ng dung hoc may trong danh gia rui ro tai chinh cua cac
céng ty niém yet trén thi trwd'ng chirng khoan Viét Nam

TOM TAT

Quan Iy rui ro tai chinh 14 diéu can thiét d6i véi cac doanh nghiép vi nd giup ngin ngira ton that va ti da hoa
lgi nhuan. Do qua trinh nay phu thudc nhiéu vao viéc ra quyét dinh dya trén dit liéu, hoc may mang lai tiém nang phat
trién cac phuong phap va cong nghé sang tao. Trong bai bao nay, ching toi so sanh kha ning du doan cua cac mo
hinh hoc may khéc nhau va sir dung phuong phap LIME dé dién giai cach chung dua ra quyét dinh. Dit liéu dugc thu
thap tir bao céo tai chinh ctia cac cong ty niém yét tir naim 2009 dén ndm 2023. Két qua cho thiy Gradient Boosting
va Random Forest dat hiéu suit tt nhit. Thém vao d6, trong sé LIME chi ra ring cac yéu t6 anh hudng nhidu nhat
dén du doan cua cac mé hinh la ty 1& thanh khoan hién hanh, ty sudt loi nhufn trén tai san, ty 1€ ng va ty 1€ ng trén vén
chu so hiru.

Tir khéa: Ruii ro tdi chinh, cong ty niém yét, mé hinh hoc may, phwong phéap LIME.



Application of machine learning in assessing financial risk of
listed companies on the Vietnam stock market

ABSTRACT

Financial risk management is essential for businesses as it helps prevent losses and maximize profits. Since
this process depends heavily on data-driven decision-making, machine learning offers a promising avenue for
developing innovative methods and technologies. In this paper, we compare the predictive capabilities of various
machine learning models and use the LIME method to interpret how they make decisions. Data was collected from
the financial statements of listed companies from 2009 to 2023. The results show that Gradient Boosting and Random
Forest achieved the best performance. Additionally, LIME weights indicate that the most influential factors affecting
the models' predictions are the current ratio, return on assets, debt ratio, and debt-to-equity ratio.

Keywords: Financial risk, listed companies, machine learning models, LIME method.

1. INTRODUCTION

Financial risk arises when there is a chance that
an event will cause a company to underperform
relative to its planned financial targets or
established metrics.! Examples of such financial
metrics or values encompass earnings per share,
return on equity, and cash flows. Financial risks
encompass categories such as market risk, credit
risk, market liquidity risk, operational risk, and
legal risk. Financial risk assessment is critical for
investors, regulators, and corporate managers to
identify potential challenges and mitigate their
impacts.

Financial risk is often associated with the
risk of bankruptcy or insolvency of a business.
Traditional methods of financial risk assessment
often rely on expert judgment and statistical
models. Experts can leverage their domain
knowledge to identify potential risks, assess the
impact of external factors, and interpret the
results of statistical models. However, expert
judgment can be subjective and prone to bias,
particularly when dealing with complex financial
scenarios. Numerous statistical models have been
proposed, such as Z-score, S-score, O-score, X-
score, H-score, B-score,...>” In Vietnam,
researchers have tested the Z-score model in
forecasting corporate failure® and bankruptcy?®,
applied the B-score in analyzing factors
influencing financial risk'®, compared various
models in measuring financial distress®,...
Statistical models are straightforward in design,
offer strong explanatory power, and require
relatively short training time. These methods,

however, rely on several rigid preconditions that
frequently prove to be impractical in real-world
situations. These preconditions include, for
example, the existence of linear relationships,
consistent variance across data, and variable
independence. If these preconditions are not met,
the effectiveness of these statistical approaches in
prediction can be diminished.*?

