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TÓM TẮT 

Dự đoán khả năng liên kết của các phân tử nhỏ với các mục tiêu protein là một bước quan trọng trong 

quá trình khám phá thuốc hiện đại, mở ra tiềm năng đẩy nhanh việc xác định các liệu pháp điều trị hiệu quả 

đồng thời giảm chi phí thí nghiệm. Trong nghiên cứu này, chúng tôi sử dụng bộ dữ liệu BELKA, một thư 

viện hóa học mã hóa bằng DNA (DEL) quy mô lớn, để huấn luyện các mô hình học máy nhằm dự đoán 

khả năng liên kết. Bằng cách áp dụng XGBoost, một thuật toán gradient boosting dựa trên cấu trúc cây 

quyết định, cùng với các bước tiền xử lý và thiết kế đặc trưng chuyên sâu, chúng tôi đã phát triển các mô 

hình dự đoán cho ba mục tiêu protein: BRD4, HSA, và sEH để dự đoán khả năng liên kết phân tử cho ba 

mục tiêu protein. Các mô hình này thể hiện năng lực dự đoán mạnh mẽ, đồng thời cho phép giải thích kết 

quả thông qua phân tích SHAP nhằm xác định các đặc trưng phân tử quan trọng quyết định khả năng liên 

kết. Đánh giá trên bộ dữ liệu kiểm tra BELKA cho thấy những thách thức trong việc khái quát hóa, cung 

cấp những hiểu biết quý giá về sự phức tạp của mô hình dự đoán trong khám phá thuốc. Nghiên cứu này 

nhấn mạnh tiềm năng của học máy trong việc thúc đẩy quá trình khám phá thuốc bằng máy tính, cho phép 

khám phá không gian hóa học hiệu quả hơn để tìm kiếm các liệu pháp điều trị tiềm năng. 

Từ khoá: Khám phá thuốc, học máy, AI có thể giải thích. 
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ABSTRACT 

The prediction of small molecule binding affinity to protein targets is a critical step in modern drug 

discovery, offering the potential to accelerate the identification of effective therapeutics while reducing 

experimental costs. In this study, we employ the BELKA dataset, a large-scale DNA-encoded chemical 

library (DEL), to train machine learning models for binding affinity prediction. Using XGBoost, a tree-

based gradient boosting algorithm, and extensive preprocessing and feature engineering, we develop 

predictive models for three protein targets: BRD4, HSA, and sEH to predict whether a given small molecule 

is a binder or not to one of three protein targets. The models demonstrate strong predictive capabilities, 

with interpretability achieved through SHAP analysis to identify molecular features driving binding 

predictions. Evaluation of the BELKA test dataset reveals challenges in generalization, providing valuable 

insights into the complexities of predictive modelling in drug discovery. This work highlights the promise 

of machine learning in advancing computational drug discovery by enabling efficient exploration of the 

chemical space for potential therapeutics. 

Keywords: Drug discovery, machine learning, explainable artificial intelligence.

1. INTRODUCTION 

The development of machine learning (ML) 

models to predict the binding affinity of small 

molecules to specific protein targets holds 

transformative potential for drug discovery. 

Predicting these interactions is central to 

identifying new, effective drug candidates, as 

small molecule drugs interact with cellular protein 

machinery to influence disease-associated 

biological processes.  

Traditionally, screening and testing small 

molecules for binding affinity to protein targets 

involve labour-intensive and costly physical 

experiments, which severely limits the speed and 

scope of drug discovery efforts.1,2 The search 

space for small molecule drugs is estimated to 

encompass approximately 1060 chemical 

compounds, which is impractical to physically 

screen.3  

With the pharmaceutical landscape 

evolving, the integration of ML-based predictive 

models offers a promising alternative to these 

conventional approaches, enabling efficient 

exploration of the vast chemical space for 

potential therapeutics. Traditional high-

throughput screening (HTS) technologies can 

assess libraries of small molecules against protein 

targets, but they are often restricted to collections 

of tens of thousands to a few million compounds.4 

In response to this limitation, DNA-encoded 

chemical libraries (DELs) have emerged as a more 

scalable solution.5 DELs use unique DNA 

barcodes to tag each molecule, allowing the 

pooling of millions of compounds and simplifying 

the identification of binders through DNA 

sequencing. This method has substantially 

expanded the feasible scale of chemical libraries 

and presents an attractive foundation for 

computational models aimed at binding affinity 

prediction.  

Advances in ML architectures and feature 

representation techniques, such as Simplified 

Molecular Input Line Entry System (SMILES) 

and graph-based molecular representations, have 

made it possible to capture complex chemical 

properties and interactions computationally.6 

SMILES, as a string-based molecular 

representation, encodes atom connectivity and 

stereochemistry, facilitating ML models’ 

application in molecular property prediction, drug 

discovery, and materials design.  

