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TÓM TẮT 

Các giá trị lịch sử của công suất phát điện gió thường được sử dụng trong hầu hết các mô hình và phương 

pháp dự báo điện gió trong các tài liệu. Tuy nhiên, các thông số vận hành có thể ảnh hưởng đến kết quả dự báo 

chẳng hạn như tốc độ gió, góc pitch, nhiệt độ môi trường, vị trí nacelle, và hướng gió chưa được xem xét trong các 

phương pháp hiện tại. Do đó, mục tiêu cơ bản của bài báo này là đề xuất các mô hình mạng nơ ron hồi quy dùng cho 

dự báo công suất phát điện gió có xem xét các tham số vận hành này. Nghiên cứu này xem xét dữ liệu công suất 

phát điện gió và các tham số vận hành tương ứng từ máy phát tuabin gió số 5 của 1 trang trại gió. Dữ liệu từ ngày 01 

tháng 07 năm 2024 đến 31 tháng 07 năm 2024 được thu thập từ hệ thống SCADA. Đầu tiên, mô hình mạng nơ ron 

tự hồi quy phi tuyến có các đầu vào được áp dụng để dự báo công suất phát điện gió. Thứ hai, mô hình mạng hồi 

quy lớp được sử dụng để dự báo công suất phát điện gió. Thứ ba, mô hình mạng nơ ron trễ phân tán được dùng để 

dự báo công suất phát điện gió. Thứ tư, mô hình mạng nơ ron trễ thời gian được huấn luyện để ước lượng điện gió. 

Cuối cùng, các mô hình mạng nơ ron hồi quy này được so sánh để xác định mô hình dự báo công suất phát điện gió 

tốt hơn khi xét theo các tiêu chí sai số tuyệt đối trung bình, sai số phần trăm tuyệt đối trung bình và sai số bình 

phương trung bình.  

Từ khóa: Dự báo điện gió, mạng nơ ron tự hồi quy phi tuyến có các đầu vào, mạng nơ ron hồi quy lớp, mạng nơ 

ron trễ phân tán, mạng nơ ron trễ thời gian. 
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ABSTRACT 

The historical values of wind power generation are generally utilized in most forecasting models and 

methods in the literature. Unfortunately, the operational parameters such as wind speed, pitch angle, ambient 

temperature, nacelle position, and wind direction may affect the forecasting results. Therefore, the primary objective 

of this paper is to propose recurrent neural network models for wind power generation forecasting considering these 

operational parameters. In this study, the wind power generation data and the associated operational parameters 

from the wind turbine generator 05 of a wind farm are investigated. The data from July 1st, 2024 to July 31st, 2024 is 

collected from the SCADA system. Firstly, the nonlinear autoregressive neural network with external input is 

applied to make the wind power generation prediction. Secondly, the layer recurrent neural network model is 

employed to forecast wind power generation. Thirdly, the distributed delay neural network model is implemented to 

predict wind power generation. Fourthly, the time delay neural network model is trained to estimate the wind power. 

Finally, these recurrent neural network models are compared to determine the better wind power generation 

forecasting model in terms of mean absolute error, mean absolute percent error, and root mean square error.  

Keywords: Wind power forecasting, nonlinear autoregressive neural network with external input, layer recurrent 

neural network, distributed delay neural network, time delay neural network. 

1. INTRODUCTION  

The rapid increase in energy demand forces 

people to seek alternative energy sources in 

addition to traditional ones that are depleting 

and causing pollution issues. Wind power is a 

clean and renewable source. From the Global 

Wind Report 2024 of GWEC (Global Wind 

Energy Council), it is shown that 2023 saw the 

highest number of new installations in history 

for onshore wind (over 100 GW) and the second 

highest for offshore wind (11 GW). Wind 

energy installations will increase from a level of 

117 GW in 2023 to at least 320 GW of annual 

installations by 2030 1. Actually, wind power 

generation plays a significant role in electricity 

supply. Wind energy integration into power 

systems presents inherent unpredictability 

because of the intermittent nature of wind 

energy 2. As wind energy makes significant 

penetration into the electricity grid, the need for 

accurate predictions of wind power generation 

becomes critical and urgent 3,4. To solve these 

challenges, wind power forecasting can be a 

useful solution. Consequently, numerous WPF 

models and methods have been proposed and 

executed in the literature. According to the time 

horizon, wind power forecasting can be 

categorized as ultra short-term, short-term, 

medium-term, and long-term. Various types of 

forecasting models and methods are proposed 

for wind power generation time series. The 

traditional statistical models and methods are 

usually applied by using the previous historical 

data to perform a forecast. In WPF, the 

statistical models are applied as exponential 

smoothing approach 5,6, autoregressive 7, 

autoregressive moving average (ARMA) 8,9, 

autoregressive integrated moving average 

(ARIMA) 10,11. Besides, artificial intelligence-

based models are another research direction in 

wind power forecasting. Depending on the 

neural network (NN) structures, various models 

are proposed in wind power generation 

forecasting. Feed-forward NN models are used 

to make the wind power prediction such as 

multi-layer perceptron 12 and back-propagation 

NN 13. Another kind of NN model with feedback 

namely the recurrent NN (RNN) model is also 

used in this research direction. The RNN model-

based wind power forecasting methods are 

Elman NN 14, layer RNN 15, nonlinear 

autoregressive NN 16, long short-term memory 

(LSTM) 17, bidirectional LSTM 18, gated 

recurrent unit 19, and echo state network 20. 

