Dw doan hiéu qua va cé thé giai thich twong tac protein-
ligand str dung moé hinh tang cwéng gradient va Al ¢é the
giai thich

TOM TAT

Du doan kha nang lién két cua cdc phén tr nh6 vdi cac muc tiéu protein la mdt bude quan trong trong qua trinh
kham pha thudc hién dai, mo ra tiém ning day nhanh viéc x4c dinh cac lidu phéap diéu tri hiéu qua dong thoi giam chi
phi thi nghiém. Trong nghién ctru nay, chiing toi str dung bo dit liéu BELKA, mét thu vién hoa hoc ma hoa bing DNA
(DEL) quy md 16n, dé huén luyén cac mé hinh hoc may nham dy doan kha nang lién két. Bang cach ap dung XGBoost,
mot thudt toan gradient boosting dwa trén cdy, cling véi cac budc tién xtr Iy va thiét ké dic trung chuyén sau, chung
t6i da phat trién cic mo hinh du doan cho ba muc tiéu protein: BRD4, HSA, va sEH. Cac mo hinh nay thé hién ning
lyc du doan manh mé, déng thoi cho phep giai thich két qua thong qua phén tich SHAP nham xac dinh cac ddc trung
phan tir quan trong quyét dinh kha nang lién két. Panh gi4 trén bo dir liéu kiém tra BELKA cho thiy nhiing thach thic
trong viéc khai quat hoa, cung cép nhitng hiéu biét quy gia vé sy phtre tap ciia m6 hinh dy doan trong kham pha thudc.
Nghién ctru nady nhan manh tiém ning cua hoc may trong viéc thiic day qué trinh kham pha thudc bang may tinh, cho
phép kham pha khong gian hoa hoc hiéu qua hon dé tim kiém cac liéu phap diéu tri tiém ning.

Tir khoa: Khdam phd thuéc, hoc may, Al ¢é thé gidi thich.



Efficient interpretable prediction of protein-ligand
interactions using gradient boosting models and explainable

ABSTRACT

The prediction of small molecule binding affinity to protein targets is a critical step in modern drug discovery,
offering the potential to accelerate the identification of effective therapeutics while reducing experimental costs. In
this study, we employ the BELKA dataset, a large-scale DNA-encoded chemical library (DEL), to train machine
learning models for binding affinity prediction. Using XGBoost, a tree-based gradient boosting algorithm, and
extensive preprocessing and feature engineering, we develop predictive models for three protein targets: BRD4, HSA,
and sEH. The models demonstrate strong predictive capabilities, with interpretability achieved through SHAP analysis
to identify molecular features driving binding predictions. Evaluation of the BELKA test dataset reveals challenges
in generalization, providing valuable insights into the complexities of predictive modelling in drug discovery. This
work highlights the promise of machine learning in advancing computational drug discovery by enabling efficient

exploration of the chemical space for potential therapeutics.

Keywords: Drug discovery, machine learning, explainable artificial intelligence.

1. INTRODUCTION

The development of machine learning (ML)
models to predict the binding affinity of small
molecules to specific protein targets holds
transformative potential for drug discovery.
Predicting these interactions is central to
identifying new, effective drug candidates, as
small molecule drugs interact with cellular protein
machinery to influence disease-associated
biological processes.

Traditionally, screening and testing small
molecules for binding affinity to protein targets
involve labour-intensive and costly physical
experiments, which severely limits the speed and
scope of drug discovery efforts.}? The search
space for small molecule drugs is estimated to
encompass  approximately  10%°  chemical
compounds, which is impractical to physically
screen.’

With the pharmaceutical landscape
evolving, the integration of ML-based predictive
models offers a promising alternative to these
conventional approaches, enabling efficient
exploration of the vast chemical space for
potential  therapeutics.  Traditional  high-
throughput screening (HTS) technologies can
assess libraries of small molecules against protein
targets, but they are often restricted to collections
of tens of thousands to a few million compounds.*
In response to this limitation, DNA-encoded
chemical libraries (DELS) have emerged as a more
scalable solution.® DELs use unique DNA
barcodes to tag each molecule, allowing the
pooling of millions of compounds and simplifying

the identification of binders through DNA
sequencing. This method has substantially
expanded the feasible scale of chemical libraries
and presents an attractive foundation for
computational models aimed at binding affinity
prediction.