Hence, in this work, we explore the 

application of a tree-based gradient boosting 

approach, specifically XGBoost, for predicting 

binding affinity.7 In addition to model 

development, a tree-based Explainable AI (XAI) 

method is integrated to interpret model behaviour, 

enhancing transparency and interpretability in the 

prediction of molecular binding. The findings 



from this study aim to contribute to the broader 

field of computational drug discovery, leveraging 

ML to identify promising drug candidates with 

high precision and potentially reduce the costs 

associated with traditional drug development 

methods. By enabling more efficient exploration 

of chemical space, this work aspires to pave the 

way toward discovering new lifesaving 

therapeutics for complex diseases. Conclusively, 

in this study, we make the following contributions: 

• Dataset Utilization: We leverage the 

BELKA dataset8, a large-scale DNA-

encoded chemical library, providing a 

comprehensive resource for binding affinity 

modelling. 

• Predictive Modelling: We employ the 

XGBoost model optimized with advanced 

preprocessing and feature reduction 

techniques to predict binding affinities for 

three biologically significant protein 

targets: BRD4, HSA, and sEH. 

• Interpretability: Through XAI analysis, 

we enhance the interpretability of the 

models, offering molecular-level insights 

into the features influencing binding 

predictions. 

• Benchmarking: We evaluate our 

methodology on the BELKA dataset, 

highlighting the challenges of 

generalization for unseen cases. 

2. RELATED WORK 

2.1. Drug Discovery and Protein-Target 

Interactions 

The pharmaceutical field relies heavily on 

understanding and predicting protein-target 

interactions, as these molecular interactions are 

critical in developing effective drugs. Small 

molecule drugs are typically designed to modulate 

specific protein targets linked to disease 

mechanisms. Protein-ligand binding is 

fundamental to this process, as the ability of a drug 

candidate to bind to a specific protein target 

determines its efficacy and safety. 

Traditional drug discovery methodologies, 

such as high-throughput screening (HTS), involve 

synthesizing large libraries of small molecules and 

testing their affinity with the protein targets. 

However, HTS is costly, time-intensive, and 

limited in scope due to physical constraints, 

allowing only a fraction of potential drug-like 

compounds to be examined. Innovations, such as 

DNA-encoded chemical libraries (DELs)5, have 

addressed some of these limitations by enabling 

more extensive exploration of chemical space. In 

DELs, small molecules are tagged with unique 

DNA barcodes, allowing millions of compounds 

to be screened in a pooled format. As such, DELs 

offer a scalable and efficient alternative to 

traditional HTS. Advances in molecular biology 

and DNA sequencing have further accelerated 

DEL technology, facilitating its adoption in both 

academia and industry. 

2.2. SMILES and Molecular Representations 

SMILES is one of the most widely adopted 

formats for encoding chemical structures in 

computational chemistry.6 SMILES strings 

represent molecular structures in a linear form, 

capturing atoms, bonds, and stereochemistry in a 

machine-readable format. This notation has 

become essential for ML applications in drug 

discovery due to its simplicity and the ease with 

which it can be integrated into computational 

pipelines. SMILES can also be converted to other 

representations, such as 3D structures and 

molecular graphs, allowing flexibility in model 

input formats. 

Alternative molecular representations, such 

as molecular fingerprints and molecular graphs, 

offer distinct advantages. Molecular fingerprints 

encode the presence or absence of substructures, 

providing a high-dimensional, fixed-length vector 

representation suited for various ML tasks.9–12 

Meanwhile, molecular graphs represent the 

connectivity of atoms in the molecule, capturing 

spatial information that can be valuable for models 

like graph neural networks (GNNs).13–16 Recent 

studies suggest that combining multiple 

representations, such as SMILES with molecular 

graphs, can enhance predictive accuracy by 

leveraging diverse information formats. 

2.3. Machine Learning in Molecular Binding 

Prediction 

ML has become essential to molecular binding 

prediction, with recent models achieving high 

performance by leveraging large datasets and 

sophisticated algorithms. ML models, especially 

deep learning (DL) frameworks, can capture 

complex relationships in chemical and biological 

data, allowing them to predict molecular 

properties with increasing accuracy.  

Traditional ML methods, such as 

quantitative structure-activity relationship 

(QSAR) models, relied on engineered molecular 

descriptors to predict binding affinity. Still, recent 

ML approaches enable the use of raw chemical 

representations such as SMILES and molecular 

graphs, reducing the need for extensive feature 

engineering.17–19 Convolutional neural networks 



(CNNs)20, graph neural networks (GNNs)21, and 

recurrent neural networks (RNNs)22 have been 

widely used to encode molecular structures. 

In addition to DL approaches, gradient-

boosting algorithms like XGBoost have gained 

recognition for their efficacy in molecular 

property prediction. XGBoost suits tasks 

involving structured, high-dimensional data, such 

as molecular fingerprints. By leveraging an 

ensemble of decision trees, XGBoost iteratively 

refines predictions, minimizing error while 

maintaining interpretability. Unlike DL models, 

XGBoost offers a computationally efficient 

alternative that is well-suited for datasets with 

tabular or fingerprint-based representations. 

