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Ứng dụng học máy trong đánh giá rủi ro tài chính của các 
công ty niêm yết trên thị trường chứng khoán Việt Nam 

 

 

 

TÓM TẮT 

Quản lý rủi ro tài chính là điều cần thiết đối với các doanh nghiệp vì nó giúp ngăn ngừa tổn thất và tối đa hóa 

lợi nhuận. Do quá trình này phụ thuộc nhiều vào việc ra quyết định dựa trên dữ liệu, học máy mang lại tiềm năng phát 

triển các phương pháp và công nghệ sáng tạo. Trong bài báo này, chúng tôi so sánh khả năng dự đoán của các mô 

hình học máy khác nhau và sử dụng phương pháp LIME để diễn giải cách chúng đưa ra quyết định. Dữ liệu được thu 

thập từ báo cáo tài chính của các công ty niêm yết từ năm 2009 đến năm 2023. Kết quả cho thấy Gradient Boosting 

và Random Forest đạt hiệu suất tốt nhất. Thêm vào đó, trọng số LIME chỉ ra rằng các yếu tố ảnh hưởng nhiều nhất 

đến dự đoán của các mô hình là tỷ lệ thanh khoản hiện hành, tỷ suất lợi nhuận trên tài sản, tỷ lệ nợ và tỷ lệ nợ trên vốn 

chủ sở hữu. 

Từ khóa: Rủi ro tài chính, công ty niêm yết, mô hình học máy, phương pháp LIME. 
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Application of machine learning in assessing financial risk of 
listed companies on the Vietnam stock market 

 
 

  

ABSTRACT 

Financial risk management is essential for businesses as it helps prevent losses and maximize profits. Since 

this process depends heavily on data-driven decision-making, machine learning offers a promising avenue for 

developing innovative methods and technologies. In this paper, we compare the predictive capabilities of various 

machine learning models and use the LIME method to interpret how they make decisions. Data was collected from 

the financial statements of listed companies from 2009 to 2023. The results show that Gradient Boosting and Random 

Forest achieved the best performance. Additionally, LIME weights indicate that the most influential factors affecting 

the models' predictions are the current ratio, return on assets, debt ratio, and debt-to-equity ratio. 

Keywords: Financial risk, listed companies, machine learning models, LIME method. 

 

1. INTRODUCTION  

Financial risk arises when there is a chance that 

an event will cause a company to underperform 

relative to its planned financial targets or 
established metrics.1 Examples of such financial 

metrics or values encompass earnings per share, 

return on equity, and cash flows. Financial risks 
encompass categories such as market risk, credit 

risk, market liquidity risk, operational risk, and 

legal risk. Financial risk assessment is critical for 
investors, regulators, and corporate managers to 

identify potential challenges and mitigate their 

impacts.   

 Financial risk is often associated with the 
risk of bankruptcy or insolvency of a business. 

Traditional methods of financial risk assessment 

often rely on expert judgment and statistical 
models. Experts can leverage their domain 

knowledge to identify potential risks, assess the 

impact of external factors, and interpret the 
results of statistical models. However, expert 

judgment can be subjective and prone to bias, 

particularly when dealing with complex financial 

scenarios. Numerous statistical models have been 
proposed, such as Z-score, S-score, O-score, X-

score, H-score, B-score,…2-7 In Vietnam, 

researchers have tested the Z-score model in 
forecasting corporate failure8 and bankruptcy9, 

applied the B-score in analyzing factors 

influencing financial risk10, compared various 

models in measuring financial distress11,… 
Statistical models are straightforward in design, 

offer strong explanatory power, and require 

relatively short training time. These methods, 

however, rely on several rigid preconditions that 

frequently prove to be impractical in real-world 

situations. These preconditions include, for 

example, the existence of linear relationships, 
consistent variance across data, and variable 

independence. If these preconditions are not met, 

the effectiveness of these statistical approaches in 

prediction can be diminished.12 

 In recent years, machine learning (ML) has 

emerged as a powerful tool for overcoming the 
limitations of traditional methods. ML algorithms 

can automatically learn complex patterns from 

large datasets, without relying on strict 

assumptions. This makes them well-suited for 
financial risk assessment, where data is often 

noisy, incomplete, and high-dimensional. 