Advances in ML architectures and feature
representation techniques, such as Simplified
Molecular Input Line Entry System (SMILES)
and graph-based molecular representations, have
made it possible to capture complex chemical
properties and interactions computationally.
SMILES, as a string-based molecular
representation, encodes atom connectivity and
stereochemistry,  facilitating ML  models’
application in molecular property prediction, drug
discovery, and materials design.

Hence, in this work, we explore the
application of a tree-based gradient boosting
approach, specifically XGBoost, for predicting
binding affinity.” In addition to model
development, a tree-based Explainable Al (XAI)
method is integrated to interpret model behaviour,
enhancing transparency and interpretability in the
prediction of molecular binding. The findings
from this study aim to contribute to the broader
field of computational drug discovery, leveraging
ML to identify promising drug candidates with
high precision and potentially reduce the costs
associated with traditional drug development
methods. By enabling more efficient exploration
of chemical space, this work aspires to pave the
way toward discovering new lifesaving



therapeutics for complex diseases. Conclusively,
in this study, we make the following contributions:

o Dataset Utilization: We leverage the
BELKA dataset®, a large-scale DNA-
encoded chemical library, providing a
comprehensive resource for binding affinity
modelling.

o Predictive Modelling: We employ the
XGBoost model optimized with advanced
preprocessing and feature reduction
techniques to predict binding affinities for
three  biologically significant protein
targets: BRD4, HSA, and sEH.

e Interpretability: Through XAl analysis,
we enhance the interpretability of the
models, offering molecular-level insights
into the features influencing binding
predictions.

e Benchmarking: We evaluate our
methodology on the BELKA dataset,
highlighting the challenges of
generalization for unseen cases.

2. RELATED WORK

2.1. Drug Discovery and Protein-Target
Interactions

The pharmaceutical field relies heavily on
understanding and predicting protein-target
interactions, as these molecular interactions are
critical in developing effective drugs. Small
molecule drugs are typically designed to modulate
specific protein targets linked to disease
mechanisms. Protein-ligand binding is
fundamental to this process, as the ability of a drug
candidate to bind to a specific protein target
determines its efficacy and safety.

Traditional drug discovery methodologies,
such as high-throughput screening (HTS), involve
synthesizing large libraries of small molecules and
testing their affinity with the protein targets.
However, HTS is costly, time-intensive, and
limited in scope due to physical constraints,
allowing only a fraction of potential drug-like
compounds to be examined. Innovations, such as
DNA-encoded chemical libraries (DELs)®, have
addressed some of these limitations by enabling
more extensive exploration of chemical space. In
DELs, small molecules are tagged with unique
DNA barcodes, allowing millions of compounds
to be screened in a pooled format. As such, DELs
offer a scalable and efficient alternative to
traditional HTS. Advances in molecular biology
and DNA sequencing have further accelerated
DEL technology, facilitating its adoption in both
academia and industry.

2.2. SMILES and Molecular Representations

SMILES is one of the most widely adopted
formats for encoding chemical structures in
computational chemistry.® SMILES strings
represent molecular structures in a linear form,
capturing atoms, bonds, and stereochemistry in a
machine-readable format. This notation has
become essential for ML applications in drug
discovery due to its simplicity and the ease with
which it can be integrated into computational
pipelines. SMILES can also be converted to other
representations, such as 3D structures and
molecular graphs, allowing flexibility in model
input formats.

Alternative molecular representations, such
as molecular fingerprints and molecular graphs,
offer distinct advantages. Molecular fingerprints
encode the presence or absence of substructures,
providing a high-dimensional, fixed-length vector
representation suited for various ML tasks.®*?
Meanwhile, molecular graphs represent the
connectivity of atoms in the molecule, capturing
spatial information that can be valuable for models
like graph neural networks (GNNs).2*1¢ Recent
studies suggest that combining multiple
representations, such as SMILES with molecular
graphs, can enhance predictive accuracy by
leveraging diverse information formats.

2.3. Machine Learning in Molecular Binding
Prediction

ML has become essential to molecular binding
prediction, with recent models achieving high
performance by leveraging large datasets and
sophisticated algorithms. ML models, especially
deep learning (DL) frameworks, can capture
complex relationships in chemical and biological
data, allowing them to predict molecular
properties with increasing accuracy.

Traditional ML methods, such as
quantitative  structure-activity  relationship
(QSAR) models, relied on engineered molecular
descriptors to predict binding affinity. Still, recent
ML approaches enable the use of raw chemical
representations such as SMILES and molecular
graphs, reducing the need for extensive feature
engineering.t’*® Convolutional neural networks
(CNNs)?, graph neural networks (GNNs)?, and
recurrent neural networks (RNNs)?? have been
widely used to encode molecular structures.