Recent studies have shown that integrating 

molecular representations, such as Extended-

Connectivity Fingerprints (ECFPs)23 with 

XGBoost, yields highly accurate binding affinity 

predictions while retaining transparency. These 

models are particularly valuable in scenarios 

where interpretability is crucial, such as drug 

discovery pipelines.24–26 Additionally, XGBoost's 

robustness to overfitting, especially when 

combined with appropriate feature selection and 

regularization, makes it a strong candidate for 

handling imbalanced datasets often encountered in 

molecular binding tasks. 

2.4. Explainability in ML for Drug Discovery 

As ML models become increasingly complex, 

understanding the decision-making process within 

these models is critical for their adoption in 

sensitive fields like drug discovery. XAI methods 

aim to make the behaviour of complex ML models 

more interpretable by providing insights into how 

input features influence predictions. In drug 

discovery, XAI can offer insights into which 

molecular features contribute most significantly to 

binding affinity, helping chemists understand and 

validate model predictions.27,28 

While tree-based models such as XGBoost 

provide inherent interpretability through their 

structured decision paths, this interpretability 

becomes limited when applied to high-

dimensional and large-scale datasets. In such 

cases, the complexity and volume of features 

make it challenging to discern the specific 

contributions of individual features to each 

prediction, thereby reducing the practical utility of 

feature importance metrics provided by these 

models. To address this limitation, XAI methods, 

like SHAP (SHapley Additive exPlanations)29 

values and LIME (Local Interpretable Model-

agnostic Explanations)30, are often applied to these 

models, enabling the decomposition of predictions 

into contributions from individual features. For 

example, SHAP values, derived from cooperative 

game theory, were especially used to quantify 

each feature’s influence on the prediction. These 

explanation methods not only facilitate model 

interpretation but also foster trust in ML 

predictions, an essential factor for the integration 

of AI into pharmaceutical workflows. 

3. DATASET 

The BELKA dataset used in this study comprises 

training and test samples that detail the 

interactions between various small molecules and 

three protein targets: bromodomain-containing 

protein 4 (BRD4), soluble epoxide hydrolase 

(EPHX2/sEH), and human serum albumin 

(ALB/HSA).8 The dataset presents a binary 

classification of whether a given small molecule is 

a binder or not to one of three protein targets. 

3.1. Dataset Targets 

The BELKA dataset encompasses three distinct 

protein targets: BRD4, EPHX2/sEH, and 

ALB/HSA. Each target represents a unique class 

of biomolecular interactions, selected to provide a 

diverse benchmarking ground for modelling small 

molecule-protein interactions. These targets were 

carefully chosen for their biological significance 

and existing therapeutic relevance. Their 

acquisition and preparation followed rigorous 

protocols to ensure data fidelity and 

reproducibility. 

3.1.1. BRD4 

Bromodomain-containing protein 4 is a pivotal 

member of the BET protein family, involved in 

recognizing acetylated lysines on histone tails.31 

BRD4 has emerged as a prominent therapeutic 

target in oncology, with inhibitors designed to 

disrupt its role in transcriptional regulation, 

particularly in cancer proliferation pathways. 

Recombinant BRD4 was acquired through 

baculovirus expression in insect cells to preserve 

post-translational modifications critical for its 

bromodomain function. Protein purity and 

structural integrity were validated through size-

exclusion chromatography and binding assays 

with known BRD4 inhibitors. These quality-

control measures ensured that the BRD4 used in 

DEL screenings retained its native binding 

characteristics, enabling high-confidence small 

molecule-protein interaction studies. 

3.1.2. BPHX2/sEH 

Soluble epoxide hydrolase is an enzyme involved 

in metabolizing lipid epoxides, converting them 

into diols through hydrolysis.32 This enzymatic 



activity has been implicated in numerous 

physiological and pathological processes, 

including inflammation, pain, and cardiovascular 

diseases. Recombinant human EPHX2 was 

expressed in Escherichia coli and purified via 

affinity chromatography. Its activity was verified 

using substrate-based fluorescence assays to 

confirm functional integrity before integration 

into DEL screening assays. By selecting sEH as a 

target, the BELKA dataset facilitates the 

evaluation of ligand binding in the context of 

enzymatic specificity and inhibition. 

3.1.3. ALB/HSA 

Human serum albumin, the most abundant plasma 

protein, plays a key role in drug pharmacokinetics 

by binding and transporting a wide range of 

endogenous and exogenous compounds.33 For this 

dataset, HSA was isolated from human plasma and 

subjected to additional purification to remove 

potential impurities. Its binding activity was 

assessed through equilibrium dialysis and 

competitive ligand-binding assays to confirm its 

ability to interact with small molecules34. Using 

HSA in the DEL screening enables exploring 

protein-small molecule interactions that influence 

drug bioavailability and distribution. 