Algorithms such as support vector machine 
(SVM), decision tree, and artificial neural 

network are applied to enhance the efficiency of 

traditional methods in volatility forecasting, 
bankruptcy prediction, credit scoring,…13-16 

Ensemble learning and hybrid models have been 

widely studied in this field. Research suggests 

that random forest algorithms may surpass other 

single or hybrid classifiers.17,18 

 In this article, we will construct and 

compare the performance of several advanced 
machine learning models, such as SVM, neural 

networks, random forests, gradient boosting,…in 

forecasting the financial risks of listed companies 

on the Vietnamese stock market. Additionally, 
we also assess the importance of features using 

LIME to identify the key factors influencing 
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financial risk and propose solutions to mitigate 

these risks.  

2. METHODOLOGY 

2.1. Data collection and preprocessing 

In this study, we utilize data extracted from the 
financial statements of companies listed on the 

HOSE (Ho Chi Minh Stock Exchange), HNX 

(Hanoi Stock Exchange), and UPCOM (Unlisted 

Public Company Market). The data spans the 
period from 2009 to 2023 and includes balance 

sheets, income statements, and cash flow 

statements.  

 This study applies machine learning 

models to predict financial risk, specifically 

bankruptcy risk, formulated as a classification 

problem. To identify companies at risk, we utilize 
five widely recognized bankruptcy prediction 

models: the Altman Z-score, Springate S-score, 

Zmijewski X-score, Taffler Z-score, and Grover 
G-score (Table 1). A company is labeled as 1 (at 

risk) if the majority of the five models classify it 

as being at risk, and -1 otherwise. Regarding 

independent variables, based on several studies, 
we use 34 financial ratios as inputs for the 

machine learning models, as presented in Table 

2. These ratios reflect various aspects of the 
company, such as liquidity, profitability, 

efficiency, and leverage.  

Table 1. Bankruptcy prediction models for defining the target variable. 

Model Formula Conclusion 

Z-score (1968) Z = 1.2Z1 + 1.4Z2 + 3.3Z3+ 0.6Z4 + 1.0Z5 
Z1 = Working capital / Total assets 

Z2 = Retained earnings / Total assets 

Z3 = EBIT / Total assets 
Z4 = Market value of equity / Total liabilities 

Z5 = Sales / Total assets 

Z < 2.99: 𝑦 = 1  

Z ≥ 2.99: 𝑦 = −1 

S-score (1978)  S = 1.03S1 + 3.07S2 + 0.66S3 + 0.4S4 

S1 = Working capital / Total assets 
S2 = EBIT / Total assets 

S3 = Profit before tax / Current liabilities 

S4 = Sales / Total assets 

S < 0.862: 𝑦 = 1 

S ≥ 0.862: 𝑦 = −1 
 

X-score (1984) X = -4.336 – 4.513X1 + 5.679X2 – 0.004X3 

X1 = Net income / Total assets 

X2 = Total liabilities / Total assets 

X3 = Current assets / Current liabilites 

X ≥ 0: 𝑦 = 1 

X < 0: 𝑦 = −1 

Taffler Z-score 

(1983) 

T = 3.20 + 12.18T1 + 2.50T2 – 10.68T3 + 0.029T4 

T1 = Profit before tax / Current liabilities 

T2 = Current assets / Total liabilities 

T3 = Current liabilities / Total assets 
T4 = No-credit interval 

T ≤ 0.3: 𝑦 = 1 

T > 0.3: 𝑦 = −1 

 

G-score (2001) G = 1.6505G1 + 3.404G2 – 0.016G3 + 0.057 

G1 = Working capital / Total asssets 
G2 = EBIT / Total assets 

G3 = ROA  

G ≤ 0.01: 𝑦 = 1 

G > 0.01: 𝑦 = −1 

Table 2. Financial ratios (features) for assessing financial risk. 

Symbol Ratio name Symbol Ratio name 

X1 Price-to-earnings ratio X18 EV-to-EBIT ratio 

X2 Price-to-sale ratio X19 Price-to-operating- cash-flow ratio 

X3 Price-to-book ratio X20 Debt ratio 

X4 Earnings per share X21 Price-to-cash-flow ratio 

X5 Return on equity X22 Book value per share 

X6 Return on assets X23 Cash ratio 
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X7 Return on invested capital X24 Return on capital employed 

