Response Letter to Reviewers
Dear Reviewers,
Thank you both for your valuable feedback, which has helped us to refine our manuscript. Below, we address your concerns and group them by theme for clarity.

Reviewer #1
Dataset Description and Model Training
1. Describe the dataset more specifically: How many features are in the dataset? How is the data normalized? Has the data been labeled?
2. If predicting 3 types of proteins, why choose a binary prediction model?
3. Clarify if the classification task for 3 types of proteins is related to the prediction task discussed in the paper.
4. Clarify if one or three different machine learning models were built. Are there differences between the models? How are they related?
Response:
The dataset we use, BELKA, is a newly released dataset from NeurIPS 2024. It contains three types of proteins (BRD4, HSA, and sEH), each forming a subset of the dataset. We describe their features in Section 3.3 of the manuscript. The target label for each subset is binary, indicating whether a given molecule binds to a specific protein type. Therefore, our task involves three separate binary classification models, each trained to predict binding for one of the three protein types.
The models are implemented using XGBoost, with each model’s hyperparameters fine-tuned automatically through a hyperparameter search, while the core model architecture remains the same across all three models.
We acknowledge that using the term “target” may have caused confusion. However, “protein target” refers to a specific protein molecule. Hence, we will improve our writing to ensure the “target” and “output variable” are distinguishable.

Algorithm Choice
5. Why use XGBoost instead of other algorithms?
Response:
Given the size of the BELKA dataset (containing 98 million molecules in the raw training set and nearly 900,000 molecules in the test set), we prioritized a lightweight, high-performance model that could handle the scale efficiently and be compatible with Explainable AI (XAI) methods like SHAP.
XGBoost meets these requirements by offering a balance between computational efficiency and predictive performance (as we refered in Section 2.2). In contrast, more complex models, such as deep learning approaches, would likely provide better accuracy but compromise model interpretability, a core focus of our research. Since there are no previous benchmark results for this dataset, we chose XGBoost as a robust starting point. Future work may explore other models, but for now, our goal is to find a robust, memory-efficient model and offer the explainability. 

Model Explainability
6. What does the model explain? Why does it explain? Be more specific.
Response:
As detailed in Section 5.2, we utilize SHAP to explain the model’s focus on specific molecular features. The XGBoost model identifies feature combinations within SMILES strings that are most predictive of molecular binding.
SHAP enables us to observe which molecular substructures contribute to binding predictions, providing human-interpretable insights into how the model arrives at its conclusions.

Performance Metrics
7. Include a confusion matrix to clarify the classification performance of each model.
Response:
Thank you for this suggestion. While we included comprehensive performance metrics such as accuracy, mean average precision (MAP), recall, and AUCPR, we agree that a confusion matrix would offer valuable additional insights. We will add confusion matrices for each model on the validation set in the Results section of the revised manuscript (as the test set is a part of the competition, we do not have access to the label to deliver the confusion matrices for the test set). 

Reviewer #2
Interpretability vs. Explainability
1. Provide a clearer discussion distinguishing interpretability and explainability, and explain how each contributes to the analysis.
Response:
We agree that a clearer distinction between interpretability and explainability would enhance the manuscript.
While XGBoost itself offers interpretability as a tree-based model, it is not fully explainable when applied to a large-scale dataset like BELKA. The sheer size and complexity of the data make it difficult to draw actionable insights directly from the model's internal structure.
This is why we apply SHAP—an XAI technique that adds an additional layer of explainability by identifying specific feature contributions to predictions. We will incorporate this distinction into the Related Work section of the revised manuscript.

Dimensionality Reduction
2. Discuss the trade-off involved in dimensionality reduction. Does this trade-off significantly impact the analysis?
Response:
Thank you for this insightful recommendation.
Given the huge size of the BELKA dataset, dimensionality reduction was necessary to improve computational efficiency. We employed several data engineering techniques to handle this scale without compromising model performance.
We acknowledge that dimensionality reduction can lead to information loss, and we are mindful of this trade-off. However, retaining all features would require larger-scale deep learning models, which would compromise interpretability—the focus of our research.
We will expand our discussion of dimensionality reduction in the manuscript and note that future work will explore deep learning approaches to handle higher-dimensional data while balancing performance and explainability.


Thank you again for your valuable feedback. We hope our responses have clarified your concerns, and we look forward to your further comments.