3.2. Dataset Acquisition 

The raw readout acquisition process is visualized 

in Figure 1. The primary library, AMA014, is a 

triazine-based shree-cycle library designed to 

resemble DEL-A. An additional orthogonal DEL, 

termed kinase0 (kin0), was designed to mimic 

kinase inhibitor chemistry. 

The screening methodology involved 

combining the DEL with the target protein, 

isolating DEL/target complexes, eluting the bound 

DEL through heat application, and repeating the 

selection with the fresh target protein. This 

iterative process, conducted over three rounds for 

AMA014, aimed to enrich high-affinity binders. 

Each selection series for AMA014 was performed 

in triplicate to assess reproducibility. In contrast, 

the smaller kinase0 library underwent a single 

selection round, performed in duplicate with a 

single negative control. Post-selection, the eluted 

DELs were subjected to sequencing to quantify 

binding events. The dataset includes both binary 

binding labels and raw sequencing counts, 

facilitating diverse analyses, including evaluating 

hit-calling methods and experimental design 

parameters. The raw dataset encompasses 

approximately 4.25 billion physical 

measurements, with compressed data totalling 

around 600 GB. 

All protein targets underwent rigorous 

selection and preparation to maintain high 

experimental reproducibility. For each target, 

protein binding assays were conducted to confirm 

the enrichment of small molecule binders across 

multiple rounds of DEL screening. The screening 

workflow included initial binding assays with the 

target protein, iterative selection and amplification 

of enriched libraries, and sequencing to quantify 

binding events. These protocols were designed to 

capture high-affinity interactions and a broad 

spectrum of molecular binders, ensuring a 

comprehensive dataset for benchmarking 

predictive models. 

3.3. Dataset Description 

Each row in the dataset encapsulates the chemical 

composition and binding characteristics of a small 

molecule with a specific protein target, providing 

a structured basis for learning binding patterns 

across different protein targets and molecular 

configurations. 

The training dataset 𝒟𝑡𝑟𝑎𝑖𝑛 contains 

98,415,610 samples and 𝒟𝑡𝑒𝑠𝑡 contains 878,022 

samples. The training dataset 𝒟𝑡𝑟𝑎𝑖𝑛 (as shown in 

Table 1) includes molecular structures represented 

by SMILES strings, with each sample specifying 

four chemical building blocks, a complete 

molecular structure, the protein target, and the 

binary binding label (1 for binding, 0 for no 

binding) as the output variable. The test dataset 

𝒟𝑡𝑒𝑠𝑡 follows a similar structure without the 

binding label, providing the molecular structure 

and target protein only. Each column in the dataset 

is described as follows: 

• id: A unique identifier for each record. 

Every unique combination of small 

molecule features is represented by three 

consecutive rows, each corresponding to a 

specific protein target: BRD4, HSA, or 

sEH. This structure allows for direct 

comparisons of binding affinity predictions 

across the three protein targets for the same 

molecular structure. 

• buildingblock1_smiles: A SMILES string 

representing the first building block of the 

molecule. This component forms part of the 

molecular structure and contributes specific 

chemical properties to the final molecule. 

• buildingblock2_smiles: A SMILES string 

for the second building block. Together 

with the first and third building blocks, it 

helps define the molecule's structure and 

potential binding characteristics. 

• buildingblock3_smiles: A SMILES string 

representing the third building block of the 



molecule, completing the combination of 

foundational elements used to form the final 

molecule. 

• molecule_smiles: A SMILES string for the 

entire molecule, constructed from the 

building blocks and representing the 

complete molecular structure, including 

atoms, bonds, and stereochemistry. This 

column is a primary input for machine 

learning models to predict binding affinity 

based on the molecule's overall chemical 

structure. 

• protein_name: The name of the protein 

target for each molecule, which can be one 

of three values—BRD4, HSA, or sEH. Each 

protein target has a specific biological 

significance and is used to determine the 

binding affinity of the molecule to a 

particular protein. For each unique 

molecule, the dataset includes rows for all 

three proteins to allow cross-target 

comparisons. 

• binds (𝒟𝑡𝑟𝑎𝑖𝑛 only): A binary label 

indicating whether the molecule binds to 

the specified protein target. A value of '1' 

signifies that the molecule binds to the 

target, while '0' indicates no binding. This 

label is used as the output variable 𝑦. 

For instance, the 2D representation of a molecule 

in the BELKA dataset is demonstrated in Figure 1. 

 

Figure 1. The 2D representation of a BELKA molecule 

(C#CCOc1ccc(CNc2nc(NCC3CCCN3c3cccnn3)nc(N

[C@@H](CC#C)CC(=O)N[Dy])n2)cc1). 