X8 Operating margin X25 Return on sales 

X9 Gross margin X26 Cash return on invested capital 

X10 Net margin X27 Cash return on equity 

X11 EBIT margin X28 Cash return on assets 

X12 Current ratio X29 Free cash flow margin 

X13 Quick ratio X30 Operating cash flow margin 

X14 Debt-to-equity ratio X31 Total asset turnover ratio 

X15 Operating cash flow ratio X32 Equity ratio 

X16 EV-to-EBITDA ratio X33 Fixed asset turnover ratio 

X17 EV-to-sales ratio X34 Receivables turnover ratio 

 The dataset consists of 2614 observations, 

including 557 observations with 𝑦 = 1 and 2057 

observations with 𝑦 = −1. Before performing 

preprocessing steps, the data is split into training 
and testing sets at an 8:2 ratio to prevent data 

leakage. Data leakage in machine learning arises 

when a model, during its training phase, utilizes 
data that would not be accessible when making 

actual predictions. This form of leakage creates a 

deceptive appearance of model accuracy, which 

is only revealed to be false upon deployment. In 
practice, such models produce unreliable 

outcomes, resulting in flawed decision-making 

and misleading conclusions. The dataset is then 
cleaned by removing outliers and imputing 

missing values.  

2.2. Dimensionality reduction 

Dimensionality reduction involves decreasing the 

number of features to enable efficient model 

development. It has two main methods: feature 

selection and feature extraction. Feature selection 
chooses the most important original features. 

Feature extraction makes new features by 

combining or changing the originals. 

 Here, we will use the feature selection to 

retain the original meaning of the variables in the 

dataset. Our data has numerical attributes, and the 

target variable is categorical, so we will use the 
ANOVA F-test technique.19 ANOVA, or 

“analysis of variance”, is a parametric test to 

check if means of two or more samples come 
from the same distribution. It's an F-test, a type of 

statistical test that compares variances, like 

variance across samples or explained versus 
unexplained variance in ANOVA. This method is 

particularly useful when one variable is 

numerical and the other is categorical, such as 

numerical input features and a categorical target 

variable in classification tasks. The results of 
ANOVA can be applied in feature selection by 

identifying and removing features that are 

independent of the target variable, helping to 

refine the dataset for better model performance. 

2.3. Machine learning models to predict 

financial risk 

In this study, we implement and compare the 

effectiveness of statistical and machine learning 

models, including Logistic Regression (LR), 

Support Vector Machine (SVM), Random Forest 
(RF), Adaptive Boosting (AdaBoost), Gradient 

Boosting, and Multi-layer Perceptron (MLP). 

2.3.1. Logistic Regression 

Logistic regression is a widely used statistical 

method for binary outcome prediction.20 In this 

study, it is applied to determine financial risk 

status. The model produces an output 𝑃𝑛, which 
represents the probability of being at risk based 

on the input variables 𝑿. This probability is 

derived using Equation (1).  

       

𝑃𝑛(𝑦 = 1|𝑿) =
1

1+𝑒−(𝛽0+𝛽1𝑋1+⋯+𝛽𝑘𝑋𝑘)
 (1) 

 Logistic regression often serves as a 
baseline in studies designed to measure the 

performance of alternative forecasting 

approaches. Its primary strength lies in the 
simplicity and clarity of its results, making them 

accessible and easy to interpret for most users. 

This high level of interpretability makes logistic 
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regression a popular choice in practical 

applications, particularly within financial 

institutions. 

2.3.2. Support Vector Machine 

Support Vector Machine (SVM) is a robust 
machine learning algorithm designed for both 

classification and regression tasks.21 In this study, 

it is employed to classify data points into distinct 

categories based on input features 𝑿. The model 
constructs an optimal hyperplane that maximizes 

the margin between support vectors. The 

classification process will take place according to 

Equation (2):  

𝑦 = sign(𝒘𝑇𝒙 + 𝑏) (2) 

 SVM is particularly effective in handling 

high-dimensional data and is often combined 
with kernel functions to address non-linear 

problems. Its main advantage lies in its ability to 

generalize well, even with limited data, making it 
a standard choice in applications like image 

classification, bioinformatics, and text 

categorization. 

2.3.3. Random Forest 

Random Forest is a highly effective ensemble 

algorithm frequently employed for both 

classification and regression. This method builds 
a collection of decision trees during training and 

then synthesizes their outputs to improve 

prediction accuracy and limit overfitting.22 Each 
tree is trained on a random subset of data, and 

only a random subset of features is considered for 

splitting at each node, enhancing diversity among 

the trees. The final prediction is made through 
majority voting (for classification) or averaging 

(for regression). Known for its robustness and 

ability to handle high-dimensional, non-linear 
data, Random Forest is widely applied in areas 

like financial risk assessment, medical diagnosis, 

and image classification. 