In recent years, machine learning (ML) has
emerged as a powerful tool for overcoming the
limitations of traditional methods. ML algorithms
can automatically learn complex patterns from
large datasets, without relying on strict
assumptions. This makes them well-suited for
financial risk assessment, where data is often
noisy, incomplete, and high-dimensional.
Algorithms such as support vector machine
(SVM), decision tree, and artificial neural
network are applied to enhance the efficiency of
traditional methods in volatility forecasting,
bankruptcy prediction, credit scoring,...***®
Ensemble learning and hybrid models have been
widely studied in this field. Research suggests
that random forest algorithms may surpass other
single or hybrid classifiers.*"8

In this article, we will construct and
compare the performance of several advanced
machine learning models, such as SVM, neural
networks, random forests, gradient boosting,...in
forecasting the financial risks of listed companies
on the Vietnamese stock market. Additionally,
we also assess the importance of features using
LIME to identify the key factors influencing



financial risk and propose solutions to mitigate
these risks.

2. METHODOLOGY
2.1. Data collection and preprocessing

In this study, we utilize data extracted from the
financial statements of companies listed on the
HOSE (Ho Chi Minh Stock Exchange), HNX
(Hanoi Stock Exchange), and UPCOM (Unlisted
Public Company Market). The data spans the
period from 2009 to 2023 and includes balance

bankruptcy risk, formulated as a classification
problem. To identify companies at risk, we utilize
five widely recognized bankruptcy prediction
models: the Altman Z-score, Springate S-score,
Zmijewski X-score, Taffler Z-score, and Grover
G-score (Table 1). A company is labeled as 1 (at
risk) if the majority of the five models classify it
as being at risk, and -1 otherwise. Regarding
independent variables, based on several studies,
we use 34 financial ratios as inputs for the
machine learning models, as presented in Table
2. These ratios reflect various aspects of the

sheets, income statements, and cash flow o .
company, such as liquidity, profitability,
statements. Lt
efficiency, and leverage.
This study applies machine learning
models to predict financial risk, specifically
Table 1. Bankruptcy prediction models for defining the target variable.
Model Formula Conclusion
Z-score (1968) | Z=1.2Z1 + 1.4Z2 + 3.3Z3+ 0.6Z4 + 1.0Z5 2<299:y=1
Z1 = Working capital / Total assets 2>299:y=-1
Z2 = Retained earnings / Total assets
Z3 = EBIT / Total assets
Z4 = Market value of equity / Total liabilities
Z5 = Sales / Total assets
S-score (1978) | S=1.03S1 + 3.07S2 + 0.66S3 + 0.454 $<0862:y=1
S1 = Working capital / Total assets S$S>0.862:y =-1
S2 = EBIT / Total assets
S3 = Profit before tax / Current liabilities
S4 = Sales / Total assets
X-score (1984) | X =-4.336 —4.513X1 + 5.679X2 — 0.004X3 X>0:y=1
X1 = Net income / Total assets X<0y=-1
X2 = Total liabilities / Total assets
X3 = Current assets / Current liabilites
Taffler Z-score | T=3.20+12.18T1 +2.50T2-10.68T3+0.029T4 | T<03:y =1
(1983) T1 = Profit before tax / Current liabilities T>03:y=-1
T2 = Current assets / Total liabilities
T3 = Current liabilities / Total assets
T4 = No-credit interval
G-score (2001) | G = 1.6505G1 + 3.404G2 - 0.016G3 + 0.057 G<00l:y=1
G1 = Working capital / Total asssets G>00Ly=-1
G2 = EBIT / Total assets
G3 =ROA
Table 2. Financial ratios (features) for assessing financial risk.
Symbol | Ratio name Symbol | Ratio nhame
X1 Price-to-earnings ratio X18 EV-to-EBIT ratio
X2 Price-to-sale ratio X19 Price-to-operating- cash-flow ratio
X3 Price-to-book ratio X20 Debt ratio
X4 Earnings per share X21 Price-to-cash-flow ratio
X5 Return on equity X22 Book value per share
X6 Return on assets X23 Cash ratio




X7 Return on invested capital X24 Return on capital employed
X8 Operating margin X25 Return on sales

X9 Gross margin X26 Cash return on invested capital
X10 Net margin X27 Cash return on equity

X11 EBIT margin X28 Cash return on assets

X12 Current ratio X29 Free cash flow margin

X13 Quick ratio X30 Operating cash flow margin
X14 Debt-to-equity ratio X31 Total asset turnover ratio
X15 Operating cash flow ratio X32 Equity ratio