 

Table 1. Training dataset excerpts for 3 targets: BRD4, HSA, and sEH. 

id 
buildingblock1

_smiles 

buildingblock2

_smiles 

buildingblock3

_smiles 
molecule_smiles 

protein

_name 
binds 

0 

C#CC[C@@H]

(CC(=O)O)NC(

=O)OCC1c2ccc

cc2-c2ccccc21 

C#CCOc1ccc(C

N)cc1.Cl 

Br.Br.NCC1CC

CN1c1cccnn1 

C#CCOc1ccc(CNc2nc(NCC3CCCN3c3c

ccnn3)nc(N[C@@H](CC#C)CC(=O)N[D

y])n2)cc1 

BRD4 0 

1 

C#CC[C@@H]

(CC(=O)O)NC(

=O)OCC1c2ccc

cc2-c2ccccc21 

C#CCOc1ccc(C

N)cc1.Cl 

Br.Br.NCC1CC

CN1c1cccnn1 

C#CCOc1ccc(CNc2nc(NCC3CCCN3c3c

ccnn3)nc(N[C@@H](CC#C)CC(=O)N[D

y])n2)cc1 

HSA 0 

2 

C#CC[C@@H]

(CC(=O)O)NC(

=O)OCC1c2ccc

cc2-c2ccccc21 

C#CCOc1ccc(C

N)cc1.Cl 

Br.Br.NCC1CC

CN1c1cccnn1 

C#CCOc1ccc(CNc2nc(NCC3CCCN3c3c

ccnn3)nc(N[C@@H](CC#C)CC(=O)N[D

y])n2)cc1 

sEH 0 

4. METHODOLOGY 

4.1. Data Preprocessing 

In the data preprocessing phase, as demonstrated 

in Figure 2, the dataset was processed in 

increments of 104 rows to manage memory 

efficiently, given its large size. Each molecule in 

the dataset, represented by SMILES strings, was 

processed to create ECFPs, a commonly used 

molecular representation in cheminformatics. The 

SMILES strings for each molecule were converted 

into RDKit molecular objects, and ECFPs were 

generated with a radius of 2 and a fingerprint size 

of 2048 bits. The ECFPs were transformed into 

sparse matrix format to optimize memory usage, 

and additional bit information for each fingerprint 

was captured to enhance interpretability. 

To reduce the dimensionality and improve 

computational efficiency, each of the building 

blocks (as shown in Section 3), namely  

buildingblock1_smiles, buildingblock2_smiles 

and buildingblock3_smiles were mapped to 

unique integer identifiers, with dictionaries 

created for each set of SMILES strings. 

For instance, building blocks in 

buildingblock1_smiles were mapped to integer 

values in blocks_dict_1, while a shared dictionary, 

blocks_dict_23, was created for 

buildingblock2_smiles and buildingblock3_smiles 

due to the overlap between these blocks. These 

mappings were then saved, allowing for efficient 

lookup and reuse. To address the class imbalance, 

particularly given the scarcity of positive binding 

cases, the dataset was downsampled for non-



binding entries, retaining all rows where the 

binding was detected and sampling a subset of 

non-binding cases. This balanced dataset provided 

an optimal size and improved training stability. 

Processed data, including the sparse ECFP 

matrices and integer-encoded building blocks, 

were saved into a training balanced set ℰ𝑡𝑟𝑎𝑖𝑛 and 

a test set ℰ𝑡𝑒𝑠𝑡, in compressed formats for efficient 

storage and retrieval. This preprocessing pipeline 

allowed for structured and memory-efficient 

representation of the dataset, supporting effective 

model development for binding prediction across 

the three protein targets. 

 

Figure 2. The pipeline of preprocessing dataset. 

 

4.2. Model Implementation 

In this section, we described our implementation 

of a multi-step model training and evaluation 

process to predict the binding affinity of small 

molecules to three protein targets: BRD4, HSA, 

and sEH. This approach involved model selection, 

feature reduction, model training and evaluation. 

 

Figure 3. The pipeline of model training, validation 

and inference. 

4.2.1. Training Setup and Data Partitioning 

To control randomization across the training 

process, we initialized a fixed seed as 42, allowing 

for reproducibility in sampling and shuffling 

steps. The dataset ℰ𝑡𝑟𝑎𝑖𝑛 was then split into a 

training set 𝒜𝑡𝑟𝑎𝑖𝑛 (90%) and a validation set 

𝒜𝑣𝑎𝑙  (10%) based on a shuffled index of samples. 

This partitioning enabled model tuning on the 

training set while using the 𝒜𝑣𝑎𝑙   to assess model 

generalization and prevent overfitting. 

4.2.2. Feature Reduction by Variance Threshold 



The initial input data contained high-dimensional 

molecular fingerprints generated from ECFPs. To 

reduce dimensionality and enhance model 

performance, we applied a variance threshold to 

the ECFP feature matrix. Features with variance 𝜃 

below 0.005 were removed, as low-variance 

features contribute minimally to distinguishing 

between classes. This filtering reduced 

computational complexity and mitigated 

overfitting by retaining only the most informative 

features. 