In addition to DL approaches, gradient-
boosting algorithms like XGBoost have gained
recognition for their efficacy in molecular
property prediction. XGBoost suits tasks
involving structured, high-dimensional data, such



as molecular fingerprints. By leveraging an
ensemble of decision trees, XGBoost iteratively
refines predictions, minimizing error while
maintaining interpretability. Unlike deep learning
models, XGBoost offers a computationally
efficient alternative that is well-suited for datasets
with tabular or fingerprint-based representations.
Recent studies have shown that integrating
molecular representations, such as Extended-
Connectivity ~ Fingerprints  (ECFPs)®  with
XGBoost, yields highly accurate binding affinity
predictions while retaining transparency. These
models are particularly valuable in scenarios
where interpretability is crucial, such as drug
discovery pipelines. Additionally, XGBoost's
robustness to overfitting, especially when
combined with appropriate feature selection and
regularization, makes it a strong candidate for
handling imbalanced datasets often encountered in
molecular binding tasks.

2.4. Explainability in ML for Drug Discovery

As ML models become increasingly complex,
understanding the decision-making process within
these models is critical for their adoption in
sensitive fields like drug discovery. XAl methods
aim to make the behaviour of complex ML models
more interpretable by providing insights into how
input features influence predictions. In drug
discovery, XAl can offer insights into which
molecular features contribute most significantly to
binding affinity, helping chemists understand and
validate model predictions.?*?°

Tree-based models, such as XGBoost, offer
interpretability advantages due to their structured
decision paths. Techniques like SHAP (SHapley
Additive exPlanations)? values and LIME (Local
Interpretable Model-agnostic Explanations)?’ are
often applied to these models, enabling the
decomposition of predictions into contributions
from individual features. For example, SHAP
values, derived from cooperative game theory,
were especially used to quantify each feature’s
influence on the prediction. These explanation
methods not only facilitate model interpretation
but also foster trust in ML predictions, an essential
factor for the integration of Al into pharmaceutical
workflows.

3. DATASET

The BELKA dataset used in this study comprises
training and test samples that detail the
interactions between various small molecules and
three protein targets: bromodomain-containing
protein 4 (BRD4), soluble epoxide hydrolase
(EPHX2/sEH), and human serum albumin
(ALB/HSA).2

3.1. Dataset Targets

The BELKA dataset encompasses three distinct
protein targets: BRD4, EPHX2/sEH, and
ALB/HSA. Each target represents a unique class
of biomolecular interactions, selected to provide a
diverse benchmarking ground for modelling small
molecule-protein interactions. These targets were
carefully chosen for their biological significance
and existing therapeutic relevance. Their
acquisition and preparation followed rigorous
protocols to ensure data fidelity and
reproducibility.

3.1.1. BRD4

Bromodomain-containing protein 4 is a pivotal
member of the BET protein family, involved in
recognizing acetylated lysines on histone tails.?®
BRD4 has emerged as a prominent therapeutic
target in oncology, with inhibitors designed to
disrupt its role in transcriptional regulation,
particularly in cancer proliferation pathways.
Recombinant BRD4 was acquired through
baculovirus expression in insect cells to preserve
post-translational modifications critical for its
bromodomain function. Protein purity and
structural integrity were validated through size-
exclusion chromatography and binding assays
with known BRD4 inhibitors. These quality-
control measures ensured that the BRD4 used in
DEL screenings retained its native binding
characteristics, enabling high-confidence small
molecule-protein interaction studies.

3.1.2. BPHX2/sEH

Soluble epoxide hydrolase is an enzyme involved
in metabolizing lipid epoxides, converting them
into diols through hydrolysis.? This enzymatic
activity has been implicated in numerous
physiological and pathological processes,
including inflammation, pain, and cardiovascular
diseases. Recombinant human EPHX2 was
expressed in Escherichia coli and purified via
affinity chromatography. Its activity was verified
using substrate-based fluorescence assays to
confirm functional integrity before integration
into DEL screening assays. By selecting sEH as a
target, the BELKA dataset facilitates the
evaluation of ligand binding in the context of
enzymatic specificity and inhibition.

3.1.3. ALB/HSA

Human serum albumin, the most abundant plasma
protein, plays a key role in drug pharmacokinetics
by binding and transporting a wide range of
endogenous and exogenous compounds.®® For this
dataset, HSA was isolated from human plasma and
subjected to additional purification to remove



potential impurities. Its binding activity was
assessed through equilibrium dialysis and
competitive ligand-binding assays to confirm its
ability to interact with small molecules®. Using
HSA in the DEL screening enables exploring
protein-small molecule interactions that influence
drug bioavailability and distribution.