2.3.4. Adaptive Boosting 

Boosting constructs a model on training data, 

then creates another model to fix the first model's 

errors. This technique is repeated until errors 
diminish and data prediction is accurate. 

Boosting combines multiple weak models into a 

strong model for the final result. 

 AdaBoost works by initially assigning 

equal weights to all samples in the training 

dataset.23 The algorithm then iterates for a 
predefined number of iterations or until a 

stopping criterion is met. In each iteration, a weak 

classifier 𝑓𝑖 (e.g., a one-level decision tree) is 

trained on the data. The weights of the samples 

are updated, giving higher weights to 
misclassified examples to focus more on them in 

subsequent iterations. The weak classifiers are 

evaluated based on their errors, with lower-error 
classifiers receiving higher weights. The sample 

weights are then normalized to sum up to 1. The 

final prediction is made by combining the 

predictions of all 𝑝 weak classifiers using a 

weighted majority vote: 

𝑓(𝒙) = sign (∑ 𝛼𝑖𝑓𝑖(𝒙)

𝑝

𝑖=1

) (3) 

This process repeats until the specified number of 

iterations is completed or the stopping criterion is 

satisfied. 

2.3.5. Gradient Boosting 

Gradient Boosting, a powerful boosting 

algorithm, creates strong learners by combining 
weak ones. It trains each new model to minimize 

the previous model's loss—like mean squared 

error or cross-entropy—using gradient descent. 
In each step, the algorithm calculates the loss 

function's gradient against the ensemble's 

predictions and trains a new weak model to 

reduce this gradient.24 The ensemble is built 
incrementally by adding predictions from each 

new model, a process that continues until a 

stopping point is reached. Different from 
AdaBoost which adjusts sample weights, 

Gradient Boosting focuses on training each new 

predictor to target the residual errors from the 
previous one, using these residuals as the learning 

objective. Gradient Boosted Trees, a well-known 

implementation, is based on CART 

(Classification and Regression Trees). 

2.3.6. Multi-layer Perceptron (MLP) 

Multi-layer Perceptron (MLP) is the most 

common neural network architecture, composed 
of input, hidden, and output layers.25 For each 

neuron in a hidden layer, the operation involves 

taking a weighted sum of its inputs. This sum is 

then subjected to a non-linear activation, 
examples of which include the Rectified Linear 

Unit (ReLU), Sigmoid, and Hyperbolic Tangent 

(Tanh). 

 During training, MLP utilizes a two-step 

learning process: forward propagation and 

backpropagation. In forward propagation, the 

output of a neuron is computed as follows: 

𝒛(𝑙) = 𝑾(𝑙)𝒙(𝑙−1) + 𝒃(𝑙) (4)

𝒂(𝑙) = 𝑓(𝒛(𝑙)) (5)
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where 𝑾(𝑙) and 𝒃(𝑙) are the weight matrix and 

bias vector for layer 𝑙, 𝒙(𝑙−1) is the input from the 

previous layer, and 𝑓(. ) is the activation 

function. The backpropagation algorithm then 

updates the network’s weights by computing 
gradients of the loss function with respect to the 

weights using the chain rule. The gradient descent 

optimization technique, often with variations 
such as Stochastic Gradient Descent (SGD) or 

Adam, is applied to minimize the loss iteratively. 

 MLP is widely used in classification and 

regression tasks due to its ability to learn complex 
patterns in data. It serves as a foundation for more 

advanced deep learning models and is 

particularly effective in applications such as 
image recognition, speech processing, and time 

series prediction. 

2.3. Local Interpretable Model-agnostic 

Explanations (LIME) 

Local Interpretable Model-agnostic Explanations 

(LIME) is an algorithmic approach designed to 

elucidate the predictions of any classifier or 
regressor. It achieves this by creating a locally 

faithful approximation using an interpretable 

model.26 

 Often classified as a “surrogate model” 

approach, the LIME explainability model is 

constructed through a step-by-step procedure. 

First, to generate a substitute dataset, the LIME 
algorithm subtly alters the feature values of the 

original dataset – the very data that trained the 

black-box model. Next, these newly created 
samples are assigned weights that reflect their 

similarity to the particular instance under 

explanation. Lastly, an inherently understandable 
model, like a decision tree or logistic regression, 

is employed as a surrogate machine learning 

model and trained on this weighted, artificially 

created dataset. The learned model should be a 
good approximation of the machine learning 

model predictions locally, but it does not have to 

be a good global approximation. This kind of 
accuracy is also called local fidelity. The 

explanation produced by LIME is obtained by the 

following: 

𝜉(𝑥) = argmin
𝑔∈𝐺

ℒ(𝑓, 𝑔, 𝜋𝑥) + Ω(𝑔) (6)
 

LIME explains instance 𝑥 with a model 𝑔 (like 

linear regression) that minimizes a loss ℒ (e.g., 

mean squared error). Loss ℒ measures how well 

𝑔 mimics the original model 𝑓 (e.g., AdaBoost) 

predictions, while keeping 𝑔 simple (low Ω(𝑔)). 