4.2.3. Model Training and Inference 

In this step, we employed XGBoost, a gradient 

boosting algorithm, to train separate binary 

classification models for each protein target: 

BRD4, HSA, and sEH.  

For each model, we configured the 

objective function as binary logistic regression 

with a learning rate 𝑟 of 0.2, and the evaluation 

metric as the average precision score (AP). Early 

stopping was applied with a patience 𝑝 of 100 

rounds to prevent overfitting, and the model was 

allowed up to 4000 iterations for convergence. To 

handle imbalanced data, we computed a scale 

positive weight for each target, defined as  

𝜔 =
𝑁𝑛𝑒𝑔

𝑁𝑝𝑜𝑠
  , where 𝑁𝑛𝑒𝑔 and 𝑁𝑝𝑜𝑠 represent the 

counts of non-binding and binding samples, 

respectively. 

4.3. Model Explanation with XAI 

To understand the contribution of specific 

molecular features to each model’s predictions, 

we applied an interpretability method, namely 

SHAP. 

We utilized the SHAP TreeExplainer for 

XGBoost, which computes Shapley values 

efficiently in tree-based models. SHAP summary 

plots and bar charts were generated to visualize the 

global importance of features in predicting 

binding affinity for each target. 

5. RESULTS 

5.1. Model Performance 

To evaluate the effectiveness of our predictive 

models on the binding affinity classification task, 

we conducted a comprehensive performance 

assessment across the three protein targets: BRD4, 

HSA, and sEH. The metrics used for evaluation 

included accuracy, mean average precision 

(MAP), recall, and the area under the precision-

recall curve (AUCPR), which are presented in 

Table 1. Results were reported separately for the 

training set 𝒜𝑡𝑟𝑎𝑖𝑛 and the validation set 𝒜𝑣𝑎𝑙  to 

provide insights into training stability and 

generalization. 

5.1.1. Evaluation Metrics 

Accuracy measures the overall correctness of 

predictions and is defined as the ratio of correctly 

classified samples (both positive and negative) to 

the total number of samples. Mathematically, 

accuracy is expressed as: 

Accuracy =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

where TP represents true positives, TN represents 

true negatives, FP represents false positives, and 

FN represents false negatives. While accuracy 

provides a general assessment of the model's 

classification capability, it can be less informative 

in imbalanced datasets, as it may overemphasize 

the correct classification of the majority class. 

Recall  (Sensitivity) measures the 

proportion of actual positive cases correctly 

identified by the model. It is defined as:   

Recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

Recall focuses on the model's ability to capture 

true binders, which is critical in applications 

where missing positive cases (e.g., potential drug 

candidates) could have significant consequences. 

A high recall ensures that the model effectively 

identifies most true binding interactions. 

Mean Average Precision (MAP) evaluates 

the ranking quality of predictions, particularly the 

precision of positive cases across various 

thresholds. It is calculated as the mean of the 

Average Precision (AP) scores over all classes, 

where AP combines precision and recall into a 

single metric that emphasizes the ranking order of 

positive predictions. MAP is computed as: 

MAP =
1

𝑁
∑ AP(𝑦true

𝑖 , 𝑦pred
𝑖 )

𝑁

𝑖=1

 

where 𝑹𝒌 is the recall at rank 𝒌 and 𝑷𝒌 is the 

precision at rank 𝒌. MAP is particularly valuable 

for imbalanced datasets, as it prioritizes the correct 

ranking of true positives, making it sensitive to the 

quality of predictions for the minority class. 

Area Under the Precision-Recall Curve 

(AUCPR) quantifies the trade-off between 

precision and recall across all decision thresholds. 

Unlike the Receiver Operating Characteristic 

(ROC) curve, the Precision-Recall curve is more 

informative in imbalanced datasets, as it 

emphasizes the model's ability to correctly classify 

the positive class. AUCPR is calculated as the area 



under the curve formed by plotting precision 

against recall at varying thresholds. A higher 

AUCPR indicates a better balance between 

precision and recall, reflecting the model's ability 

to maintain high sensitivity (recall) without 

compromising specificity (precision). 

 

Table 2. The model performance on the training and validation set with accuracy, mean average precision (MAP), 

recall and area under the precision-recall curve (AUCPR). 

 BRD4 HSA sEH BRD4 HSA sEH 

Accuracy MAP 

𝒜𝑡𝑟𝑎𝑖𝑛 0.9637 0.9164 0.9798 0.5708 0.3341 0.7913 

𝒜𝑣𝑎𝑙 0.9583 0.9082 0.9767 0.5364 0.3006 0.7754 

 Recall AUCPR 

𝒜𝑡𝑟𝑎𝑖𝑛 0.9910 0.9543 0.9979 0.9098 0.6751 0.9773 

𝒜𝑣𝑎𝑙 0.9275 0.8467 0.9778 0.8663 0.6076 0.9629 

 

 

Figure 4. The area under the precision-recall curve (AUCPR) visualization of the model on the training (in green) and 

validation (in orange) set. 

