16 threads, along with 

32GB of RAM. Additionally, a GPU was 

utilized to accelerate computation, specifically 

the NVIDIA GeForce RTX 3080. 

3.2. Dataset 

This study employed the CICDDoS2019 sample 

dataset. The “DDoS Evaluation Dataset 

(CICDDoS2019)” was published by the 

Canadian Institute for Cybersecurity on October 

31, 2019, and contains 225,745 samples across 

85 columns in CSV format. This dataset 

provides a diverse set of information about 

various types of network traffic and attack 

manifestations [13]. Many studies have been 

conducted on this dataset with different 

exploitation aspects, including some machine 

learning models like Convolutional Neural 

Networks (CNNs) [14], achieving certain 

results. However, since DDoS attack data is in 

the form of continuous time series, applying 

CNN models may not be effective. This model is 

not optimized for sequential data and often loses 

temporal order information due to pooling 

operations. In particular, CNNs do not capture 

long-term correlations well in time series data. 

Furthermore, when using CNNs for time series, 

preprocessing data to convert it into an 

appropriate format can be complex and time-

consuming. 

The classification process identified 128,027 

samples belonging to the DDoS group and 

97,718 samples belonging to the BENIGN 

group. The distribution of labels in the dataset is 

relatively balanced between the two groups, 

with approximately 43.3% of samples identified 

as benign and 56.7% identified as DDoS attacks.  

Balancing the labels in the dataset is an 

important factor when training the model. This 

ensures that the model not only understands 

network attacks but also effectively 

differentiates them from legitimate activities. In 

practice, there are many factors affecting the 

model's performance, leading to prediction 

processes that may not meet expectations. 

3.3. Data Visualization 

Visualizing the changes in various features over 

time in the dataset helps identify attack patterns 

through normal and abnormal traffic. By doing 

so, one can observe the changes in variables and 

gain a better understanding of trends and cycles 

in the real-time data. The variation of features 

over time can provide crucial information during 

data analysis and model training. The data at 

each timestamp in the DDoS SDN dataset was 

visualized by grouping the data by timestamp 

and counting the number of rows in each group, 

displaying it as a chart to observe the 

distribution of data over time and recognize 

special manifestations within the data. 

 

 

Figure 4. Chart Representing Data Over Time. 
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In addition, to compare the number of 

connections from DDoS attacks and non-DDoS 

connections (Benign) over time in the dataset, 

the rows labeled “BENIGN” were grouped by 

timestamp, and the counts in each group were 

displayed as a chart. This allows for the 

observation of fluctuations between attacks and 

non-attack activities within the system. The goal 

is to support early detection of attacks and assess 

their impact in real time. 

 

 

Figure 5. Chart Showing the Number of Attack and Normal Connections Over Time 

During the data analysis process, a series of 

tasks were undertaken to further explore the 

characteristics and relationships among them in 

the DDoS SDN dataset. First, the label 

distribution of the classification features was 

identified to gain a better understanding of their 

distribution within the dataset. The next step 

involved analyzing and interpreting TCP flags 

such as PSH, FIN, SYN, RST, ACK, URG, and 

ECE, in order to understand their messages and 

impacts on the network. Finally, variables were 

visualized grouped by labels in the data, helping 

to identify the distribution and relationships 

between the labels in the dataset. This provided 

detailed and clear information about the dataset, 

supporting the analysis process and aiding in 

decision-making during system implementation 

as well as network security and management.  

.
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Figure 6. Chart Showing Grouped Labels in the Dataset 

 

3.4. Data Normalization 

The process of cleaning and transforming data is 

a crucial part of data preparation. First, constant 

features were removed, as these do not provide 

useful information since they do not change 

across data samples. This step helps reduce the 

size of the dataset and eliminate unnecessary 

noise. 

Next, redundant features—those that can be 

inferred from other features—were removed. 

This helps lower computational costs and 

prevents the model from becoming overly 

complex. In this dataset, constant features such 

as 'Flow ID', 'Destination IP', 'Source IP', 

'Destination Port', and 'Source Port' were 

eliminated. Since the Flow ID is unique, and 

during an attack, these IPs often operate 

anonymously or as fake IPs, the IP and Port 

fields needed to be removed. Observing the 

'Protocol' field, it contained three protocols: 

"UDP, TCP, POP3", with TCP accounting for 

85.5%, while the other two protocols contributed 

little and did not aid in predicting the target 
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variable. As a result, the dataset, after 

refinement, consisted of 225,745 rows and 73 

columns. 

The next step involved label encoding for the 

categorical features using LabelEncoder to 

convert the labels into binary format. After that, 

a correlation analysis was performed among the 

features in the dataset to understand their 

relationships. 

Finally, feature selection was conducted by 

removing columns with high correlations to 

minimize multicollinearity and redundancy in 

the dataset. This process was repeated to 

examine the correlations between the features 

and the target variable, aiming to retain the most 

meaningful and independent features. This helps 

refine the feature set and improve the prediction 

performance of the model. 