X16 EV-to-EBITDA ratio X33 Fixed asset turnover ratio
X17 EV-to-sales ratio X34 Receivables turnover ratio

The dataset consists of 2614 observations,
including 557 observations with y = 1 and 2057
observations with y = —1. Before performing
preprocessing steps, the data is split into training
and testing sets at an 8:2 ratio to prevent data
leakage. Data leakage in machine learning arises
when a model, during its training phase, utilizes
data that would not be accessible when making
actual predictions. This form of leakage creates a
deceptive appearance of model accuracy, which
is only revealed to be false upon deployment. In
practice, such models produce unreliable
outcomes, resulting in flawed decision-making
and misleading conclusions. The dataset is then
cleaned by removing outliers and imputing
missing values.

2.2. Dimensionality reduction

Dimensionality reduction involves decreasing the
number of features to enable efficient model
development. It has two main methods: feature
selection and feature extraction. Feature selection
chooses the most important original features.
Feature extraction makes new features by
combining or changing the originals.

Here, we will use the feature selection to
retain the original meaning of the variables in the
dataset. Our data has numerical attributes, and the
target variable is categorical, so we will use the
ANOVA F-test technique.’®* ANOVA, or
“analysis of variance”, is a parametric test to
check if means of two or more samples come
from the same distribution. It's an F-test, a type of
statistical test that compares variances, like
variance across samples or explained versus
unexplained variance in ANOVA. This method is

particularly useful when one variable is
numerical and the other is categorical, such as
numerical input features and a categorical target
variable in classification tasks. The results of
ANOVA can be applied in feature selection by
identifying and removing features that are
independent of the target variable, helping to
refine the dataset for better model performance.

2.3. Machine learning models to predict
financial risk

In this study, we implement and compare the
effectiveness of statistical and machine learning
models, including Logistic Regression (LR),
Support Vector Machine (SVM), Random Forest
(RF), Adaptive Boosting (AdaBoost), Gradient
Boosting, and Multi-layer Perceptron (MLP).

2.3.1. Logistic Regression

Logistic regression is a widely used statistical
method for binary outcome prediction.?® In this
study, it is applied to determine financial risk
status. The model produces an output B,, which
represents the probability of being at risk based
on the input variables X. This probability is
derived using Equation ().

1
1+e—(BotBiX1++BXy) (1)

Py = 1|X) =

Logistic regression often serves as a
baseline in studies designed to measure the
performance  of  alternative  forecasting
approaches. Its primary strength lies in the
simplicity and clarity of its results, making them
accessible and easy to interpret for most users.
This high level of interpretability makes logistic
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regression a popular choice in practical
applications, particularly  within  financial
institutions.

2.3.2. Support Vector Machine

Support Vector Machine (SVM) is a robust
machine learning algorithm designed for both
classification and regression tasks.? In this study,
it is employed to classify data points into distinct
categories based on input features X. The model
constructs an optimal hyperplane that maximizes
the margin between support vectors. The
classification process will take place according to
Equation (2):

y = sign(w'x + b) (2)

SVM s particularly effective in handling
high-dimensional data and is often combined
with kernel functions to address non-linear
problems. Its main advantage lies in its ability to
generalize well, even with limited data, making it
a standard choice in applications like image
classification,  bioinformatics, and  text
categorization.

2.3.3. Random Forest

Random Forest is a highly effective ensemble
algorithm  frequently employed for both
classification and regression. This method builds
a collection of decision trees during training and
then synthesizes their outputs to improve
prediction accuracy and limit overfitting.?? Each
tree is trained on a random subset of data, and
only a random subset of features is considered for
splitting at each node, enhancing diversity among
the trees. The final prediction is made through
majority voting (for classification) or averaging
(for regression). Known for its robustness and
ability to handle high-dimensional, non-linear
data, Random Forest is widely applied in areas
like financial risk assessment, medical diagnosis,
and image classification.

2.3.4. Adaptive Boosting

Boosting constructs a model on training data,
then creates another model to fix the first model's
errors. This technique is repeated until errors
diminish and data prediction is accurate.
Boosting combines multiple weak models into a
strong model for the final result.