 

Figure 5. The global explanation (top influencing features) for the model’s prediction of the binding affinity for 3 

targets: BRD4, HSA and sEH. 



These four metrics were chosen to provide 

a comprehensive evaluation of the models, 

capturing their overall classification accuracy, 

ranking quality, sensitivity to true positives, and 

the precision-recall trade-off. By analyzing these 

metrics, we can gain deeper insights into the 

strengths and limitations of the models for each 

protein target, enabling targeted improvements in 

future iterations. 

5.1.2. Performance Evaluation 

For BRD4, the model achieved a high accuracy of 

0.9637 on 𝒜𝑡𝑟𝑎𝑖𝑛 and 0.9583 on  
𝒜𝑣𝑎𝑙 indicating minimal overfitting and strong 

predictive performance. However, the MAP 

values, which assess the ranking quality of 

positive predictions, were relatively modest at 

0.5708 for 𝒜𝑡𝑟𝑎𝑖𝑛 and 0.5364 for 𝒜𝑣𝑎𝑙. This 

reflects the inherent difficulty of ranking positive 

binders for BRD4. Despite this, the recall values 

were consistently high, reaching 0.9910 for 

𝒜𝑡𝑟𝑎𝑖𝑛 and 0.9275 for 𝒜𝑣𝑎𝑙, demonstrating the 

model's capability to identify a significant 

proportion of true binders. The AUCPR scores, 

0.9098 for 𝒜𝑡𝑟𝑎𝑖𝑛 and 0.8663 for 𝒜𝑣𝑎𝑙, further 

confirms the model's effectiveness in 

differentiating binders from non-binders. 

For HSA, the model exhibited slightly 

lower accuracy than BRD4, with values of 0.9164 

for 𝒜𝑡𝑟𝑎𝑖𝑛 and 0.9082 for 𝒜𝑣𝑎𝑙. The MAP scores 

for HSA, 0.3341 for 𝒜𝑡𝑟𝑎𝑖𝑛 and 0.3006 for 𝒜𝑣𝑎𝑙, 

were the lowest among the three targets, indicating 

challenges in ranking true binders effectively. 

Nevertheless, the recall metrics for HSA were 

robust, achieving 0.9543 on 𝒜𝑡𝑟𝑎𝑖𝑛 and 0.8467 on 

𝒜𝑣𝑎𝑙. The AUCPR values, 0.6751 for 𝒜𝑡𝑟𝑎𝑖𝑛 and 

0.6076 for 𝒜𝑣𝑎𝑙, suggest the model's reasonable 

ability to identify binding patterns, though there is 

room for improvement in precision-recall balance. 

The model's performance on sEH was the 

strongest overall. The accuracy reached 0.9798 for 

𝒜𝑡𝑟𝑎𝑖𝑛 and 0.9767 for 𝒜𝑣𝑎𝑙, showcasing 

exceptional classification accuracy. Similarly, the 

MAP scores, 0.7913 for 𝒜𝑡𝑟𝑎𝑖𝑛 and 0.7754 for 

𝒜𝑣𝑎𝑙, were significantly higher than those for 

BRD4 and HSA, indicating superior ranking 

performance. Recall values were near perfect at 

0.9979 for 𝒜𝑡𝑟𝑎𝑖𝑛 and 0.9778 for 𝒜𝑣𝑎𝑙, further 

emphasizing the model's sensitivity in detecting 

true binding events. The AUCPR scores, 0.9773 

for 𝒜𝑡𝑟𝑎𝑖𝑛 and 0.9629 for 𝒜𝑣𝑎𝑙, reinforce the 

robustness of the model for sEH, highlighting its 

capability to separate binders from non-binders 

with high confidence effectively. 

In addition to evaluating model 

performance on the 𝒜𝑡𝑟𝑎𝑖𝑛 and 𝒜𝑣𝑎𝑙 sets, the final 

models were assessed on the BELKA test dataset  

ℰ𝑡𝑒𝑠𝑡, as part of a Kaggle competition. Since the 

test labels for each target were not made available, 

the evaluation relied solely on the predictions' 

final test scores. On the public test set, the model 

achieved an accuracy of 0.2042, while the private 

test set yielded a slightly lower accuracy of 

0.1843.  

Finally, these results demonstrate that the 

boosting models, when combined with efficient 

data preprocessing and dimensionality reduction, 

can achieve reliable predictions across diverse 

protein targets. The differences in MAP and 

AUCPR scores among the targets underscore the 

varying complexities of binding prediction, with 

sEH being the most tractable and HSA presenting 

the greatest challenges. The results on the test 

datasets highlight the challenges posed by the 

BELKA dataset, particularly the difficulty in 

achieving generalizable predictions across unseen 

data. The gap between validation and test 

performance underscores the potential for further 

enhancements in model robustness and 

generalization. 