𝐺 is the set of possible 𝑔 models, for example, all 

linear regressions. 𝜋𝑥  defines the neighborhood 

size around 𝑥 used for explanation. 

3. RESULTS AND DISCUSSION 

3.1. Dimensionality reduction results  

Figure 1 illustrates the F-statistics of 34 features 
when performing ANOVA. X14 (debt-to-equity 

ratio) appears to be the most relevant, and 16 out 

of 34 features have significantly higher scores 

compared to the rest. We will retain these 16 
features and remove the other 18 to proceed with 

building machine learning model. 

Figure 1. ANOVA F-test result. 

3.2. Performance of machine learning models 

When training a machine learning model, we fit 

the model's parameters. However, before the 

model begins learning, certain parameters are 
pre-set—these are called hyperparameters. We 

can improve the model's performance by tuning 

these hyperparameters. There are several 

hyperparameter tuning methods, such as grid 
search, random search, and Bayesian 

optimization. Among them, grid search is widely 

used. Grid search works by building a grid of all 
hyperparameter settings. Then, it trains and tests 

the model with each setting and picks the best 

one. This complete search of hyperparameters 
makes sure every option is checked. Moreover, 

grid search is typically used with cross-

validation, specifically k-fold cross-validation. 

Here, the training set is divided into 𝑘 parts. In 

each iteration, 𝑘 − 1 parts are used to train the 

model, while the remaining part is used for 

validation. The best set of hyperparameters is the 
one that yields the highest average performance. 

Finally, the models with the optimal set of 

hyperparameters are tested on the test set using 

various metrics. 

Table 3 presents the hyper-parameter settings and 

the evaluation of the models on different metric
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Table 3. Performance of the models on test set. 

Models Hyper-parameter settings Accuracy Precision Recall 
F1 

Score 
AUC 

Logistic 

Regression 

C=1, max_iter=300, penalty=‘1’, 

solver= ‘saga’ 
0.9331 0.8861 0.8952 0.8901 0.9693 

SVM 
C=1, degree=2, gamma=‘scale’, 

kernel=‘rbf’ 
0.8642 0.7799 0.8729 0.8097 0.9534 

Random 

Forest 

bootstrap=False, max_depth=10, 

max_features=‘sqrt’, 

min_samples_split=20, 

n_estimators=100 

0.9484 0.9133 0.9166 0.9149 0.9836 

AdaBoost learning_rate=1, n_estimators=500 0.9331 0.8904 0.8873 0.8888 0.9780 

Gradient 

Boosting 

learning_rate=0.5, loss=‘log_loss’, 

max_depth=7, max_features=‘sqrt’, 

min_samples_split=20, 

n_estimators=100 

0.9579 0.9276 0.9344 0.9309 0.9870 

MLP 

activation=‘relu’, alpha=0.01, 

hidden_layer_sizes=(100,), 
learning_rate=‘adaptive’, 

solver=‘adam’ 

0.9312 0.8785 0.9020 0.8896 0.9788 

 Gradient Boosting achieved the best 

performance across all metrics, indicating high 
predictive accuracy and a good balance between 

precision and recall. Random Forest ranked 

second with high accuracy and AUC, 
demonstrating strong and consistent 

classification ability. MLP also showed good 

results across all metrics, particularly in AUC. 

 AdaBoost and Logistic Regression had 

similar performance with accuracy but showed 

lower precision and recall compared to Gradient 

Boosting and Random Forest. SVM had the 
lowest performance across all metrics, 

particularly in precision and F1 score, indicating 

difficulties in accurate classification and 

balancing precision and recall. 

 Overall, Gradient Boosting is the most 

suitable model for this problem, followed by 
Random Forest and MLP, while SVM performed 

the worst.  

3.3. Interpretations of results 

We used LIME to interpret the two best-
performing models: Gradient Boosting and 

Random Forest. A random instance from the test 

set was selected to generate a local explanation 

for this specific instance (Figure 2). 