AdaBoost works by initially assigning
equal weights to all samples in the training
dataset.”® The algorithm then iterates for a
predefined number of iterations or until a
stopping criterion is met. In each iteration, a weak
classifier f; (e.g., a one-level decision tree) is

trained on the data. The weights of the samples
are updated, giving higher weights to
misclassified examples to focus more on them in
subsequent iterations. The weak classifiers are
evaluated based on their errors, with lower-error
classifiers receiving higher weights. The sample
weights are then normalized to sum up to 1. The
final prediction is made by combining the
predictions of all p weak classifiers using a
weighted majority vote:

p

f(x) = sign Z a;fi(x) ®)

i=1

This process repeats until the specified number of
iterations is completed or the stopping criterion is
satisfied.

2.3.5. Gradient Boosting

Gradient Boosting, a powerful boosting
algorithm, creates strong learners by combining
weak ones. It trains each new model to minimize
the previous model's loss—like mean squared
error or cross-entropy—using gradient descent.
In each step, the algorithm calculates the loss
function's gradient against the ensemble's
predictions and trains a new weak model to
reduce this gradient.?* The ensemble is built
incrementally by adding predictions from each
new model, a process that continues until a
stopping point is reached. Different from
AdaBoost which adjusts sample weights,
Gradient Boosting focuses on training each new
predictor to target the residual errors from the
previous one, using these residuals as the learning
objective. Gradient Boosted Trees, a well-known
implementation, is based on CART
(Classification and Regression Trees).

2.3.6. Multi-layer Perceptron (MLP)

Multi-layer Perceptron (MLP) is the most
common neural network architecture, composed
of input, hidden, and output layers.”® For each
neuron in a hidden layer, the operation involves
taking a weighted sum of its inputs. This sum is
then subjected to a non-linear activation,
examples of which include the Rectified Linear
Unit (ReLU), Sigmoid, and Hyperbolic Tangent
(Tanh).

During training, MLP utilizes a two-step
learning process: forward propagation and
backpropagation. In forward propagation, the
output of a neuron is computed as follows:

20 = WwOx@-D 4 p® (4)
a® = f(z) (5)
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where W® and b® are the weight matrix and
bias vector for layer [, (=1 is the input from the
previous layer, and f(.) is the activation
function. The backpropagation algorithm then
updates the network’s weights by computing
gradients of the loss function with respect to the
weights using the chain rule. The gradient descent
optimization technique, often with variations
such as Stochastic Gradient Descent (SGD) or
Adam, is applied to minimize the loss iteratively.

MLP is widely used in classification and
regression tasks due to its ability to learn complex
patterns in data. It serves as a foundation for more
advanced deep learning models and s
particularly effective in applications such as
image recognition, speech processing, and time
series prediction.

2.3. Local Interpretable Model-agnostic
Explanations (LIME)

Local Interpretable Model-agnostic Explanations
(LIME) is an algorithmic approach designed to
elucidate the predictions of any classifier or
regressor. It achieves this by creating a locally
faithful approximation using an interpretable
model.?®

Often classified as a “surrogate model”
approach, the LIME explainability model is
constructed through a step-by-step procedure.
First, to generate a substitute dataset, the LIME
algorithm subtly alters the feature values of the
original dataset — the very data that trained the
black-box model. Next, these newly created
samples are assigned weights that reflect their
similarity to the particular instance under
explanation. Lastly, an inherently understandable
model, like a decision tree or logistic regression,
is employed as a surrogate machine learning
model and trained on this weighted, artificially
created dataset. The learned model should be a
good approximation of the machine learning
model predictions locally, but it does not have to
be a good global approximation. This kind of
accuracy is also called local fidelity. The
explanation produced by LIME is obtained by the
following:

§(x) = argmin L(f,g,m) +Q(g)  (6)

g
LIME explains instance x with a model g (like
linear regression) that minimizes a loss £ (e.g.,
mean squared error). Loss £ measures how well
g mimics the original model f (e.g., AdaBoost)
predictions, while keeping g simple (low Q(g)).