5.2. Model Intepretability 

To provide insights into the decision-making 

process of the predictive models, we employed 

SHAP to quantify the contribution of individual 

molecular features to the model's output. SHAP 

Figure 6. The confusion matrices for the model’s prediction of the binding affinity for 3 targets: BRD4, HSA and 

sEH. 



explanations are particularly valuable in 

understanding which molecular substructures, 

represented as SMILES fragments, had the most 

significant impact on the binding affinity 

prediction for each protein target: BRD4, HSA, 

and sEH. The SHAP summary plots for the three 

targets are presented in Figure 6, with the x-axis 

representing the mean absolute SHAP value, 

indicative of the average magnitude of a feature’s 

impact on the model's predictions. 

BRD4 (Figure 6a): the most influential 

molecular feature was the fragment "CCNCC," 

which exhibited the highest mean SHAP value, 

highlighting its strong association with binding 

predictions. Other significant contributors 

included fragments with nitrogen and aromatic 

substructures such as "CCC(N)C(N)=O" and 

"C(c)(H)C(Nc=In)," suggesting that these groups 

may play a key role in interacting with BRD4's 

bromodomains. Notably, the diversity of 

impactful features underscores the model's ability 

to capture complex molecular patterns that 

influence binding specificity. 

HSA (Figure 6b): SHAP analysis revealed 

"CC(C)(C)CCS" as the most impactful feature. 

This fragment aligns with HSA's known affinity 

for hydrophobic and bulky molecular groups, 

which are critical for its role as a drug carrier 

protein. Additional significant features included 

"ccccc1CCl" and "C1CSC1," suggesting a 

preference for aromatic and cyclic substructures. 

These insights provide a molecular-level 

understanding of the interactions influencing the 

binding of small molecules to HSA. 

sEH (Figure 6c): the SHAP summary plot 

demonstrated that the fragment "CC(C)(C)CCS" 

had the largest average impact on model 

predictions, followed by "ccccc1CCl" and 

"C=C(C)C(CC)." These features are consistent 

with known hydrophobic binding pockets in sEH, 

highlighting the model's ability to identify 

molecular characteristics critical for binding 

affinity. Notably, the sEH model exhibited a larger 

range of SHAP values than the other targets, 

reflecting a higher sensitivity to specific molecular 

fragments. 

The SHAP analysis across all three targets 

highlights the models’ reliance on chemically 

meaningful features, providing interpretability 

and transparency in their predictions. These 

findings not only enhance confidence in the 

models but also offer valuable insights for the 

rational design of small molecules with desired 

binding properties. Future efforts could involve 

leveraging these SHAP-derived insights for 

feature engineering or guiding experimental 

validation to further refine predictive 

performance. 

6. DISCUSSION 

This study demonstrates the potential and 

challenges of ML in molecular binding prediction. 

The XGBoost models achieved high performance 

on training and validation datasets, particularly for 

sEH, which benefited from its consistent 

molecular binding patterns. However, BRD4 and 

HSA presented unique challenges due to more 

diverse binding chemistries, resulting in slightly 

lower scores. SHAP analysis revealed chemically 

meaningful features, providing valuable insights 

into the molecular determinants of binding and 

guiding potential drug design efforts. The 

evaluation of the BELKA test dataset highlights a 

notable performance drop, with public and private 

test scores of 0.2042 and 0.1843, respectively. 

This gap underscores the inherent difficulty of 

generalizing predictive models to unseen data in 

large, diverse chemical spaces. It also highlights 

the importance of robust feature selection, 

additional data augmentation, and more 

generalized learning methods to bridge the gap 

between validation and test performance. Hence, 

in our future work, we would like to investigate 

the influence of more feature selection, 

dimensional reduction and data augmentation 

techniques. 

While tree-based models like XGBoost are 

interpretable and effective for structured data, the 

reliance on binary binding labels rather than 

continuous affinity scores limits their ability to 

capture nuanced interactions. Future work could 

integrate graph-based molecular representations 

or hybrid approaches combining DL with 

traditional ML to improve prediction accuracy and 

generalizability.14,16,35,36 Additionally, leveraging 

semi-supervised learning or transfer learning 

could further enhance model robustness in unseen 

data scenarios.34–36 

7. CONCLUSION 

This study highlights the potential of machine 

learning to revolutionize drug discovery by 

predicting small molecule binding affinities with 

high efficiency. Using the BELKA dataset, we 

demonstrated the capability of XGBoost models to 

achieve strong predictive performance while 

providing interpretability through SHAP analysis. 

However, challenges in generalization, 

particularly on unseen test datasets, reveal areas 

for methodological improvement. By combining 

robust predictive capabilities with interpretable 

outputs, this work advances computational 



approaches for drug discovery, enabling more 

efficient exploration of chemical space and paving 

the way for identifying novel therapeutics. 
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