 The chosen instance has a true label of 𝑦 =
−1, indicating no risk. Both models identified 
features X12 and X24 as the most influential. 

Specifically, X12 contributes to the model's 

prediction of 𝑦 = −1, while X24 influences the 
prediction in the opposite direction. For Gradient 

Boosting, the impact of features decreases 

noticeably from top to bottom, highlighting the 

model’s tendency to focus on the most important 
features. In contrast, Random Forest distributes 

influence more evenly across features, reflecting 

its nature of aggregating predictions from 

multiple independent decision trees.  

 Local explanations are valuable for 

understanding the reasoning behind individual 
predictions. However, analyzing a single instance 

does not provide a comprehensive understanding 

of the model's overall behavior. To gain deeper 

insights into the model's decision-making 
process, we can aggregate local explanations 

across multiple predictions. Specifically, by 

combining the LIME weights of numerous 
instances and visualizing them through various 

types of charts, we can better capture the model's 

general patterns and feature importance. 
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Figure 2. Local explainations of Gradient Boosting 

and Random Forest. 

 The first aggregation can help us 
understand which of the features are most 

important. Features with either high positive or 

negative LIME weights had a larger impact on a 

prediction. For each feature, we take the absolute 
mean of all the LIME weights. Features with 

large mean weights have, in general, made large 

contributions to the predictions. Figure 3 shows 
the average weights of the features in the two 

models. It can be observed that the important 

features are relatively similar across both models. 

These features are the current ratio (X12), return 
on assets (X6), debt ratio (X20), and debt-to-

equity ratio (X14). 

 Next, we will examine the trends of these 
important features by plotting the LIME weights 

against their values. A high LIME weight 

indicates that, for a specific prediction, the value  

of this feature increases the probability of 

predicting a “At risk” case (𝑦 = 1). 

 

Figure 3. Absolute mean of LIME weights. 

 Figure 4 illustrates that as the values of 

X12 and X6 rise, their LIME weights shift from 
positive to negative. X12, representing the 

current ratio, assesses a company's short-term 

liquidity. A low current ratio suggests potential 
liquidity problems, which increase financial risk 

and result in a positive LIME weight. In contrast, 

a high current ratio indicates a stronger ability to 
meet debt obligations, reducing financial risk and 

producing a negative LIME weight. This negative 

weight decreases the probability of being 

classified as risky (𝑦 = 1). Meanwhile, X6, 
which measures return on assets (ROA), reflects 

how efficiently a company generates profit from 

its assets. A low ROA indicates weak profitability 
and higher financial risk, leading to a positive 

LIME weight. Conversely, a high ROA signifies 

effective asset management and lower risk, 

resulting in a negative LIME weight. 

 On the other hand, the LIME weights for 

X20 and X14 increase as their values grow. X20, 

the debt ratio, indicates the proportion of a 
company’s assets financed through debt. A high 

debt ratio suggests significant reliance on 

borrowed funds, which raises financial leverage 
and risk due to fixed interest obligations. 

Similarly, X14, the debt-to-equity ratio, 

compares total debt to shareholders' equity. A 

high value for X14 indicates a greater 
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dependence on debt compared to equity, leading 

to increased financial burden and risk. 

4. CONCLUSIONS 

In this study, we developed and compared 

advanced machine learning models to predict the 
financial risk of companies listed on the 

Vietnamese stock market. Based on financial 

ratios, various models were constructed, 
hyperparameters were optimized, and evaluations 

were conducted using different metrics. The two 

best-performing models were Gradient Boosting 
and Random Forest, achieving over 94% 

accuracy and more than 91% recall. This 

demonstrates the superiority of ensemble 

learning methods over single models. 
Furthermore, the LIME method was utilized to 

explain the models' predictions and the influence 

of different features on their decisions. The 
results indicate that to reduce financial risk, 

businesses should improve their current ratio 

(X12) by efficiently managing inventory and 
accelerating receivables collection, thereby 

reducing the likelihood of liquidity issues. 

Additionally, enhancing return on assets (ROA - 

X6) through optimized production processes can 
lower financial risk. Companies should also 

closely monitor the debt ratio (X20) and debt-to-

equity ratio (X14) by avoiding excessive 
borrowing and increasing equity financing to 

reduce interest burdens. Moreover, diversifying 

funding sources by balancing debt and equity 

financing will optimize the capital structure and 
minimize financial risk in the long term. The 

findings of this study provide a foundation for 

businesses to manage risks more effectively, 
make safer business decisions, and optimize their 

strategies.  
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