The LSTM model was trained on the normalized 

data. The dataset was divided into training data 

(trainX) and corresponding labels (trainY) to 

adjust the model weights. The model was trained 

over 100 epochs. To manage training on small 

batches of data, the data was split into batches of 

1024 samples each. To evaluate the model's 

performance and prevent overfitting, 20% of the 

training data was used as validation data. The 

training process was displayed for each epoch, 

allowing for tracking the model's progress and 

understanding the variations of metrics such as 

loss and accuracy over iterations. Finally, 

information about the training process was 

stored in the variable historylog, which included 

the metric values during training and validation 

after each epoch. This aids in analyzing and 

evaluating the model's performance once 

training is complete. The processes of data 

collection, processing, and model training are 

illustrated in the overall model as shown in 

Figure 7.  

 

Figure 7. Proposed LSTM model

3.5. Performance Evaluation 

The initial loss during training was quite high 

but gradually decreased over the epochs, 

indicating that the model was learning. The 

validation loss also decreased, although at a 

lower rate, suggesting that the model 

generalized reasonably well to new, unseen data 

not used during training 
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Figure 8. Representation of the Model's Loss Value 

In addition, the accuracy during the initial 

learning phase was average, but it quickly 

increased to reach an optimal level. The 

validation accuracy followed a similar trend, 

although it improved at a slower rate compared 

to the training process 

.

 

Figure 9. Representation of the Accuracy Score 
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To evaluate the performance of machine 

learning and deep learning algorithms, selecting 

appropriate evaluation criteria is crucial. This 

study uses the metrics of Accuracy, Precision, 

Recall, and F1-score to assess the model's 

performance. Formula (9) calculates accuracy, 

with values ranging from 0 to 1: 

Precision measures the ratio of correctly 

predicted cases among those predicted as 

positive. It is calculated by dividing the number 

of true positives by the total number of cases 

predicted as positive (true positives plus false 

positives).  

According to the formula: 

          (9) 

Recall measures the ratio of correctly predicted 

cases among all actual positive cases. It is 

calculated by dividing the number of true 

positives by the total number of actual positive 

cases (true positives plus false negatives), as 

given by the formula: 

        (10) 

Accuracy measures the ratio of correct 

predictions (including both positive and negative 

predictions) to the total number of data points. It 

is calculated using the formula: 

    (11) 

The F1 score is a harmonic mean of Recall and 

Precision, calculated using the following 

formula: 

    (12) 

Based on these performance evaluation metrics, 

the quality of the proposed model can be 

assessed, allowing for appropriate decisions to 

improve the model in the future  

3.6. Results 

This study focuses on evaluating the 

performance of the Long Short Term Memory 

(LSTM) model using the CICDDoS2019 

dataset. This dataset is divided into two parts: 

one part is used to train the model, and the other 

is reserved for testing. Performance metrics such 

as Accuracy, Recall, F1-score, and Precision are 

used for comparison. 

The CICDDoS2019 dataset has been the subject 

of various studies with high accuracy; however, 

each technique has its unique characteristics. 

The Optimized MLP-CNN Model [15] is 

suitable for detecting complex patterns from 

non-sequential data. While CNNs excel at 

spatial feature extraction, they are not as 

effective in handling time series data. 

The LSTM model is better suited for scenarios 

requiring time series analysis, especially for 

DDoS attacks that exhibit prolonged or 

repetitive characteristics. The results of the 

model's performance evaluation on the test set 

are presented in Table 1, providing an overview 

of the model's predictive capability in real-world 

conditions. This plays a crucial role in the 

assessment. 

 

Table 1. Performance Results of the Model on the Test Dataset 

Reference Dataset Accuracy Precision Recall F1-score Method 

Long Short-

Term Memory 

Model 

CICDDoS2019 0,95 0,96 0,93 0,95 LSTM 

Ahuja et al [12] CICDDoS2019 0,95 0,96 0,92 0,94 CNN 

Thakkar, A. and 

Lohiya, R [15] 
CICDDoS2019 99,95 99,90 99,98 99,79 MLP-CN 

 

4. CONCLUSION 

Timely detection of remote DDoS attacks is 

crucial for ensuring cybersecurity and protecting 

personal information. This study proposes the 

use of Long Short Term Memory (LSTM) deep 

learning model for forecasting DDoS attacks, 

with experimental results demonstrating its 

superior effectiveness compared to traditional  

 

machine learning methods. The LSTM model 

has proven flexible in feature selection and 

extraction, achieving an accuracy of up to 93%  

in classifying DDoS attacks. This significantly 

surpasses other traditional models when trained 

and evaluated on the same dataset. Utilizing the 

LSTM model for DDoS attack detection can 

serve as a foundation for research on high-

accuracy intrusion detection. Integrating the 
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LSTM model into software-defined networks 

could be a beneficial choice, and further 

research on reinforcement learning using 

updated traffic patterns can adapt to new types 

of attacks. This proposal offers a novel solution 

to current network security challenges, 

effectively detecting and responding to DDoS 

attacks, supported by the proven high 

performance of the LSTM model. 
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