G is the set of possible g models, for example, all
linear regressions. m, defines the neighborhood
size around x used for explanation.

3. RESULTS AND DISCUSSION
3.1. Dimensionality reduction results

Figure 1 illustrates the F-statistics of 34 features
when performing ANOVA. X14 (debt-to-equity
ratio) appears to be the most relevant, and 16 out
of 34 features have significantly higher scores

compared to the rest. We will retain these 16
features and remove the other 18 to proceed with
building machine learning model.

Figure 1. ANOVA F-test result.

3.2. Performance of machine learning models

When training a machine learning model, we fit
the model's parameters. However, before the
model begins learning, certain parameters are
pre-set—these are called hyperparameters. We
can improve the model's performance by tuning
these hyperparameters. There are several
hyperparameter tuning methods, such as grid
search, random search, and Bayesian
optimization. Among them, grid search is widely
used. Grid search works by building a grid of all
hyperparameter settings. Then, it trains and tests
the model with each setting and picks the best
one. This complete search of hyperparameters
makes sure every option is checked. Moreover,
grid search is typically used with cross-
validation, specifically k-fold cross-validation.
Here, the training set is divided into k parts. In
each iteration, k — 1 parts are used to train the
model, while the remaining part is used for
validation. The best set of hyperparameters is the
one that yields the highest average performance.
Finally, the models with the optimal set of
hyperparameters are tested on the test set using
various metrics.

Table 3 presents the hyper-parameter settings and
the evaluation of the models on different metric



Table 3. Performance of the models on test set.

Models Hyper-parameter settings Accuracy | Precision | Recall S(I::olre AUC
Logistic C=1, max_iter=300, penalty=1",
Regression solver= ‘saga’ 0.9331 0.8861 | 0.8952 | 0.8901 | 0.9693
C=1, degree=2, gamma=‘scale’,
SVM kernel="rbf’ 0.8642 0.7799 | 0.8729 | 0.8097 | 0.9534
bootstrap=False, max_depth=10,
Random max_features=‘sqrt’,
Forest min_samples_split=20, 0.9484 0.9133 | 0.9166 | 0.9149 | 0.9836
n_estimators=100
AdaBoost learning_rate=1, n_estimators=500 0.9331 0.8904 | 0.8873 | 0.8888 | 0.9780
learning_rate=0.5, loss=‘log_loss’,
Gradient | max_depth=7, max_fealures="sqrt’, | 49579 | (9276 | 0.9344 | 0.9309 | 0.9870
Boosting min_samples_split=20,
n_estimators=100
activation=‘relu’, alpha=0.01,
MLP hidden_layer_sizes=(100,), 09312 | 08785 | 0.9020 | 0.8896 | 0.9788
learning_rate=‘adaptive’,
solver=‘adam’

Gradient Boosting achieved the best
performance across all metrics, indicating high
predictive accuracy and a good balance between
precision and recall. Random Forest ranked
second with high accuracy and AUC,
demonstrating strong and consistent
classification ability. MLP also showed good
results across all metrics, particularly in AUC.

AdaBoost and Logistic Regression had
similar performance with accuracy but showed
lower precision and recall compared to Gradient
Boosting and Random Forest. SVM had the
lowest performance across all  metrics,
particularly in precision and F1 score, indicating
difficulties in accurate classification and
balancing precision and recall.

Overall, Gradient Boosting is the most
suitable model for this problem, followed by
Random Forest and MLP, while SVM performed
the worst.

3.3. Interpretations of results

We used LIME to interpret the two best-
performing models: Gradient Boosting and
Random Forest. A random instance from the test
set was selected to generate a local explanation
for this specific instance (Figure 2).

The chosen instance has a true label of y =
—1, indicating no risk. Both models identified
features X12 and X24 as the most influential.
Specifically, X12 contributes to the model's
prediction of y = —1, while X24 influences the
prediction in the opposite direction. For Gradient
Boosting, the impact of features decreases
noticeably from top to bottom, highlighting the
model’s tendency to focus on the most important
features. In contrast, Random Forest distributes
influence more evenly across features, reflecting
its nature of aggregating predictions from
multiple independent decision trees.