3.2. Dataset Acquisition

The raw readout acquisition process is visualized
in Figure 1. The primary library, AMAQ14, is a
triazine-based shree-cycle library designed to
resemble DEL-A. An additional orthogonal DEL,
termed kinaseO (kin0), was designed to mimic
kinase inhibitor chemistry.

The screening methodology involved
combining the DEL with the target protein,
isolating DEL/target complexes, eluting the bound
DEL through heat application, and repeating the
selection with the fresh target protein. This
iterative process, conducted over three rounds for
AMAO14, aimed to enrich high-affinity binders.
Each selection series for AMAO014 was performed
in triplicate to assess reproducibility. In contrast,
the smaller kinaseO library underwent a single
selection round, performed in duplicate with a
single negative control. Post-selection, the eluted
DELs were subjected to sequencing to quantify
binding events. The dataset includes both binary
binding labels and raw sequencing counts,
facilitating diverse analyses, including evaluating
hit-calling methods and experimental design
parameters. The raw dataset encompasses
approximately 4.25 billion physical
measurements, with compressed data totalling
around 600 GB.

All protein targets underwent rigorous
selection and preparation to maintain high
experimental reproducibility. For each target,
protein binding assays were conducted to confirm
the enrichment of small molecule binders across
multiple rounds of DEL screening. The screening
workflow included initial binding assays with the
target protein, iterative selection and amplification
of enriched libraries, and sequencing to quantify
binding events. These protocols were designed to
capture high-affinity interactions and a broad
spectrum of molecular binders, ensuring a
comprehensive  dataset for  benchmarking
predictive models.

3.3. Dataset Description

Each row in the dataset encapsulates the chemical
composition and binding characteristics of a small
molecule with a specific protein target, providing
a structured basis for learning binding patterns

across different protein targets and molecular
configurations.

The training dataset Dy qin (@S shown in
Table 1) includes molecular structures represented
by SMILES strings, with each sample specifying
four chemical building blocks, a complete
molecular structure, the protein target, and a
binary binding label (1 for binding, 0 for no
binding) as the target variable. The test dataset
Diese follows a similar structure without the
binding label, providing the molecular structure
and target protein only. Each column in the dataset
is described as follows:

e id: A unigque identifier for each record.
Every unique combination of small
molecule features is represented by three
consecutive rows, each corresponding to a
specific protein target: BRD4, HSA, or
SEH. This structure allows for direct
comparisons of binding affinity predictions
across the three protein targets for the same
molecular structure.

e Dbuildingblockl_smiles: A SMILES string
representing the first building block of the
molecule. This component forms part of the
molecular structure and contributes specific
chemical properties to the final molecule.

e buildingblock2_smiles: A SMILES string
for the second building block. Together
with the first and third building blocks, it
helps define the molecule's structure and
potential binding characteristics.

¢ buildingblock3_smiles: A SMILES string
representing the third building block of the
molecule, completing the combination of
foundational elements used to form the final
molecule.

e molecule_smiles: A SMILES string for the
entire molecule, constructed from the
building blocks and representing the
complete molecular structure, including
atoms, bonds, and stereochemistry. This
column is a primary input for machine
learning models to predict binding affinity
based on the molecule's overall chemical
structure.

e protein_name: The name of the protein
target for each molecule, which can be one
of three values—BRD4, HSA, or SEH. Each
protein target has a specific biological
significance and is used to determine the
binding affinity of the molecule to a
particular  protein. For each unique
molecule, the dataset includes rows for all
three proteins to allow cross-target
comparisons.
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o binding_label (D 4in Only): A binary label -
indicating whether the molecule binds to /(
the specified protein target. A value of '1' ;——/\,@,\ \//( o

signifies that the molecule binds to the
target, while '0' indicates no binding. This
label is used as the target variable y. b
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For instance, the 2D representation of a molecule m
in the BELKA dataset is demonstrated in Figure 1.
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Figure 1. The 2D representation of a BELKA molecule
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Table 1. Training dataset excerpts for 3 targets: BRD4, HSA, and sEH.

buildingblockl  buildingblock2  buildingblock3 protein

id . . . molecule_smiles binds
_smiles _smiles _smiles _name
C#CC[C@@H]