Local explanations are valuable for
understanding the reasoning behind individual
predictions. However, analyzing a single instance
does not provide a comprehensive understanding
of the model's overall behavior. To gain deeper
insights into the model's decision-making
process, we can aggregate local explanations
across multiple predictions. Specifically, by
combining the LIME weights of numerous
instances and visualizing them through various
types of charts, we can better capture the model's
general patterns and feature importance.
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Figure 2. Local explainations of Gradient Boosting
and Random Forest.

The first aggregation can help us
understand which of the features are most
important. Features with either high positive or
negative LIME weights had a larger impact on a
prediction. For each feature, we take the absolute
mean of all the LIME weights. Features with
large mean weights have, in general, made large
contributions to the predictions. Figure 3 shows
the average weights of the features in the two
models. It can be observed that the important
features are relatively similar across both models.
These features are the current ratio (X12), return
on assets (X6), debt ratio (X20), and debt-to-
equity ratio (X14).

Next, we will examine the trends of these
important features by plotting the LIME weights
against their values. A high LIME weight
indicates that, for a specific prediction, the value

of this feature increases the probability of
predicting a “At risk” case (y=1).

Gradient Boosting

Features
>
=
o

I T T T T T T T T
0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16
Mean|Weight|

Random Forest

Features
>
=
[

I T T T T T T T T
0.00 001 002 003 004 005 0.06 007 0.08
Mean|Weight|

Figure 3. Absolute mean of LIME weights.

Figure 4 illustrates that as the values of
X12 and X6 rise, their LIME weights shift from
positive to negative. X12, representing the
current ratio, assesses a company's short-term
liquidity. A low current ratio suggests potential
liquidity problems, which increase financial risk
and result in a positive LIME weight. In contrast,
a high current ratio indicates a stronger ability to
meet debt obligations, reducing financial risk and
producing a negative LIME weight. This negative
weight decreases the probability of being
classified as risky (y =1). Meanwhile, X8,
which measures return on assets (ROA), reflects
how efficiently a company generates profit from
its assets. A low ROA indicates weak profitability
and higher financial risk, leading to a positive
LIME weight. Conversely, a high ROA signifies
effective asset management and lower risk,
resulting in a negative LIME weight.

On the other hand, the LIME weights for
X20 and X14 increase as their values grow. X20,
the debt ratio, indicates the proportion of a
company’s assets financed through debt. A high
debt ratio suggests significant reliance on
borrowed funds, which raises financial leverage
and risk due to fixed interest obligations.
Similarly, X14, the debt-to-equity ratio,
compares total debt to shareholders' equity. A
high value for X14 indicates a greater
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Figure 4. Feature trends for the four most important features.

dependence on debt compared to equity, leading
to increased financial burden and risk.

4. CONCLUSIONS

In this study, we developed and compared
advanced machine learning models to predict the
financial risk of companies listed on the
Vietnamese stock market. Based on financial
ratios, various models were constructed,
hyperparameters were optimized, and evaluations
were conducted using different metrics. The two
best-performing models were Gradient Boosting
and Random Forest, achieving over 94%
accuracy and more than 91% recall. This
demonstrates the superiority of ensemble
learning methods over single models.
Furthermore, the LIME method was utilized to
explain the models' predictions and the influence
of different features on their decisions. The
results indicate that to reduce financial risk,
businesses should improve their current ratio
(X12) by efficiently managing inventory and
accelerating receivables collection, thereby
reducing the likelihood of liquidity issues.
Additionally, enhancing return on assets (ROA -
X6) through optimized production processes can
lower financial risk. Companies should also
closely monitor the debt ratio (X20) and debt-to-
equity ratio (X14) by avoiding excessive
borrowing and increasing equity financing to
reduce interest burdens. Moreover, diversifying
funding sources by balancing debt and equity
financing will optimize the capital structure and
minimize financial risk in the long term. The
findings of this study provide a foundation for
businesses to manage risks more effectively,
make safer business decisions, and optimize their
strategies.

X14
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