(CC(=0)O)NC(  C#CCOclece(C  BrBrNccice —CeCOcleet(CNe2ng(NCCSCCENScse

0 =0)OCCl1c2ccc  N)ccl.Cl CN1clccennl s Mo [E@EI]EEHGEE=GINID (BRI 0
cc2-c2cccec2l yDn2jecl
C#CC[C@@H]

(CC(E0)O)NC(  CHCCOcloco(C  BrBrNCCICC — CrecOclece(CNeznG(NECICCCN3ase

' —ojocciczeee  Noelcl CNiclecennt  CoMMINCNIC@@HI(CCACICCEONID - HSA - 0
cc2-c2cccec2l yhn2)ecl
C#CC[C@@H]

(CC(FO)ONC(  C#CCOcleee(C  BrBrNcelce — CrocOciece(CNezne(NCCSCCCNSe3e
2 =0)OCCl1c2ccc  N)ccl.Cl CN1clccennl ccnn3ne(N[IC@@H](CCHC)CC(=OINID  sEH 0
cc2-c2cccec2l yDn2jeel
Selection Round 1
Incubate Eé\:‘el:gva'y with I
> Binding

Wash non- Elute binders (and Sequence counts
binders away some background)

S @

SelectionRound 2 ¥

Incubate R1 eluate with
new protein aliquot

Binding 3 targets
| Elute binders (and i Sequence counts (sEH, BRD4, HSA)

some background)

X
3 replicates of full
selection protocol each

SelectionRound 3 v

Incubate R2 eluate with
new protein aliquot

Binding
ol Wash non. _| Elute binders (and . Sequence counts
binders away some background)

Figure 2. The methodology of recording the raw readouts for 3 targets (SEH, BRD4, HSA)?®.

4. METHODOLOGY



4.1. Data Preprocessing

In the data preprocessing phase, as demonstrated
in Figure 3, the dataset was processed in
increments of 10* rows to manage memory
efficiently, given its large size. Each molecule in
the dataset, represented by SMILES strings, was
processed to create ECFPs, a commonly used
molecular representation in cheminformatics. The
SMILES strings for each molecule were converted
into RDKit molecular objects, and ECFPs were
generated with a radius of 2 and a fingerprint size
of 2048 bits. The ECFPs were transformed into
sparse matrix format to optimize memory usage,
and additional bit information for each fingerprint
was captured to enhance interpretability.

To reduce the dimensionality and improve
computational efficiency, each of the building
blocks (as shown in Section 3), namely
buildingblockl_smiles,  buildingblock2_smiles
and buildingblock3_smiles were mapped to
unique integer identifiers, with dictionaries
created for each set of SMILES strings.

For instance, building blocks in
buildingblockl_smiles were mapped to integer
values in blocks_dict_1, while a shared dictionary,
blocks_dict_23, was created for
buildingblock2_smiles and buildingblock3_smiles
due to the overlap between these blocks. These
mappings were then saved, allowing for efficient
lookup and reuse. To address the class imbalance,
particularly given the scarcity of positive binding
cases, the dataset was downsampled for non-
binding entries, retaining all rows where the
binding was detected and sampling a subset of
non-binding cases. This balanced dataset provided
an optimal size and improved training stability.

Processed data, including the sparse ECFP
matrices and integer-encoded building blocks,
were saved into a training balanced set €;,4in and
atest set &4, in compressed formats for efficient
storage and retrieval. This preprocessing pipeline
allowed for structured and memory-efficient
representation of the dataset, supporting effective
model development for binding prediction across
the three protein targets.

4.2. Model Implementation

In this section, we described our implementation
of a multi-step model training and evaluation
process to predict the binding affinity of small
molecules to three protein targets: BRD4, HSA,
and sEH. This approach involved model selection,
feature reduction, model training and evaluation.

‘ Load Data in Chunks

‘ Process Each Chunk Iteratively

Encode Building Blocks with
Unique Integers

Map Block 1 to Map Blocks 2 & 3 to
Unique Integer IDs Shared Dictionary

Convert SMILES
to RDKit Objects

v

Generate ECFP with
Radius 2, 2048 Bits

R

Store ECFPs as Sparse Matrix
(CSR format)

™
R

Restructure Data by )
i Save Training/Test
Protein Targets
ECFP Sparse Matrix

i

Extract Binary Binding Labels:
BRD4, HSA, sEH

Y

Sample to Balance Positive
and Negative Classes

Save Balanced Training
ECFP Sparse Matrix

Figure 3. The pipeline of preprocessing dataset.
4.2.1. Training Setup and Data Partitioning

To control randomization across the training
process, we initialized a fixed seed as 42, allowing
for reproducibility in sampling and shuffling
steps. The dataset &;,.4i, Was then split into a
training set A qin (90%) and a validation set
Apar (10%) based on a shuffled index of samples.
This partitioning enabled model tuning on the
training set while using the A,,; to assess model
generalization and prevent overfitting.

4.2.2. Feature Reduction by Variance Threshold



The initial input data contained high-dimensional
molecular fingerprints generated from ECFPs. To
reduce dimensionality and enhance model
performance, we applied a variance threshold to
the ECFP feature matrix. Features with variance 6
below 0.005 were removed, as low-variance
features contribute minimally to distinguishing
between classes. This filtering reduced
computational  complexity and  mitigated
overfitting by retaining only the most informative
features.

Load Training & Test Data

Load Train ECFP Sparse Matrix ‘

[
[
Train Blocks Unique SMILES

Combine Unique SMILES Sets ‘

Variance Threshold Selection ()

Split into Train (90%) and
Validation (10%)

Train XGBoost with Targets:
BRD4, HSA, sEH

D

Evaluate with MAP
(Mean Average Precision)

/

‘ Generate Test Predictions ‘

Figure 4. The pipeline of model training, validation
and inference.

4.2.3. Model Training and Inference

In this step, we employed XGBoost, a gradient
boosting algorithm, to train separate binary
classification models for each protein target:
BRD4, HSA, and sEH.

For each model, we configured the
objective function as binary logistic regression
with a learning rate r of 0.2, and the evaluation
metric as the average precision score (AP). Early
stopping was applied with a patience p of 100
rounds to prevent overfitting, and the model was

allowed up to 4000 iterations for convergence. To
handle imbalanced data, we computed a scale
positive weight for each target, defined as

N,
W= N”eg , where Ny, and N,,s represent the

pos
counts of non-binding and binding samples,
respectively.

4.3. Model Explanation with XAl

To understand the contribution of specific
molecular features to each model’s predictions,
we applied an interpretability method, namely
SHAP.

We utilized the SHAP TreeExplainer for
XGBoost, which computes Shapley values
efficiently in tree-based models. SHAP summary
plots and bar charts were generated to visualize the
global importance of features in predicting
binding affinity for each target.

5. RESULTS
5.1. Model Performance

To evaluate the effectiveness of our predictive
models on the binding affinity classification task,
we conducted a comprehensive performance
assessment across the three protein targets: BRD4,
HSA, and sEH. The metrics used for evaluation
included accuracy, mean average precision
(MAP), recall, and the area under the precision-
recall curve (AUCPR), which are presented in
Table 1. Results were reported separately for the
training set A;,qin and the validation set A, to
provide insights into training stability and
generalization.

5.1.1. Evaluation Metrics

Accuracy measures the overall correctness of
predictions and is defined as the ratio of correctly
classified samples (both positive and negative) to
the total number of samples. Mathematically,
accuracy is expressed as:

TP+TN
TP+TN+FP+FN

where TP represents true positives, TN represents
true negatives, FP represents false positives, and
FN represents false negatives. While accuracy
provides a general assessment of the model's
classification capability, it can be less informative
in imbalanced datasets, as it may overemphasize
the correct classification of the majority class.

Accuracy =

Recall (Sensitivity) measures the
proportion of actual positive cases correctly
identified by the model. It is defined as:

TP

Recall = TP-l-—FIV



Recall focuses on the model's ability to capture
true binders, which is critical in applications
where missing positive cases (e.g., potential drug
candidates) could have significant consequences.
A high recall ensures that the model effectively
identifies most true binding interactions.

Mean Average Precision (MAP) evaluates
the ranking quality of predictions, particularly the
precision of positive cases across various
thresholds. It is calculated as the mean of the
Average Precision (AP) scores over all classes,
where AP combines precision and recall into a
single metric that emphasizes the ranking order of
positive predictions. MAP is computed as:

N
1 . .
MAP = N z Ap(ytlrue' yIl)red)

=1

where Ry, is the recall at rank k and Py, is the
precision at rank k. MAP is particularly valuable
for imbalanced datasets, as it prioritizes the correct
ranking of true positives, making it sensitive to the
quality of predictions for the minority class.

Area Under the Precision-Recall Curve
(AUCPR) quantifies the trade-off between
precision and recall across all decision thresholds.
Unlike the Receiver Operating Characteristic
(ROC) curve, the Precision-Recall curve is more
informative in imbalanced datasets, as it
emphasizes the model's ability to correctly classify
the positive class. AUCPR is calculated as the area
under the curve formed by plotting precision
against recall at varying thresholds. A higher
AUCPR indicates a better balance between
precision and recall, reflecting the model's ability
to maintain high sensitivity (recall) without
compromising specificity (precision).

Table 2. The model performance on the training and validation set with accuracy, mean average precision (MAP),

recall and area under the precision-recall curve (AUCPR).

BRD4 HSA SEH BRDA4 HSA SEH
Accuracy MAP
Atrain 0.9637 0.9164 0.9798 0.5708 0.3341 0.7913
Apal 0.9583 0.9082 0.9767 0.5364 0.3006 0.7754
Recall AUCPR
Atrain 0.9910 0.9543 0.9979 0.9098 0.6751 0.9773
Apal 0.9275 0.8467 0.9778 0.8663 0.6076 0.9629

Train and Validation AUCPR for BRD4

AUCPR
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Train and Validation AUCPR for HSA

HSA Train AUCPR
HSA Validation AUCPR
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Figure 5. The area under the precision-recall curve (AUCPR) visualization of the model on the training (in green) and

validation (in orange) set.
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Figure 6. The global explanation (top influencing features) for the model’s decisions in predicting the binding affinity

for 3 targets: BRD4, HSA and sEH.

These four metrics were chosen to provide
a comprehensive evaluation of the models,
capturing their overall classification accuracy,
ranking quality, sensitivity to true positives, and
the precision-recall trade-off. By analyzing these
metrics, we can gain deeper insights into the
strengths and limitations of the models for each
protein target, enabling targeted improvements in
future iterations.

5.1.2. Performance Evaluation

For BRD4, the model achieved a high accuracy of
09637 on  Agygin and  0.9583  on
Ay indicating minimal overfitting and strong
predictive performance. However, the MAP
values, which assess the ranking quality of
positive predictions, were relatively modest at
0.5708 for Asprqin and 0.5364 for A,q. This
reflects the inherent difficulty of ranking positive
binders for BRD4. Despite this, the recall values
were consistently high, reaching 0.9910 for
Airqin and 0.9275 for A,,;, demonstrating the
model's capability to identify a significant
proportion of true binders. The AUCPR scores,
0.9098 for A;yrgin and 0.8663 for A,,;, further
confirming the model's effectiveness in
differentiating binders from non-binders.

For HSA, the model exhibited slightly
lower accuracy than BRD4, with values of 0.9164
for A¢rqin and 0.9082 for A,,;- The MAP scores
for HSA, 0.3341 for A4, and 0.3006 for A,
were the lowest among the three targets, indicating
challenges in ranking true binders effectively.
Nevertheless, the recall metrics for HSA were
robust, achieving 0.9543 on A ,4in, and 0.8467 on
Aypar- The AUCPR values, 0.6751 for A;yqi, and
0.6076 for A,q4;, suggest the model's reasonable

ability to identify binding patterns, though there is
room for improvement in precision-recall balance.

The model's performance on sEH was the
strongest overall. The accuracy reached 0.9798 for
Atrain and 09767 for A,q, Showcasing
exceptional classification accuracy. Similarly, the
MAP scores, 0.7913 for Asprqin and 0.7754 for
Ayar, Were significantly higher than those for
BRD4 and HSA, indicating superior ranking
performance. Recall values were near perfect at
0.9979 for Asprqin and 0.9778 for A, further
emphasizing the model's sensitivity in detecting
true binding events. The AUCPR scores, 0.9773
for Airqin and 0.9629 for A,,;, reinforce the
robustness of the model for sEH, highlighting its
capability to effectively separate binders from
non-binders with high confidence.

In addition to evaluating model
performance on the A ,.4in and A,,q; Sets, the final
models were assessed on the BELKA test dataset
Erest» as part of a Kaggle competition. Since the
test labels for each target were not made available,
the evaluation relied solely on the predictions'
final test scores. On the public test set, the model
achieved an accuracy of 0.2042, while the private
test set yielded a slightly lower accuracy of
0.1843.

Finally, these results demonstrate that the
boosting models, when combined with efficient
data preprocessing and dimensionality reduction,
can achieve reliable predictions across diverse
protein targets. The differences in MAP and
AUCPR scores among the targets underscore the
varying complexities of binding prediction, with
SEH being the most tractable and HSA presenting
the greatest challenges. The results on the test



datasets highlight the challenges posed by the
BELKA dataset, particularly the difficulty in
achieving generalizable predictions across unseen
data. The gap between validation and test
performance underscores the potential for further
enhancements in  model robustness and
generalization.

5.2. Model Intepretability

To provide insights into the decision-making
process of the predictive models, we employed
SHAP to quantify the contribution of individual
molecular features to the model's output. SHAP
explanations are particularly valuable in
understanding which molecular substructures,
represented as SMILES fragments, had the most
significant impact on the binding affinity
prediction for each protein target: BRD4, HSA,
and sEH. The SHAP summary plots for the three
targets are presented in Figure 6, with the x-axis
representing the mean absolute SHAP value,
indicative of the average magnitude of a feature’s
impact on the model's predictions.

BRD4 (Figure 6a): the most influential
molecular feature was the fragment "CCNCC,"
which exhibited the highest mean SHAP value,
highlighting its strong association with binding
predictions.  Other significant contributors
included fragments with nitrogen and aromatic
substructures such as "CCC(N)C(N)=0O" and
"C(c)(H)C(Nc=In)," suggesting that these groups
may play a key role in interacting with BRDA4's
bromodomains. Notably, the diversity of
impactful features underscores the model's ability
to capture complex molecular patterns that
influence binding specificity.

HSA (Figure 6b): SHAP analysis revealed
"CC(C)(C)CCS" as the most impactful feature.
This fragment aligns with HSA's known affinity
for hydrophobic and bulky molecular groups,
which are critical for its role as a drug carrier
protein. Additional significant features included
"ccccclCCI"  and "C1CSC1," suggesting a
preference for aromatic and cyclic substructures.
These insights provide a molecular-level
understanding of the interactions influencing the
binding of small molecules to HSA.

SsEH (Figure 6¢): the SHAP summary plot
demonstrated that the fragment "CC(C)(C)CCS"
had the largest average impact on model
predictions, followed by "ccccclCCI" and
"C=C(C)C(CC)." These features are consistent
with known hydrophobic binding pockets in sEH,
highlighting the model's ability to identify
molecular characteristics critical for binding
affinity. Notably, the sEH model exhibited a larger

range of SHAP values than the other targets,
reflecting a higher sensitivity to specific molecular
fragments.

The SHAP analysis across all three targets
highlights the models’ reliance on chemically
meaningful features, providing interpretability
and transparency in their predictions. These
findings not only enhance confidence in the
models but also offer valuable insights for the
rational design of small molecules with desired
binding properties. Future efforts could involve
leveraging these SHAP-derived insights for
feature engineering or guiding experimental
validation to  further refine  predictive
performance.

6. DISCUSSION

This study demonstrates the potential and
challenges of ML in molecular binding prediction.
The XGBoost models achieved high performance
on training and validation datasets, particularly for
SsEH, which benefited from its consistent
molecular binding patterns. However, BRD4 and
HSA presented unique challenges due to more
diverse binding chemistries, resulting in slightly
lower scores. SHAP analysis revealed chemically
meaningful features, providing valuable insights
into the molecular determinants of binding and
guiding potential drug design efforts. The
evaluation of the BELKA test dataset highlights a
notable performance drop, with public and private
test scores of 0.2042 and 0.1843, respectively.
This gap underscores the inherent difficulty of
generalizing predictive models to unseen data in
large, diverse chemical spaces. It also highlights
the importance of robust feature selection,
additional data augmentation, and more
generalized learning methods to bridge the gap
between validation and test performance.

While tree-based models like XGBoost are
interpretable and effective for structured data, the
reliance on binary binding labels rather than
continuous affinity scores limits their ability to
capture nuanced interactions. Future work could
integrate graph-based molecular representations
or hybrid approaches combining DL with
traditional ML to improve prediction accuracy and
generalizability 14163233 Additionally, leveraging
semi-supervised learning or transfer learning
could further enhance model robustness in unseen
data scenarios.®*%

7. CONCLUSION

This study highlights the potential of machine
learning to revolutionize drug discovery by
predicting small molecule binding affinities with



high efficiency. Using the BELKA dataset, we
demonstrated the capability of XGBoost models to
achieve strong predictive performance while
providing interpretability through SHAP analysis.
However, challenges in generalization,
particularly on unseen test datasets, reveal areas
for methodological improvement. By combining
robust predictive capabilities with interpretable
outputs, this work advances computational
approaches for drug discovery, enabling more
efficient exploration of chemical space and paving
the way for identifying novel therapeutics.
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