Support vector machine 21, gradient boosting 

regression tree algorithms 22, and ensemble 
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model 23 belonging to machine learning are also 

implemented in wind power forecasting. Other 

attempts to combine different models or 

methods using different ways to improve the 

forecasting results such as autoregressive 

fractionally integrated moving average and least 

square support vector machine 24, boosting 

algorithm and ARMA model 25, hybrid 

CEEMDAN-EWT deep learning method 25, and 

neuro wavelet and LSTM models 26. In these 

existing studies, most wind power forecasting 

models handle the wind power generation time 

series data issues without considering the 

operational parameters which might affect the 

forecasting results. Some significant operational 

parameters can be considered wind speed, pitch 

angle, ambient temperature, nacelle position, 

and wind direction. In this paper, one of the 6 

turbines of a wind farm, located on the south-

central coast, Vietnam with a 114-metre height 

and a 132-metre rotor is considered. These 

operational parameters and wind power 

generation time series data are collected at 10-

minute intervals from the SCADA system. The 

data is collected from July 01st, 2024 to July 31st, 

2024. This data is divided into three different 

case studies. Then, numerous RNN models 

including nonlinear autoregressive NN with 

external input (Narxnet), layer RNN 

(Layrecnet), distributed delay NN 

(Distdelaynet), and time delay neural network 

(Timedelaynet) investigating both operational 

parameters and wind power generation are 

proposed for wind power generation forecasting. 

To identify the efficiency of wind power 

forecasting models, evaluation criteria such as 

mean absolute error  (MAE), mean absolute 

percent error (MAPE), and root mean square 

error (RMSE) are used. Based on the final 

results, a better forecasting model can be 

determined. An overview of wind power 

generation forecasting using RNN models can 

be represented in Figure 1.  

Operating parameters

(wind speed, pitch angle, ambient temperature, 

nacelle position, wind direction)

Wind power generation

DISTDELAYNET TIMEDELAYNETLAYRECNETNARXNET

MAE WAPE RMSE

Better forecasting model  

Figure 1. Overview of the wind power generation 

forecasting using RNN models. 

2. METHODOLOGY 

2.1. Nonlinear autoregressive neural network 

with external input 

Narxnet is a nonlinear autoregressive model 

with exogenous inputs in time series modeling. 

In this model, the current value of a time series 

relates to both past values of the same series and 

current and past values of exogenous series. The 

Narxnet model, applied to time series 

forecasting, can be written as follows: 

 1 2 1 2( , ,..., , , ,...)t t t t t ty f y y x x x− − − −=  (1) 

where f  denotes an unknown nonlinear 

function (i.e., transfer function or activation 

function); ty  denotes the predicted value of the 

time series data of y  at a discrete time t ; and tx  

denotes the externally determined variable. The 

Narxnet model can be shown in Figure 2. 

Transfer 

function

x(t)

y(t) 

Delays

Delays

  
Transfer 

function
y(t)

Hidden layer Output layerInput layer  

Figure 2. Narxnet model. 

2.2. Layer recurrent neural network 

Layrecnet is another type of RNN models. 

However, the output of the hidden layer is 

connected to the input layer with delays. 

Therefore, the network may have an infinite 

dynamic response to time series input data. The 

Layrecnet model can be shown in Figure 3. 

Transfer 

function

x(t)

y(t) Delays   
Transfer 

function

Hidden layer Output layerInput layer
 

Figure 3. Layrecnet model. 

2.3. Distributed delay neural network 

Distdelaynet is another type of RNN models. 

The input layer and hidden layer have a tap 

delay line associated with them. Therefore, the 

network may have a finite dynamic response to 

time series input data. The Distdelaynet model 

can be shown in Figure 4. 

Transfer 

function
x(t) y(t) Delays Delays   

Transfer 

function

Hidden layer Output layerInput layer  

Figure 4. Distdelaynet model. 
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2.4. Time delay neural network 

Timedelaynet is another type of RNN models. 

The input layer has a tap delay line associated 

with it. Therefore, the network may have a finite 

dynamic response to time series input data. The 

Timedelaynet model can be shown in Figure 5. 

Transfer 

function
x(t) y(t) Delays   

Transfer 

function

Hidden layer Output layerInput layer  

Figure 5. Timedelaynet model. 

2.4. Transfer function 

Normally, three transfer functions are used as 

follows: 

Linear (i.e., purelin): 

 f x= .  (1) 

Hyperbolic tangent sigmoid (i.e., tansig): 

 
2

2
1

1 x
f

e−
= −

+
. (2) 

Log-sigmoid (i.e., logsig): 

 
1

1 x
f

e−
=

+
. (3) 

2.5. Training algorithm 

The weights of the network are randomly 

initialized, and then repeatedly adjusted through 

the minimization of the cost function, which is 

calculated by measuring the difference between 

the actual output and the desired value 27. 

Several training algorithms are used in NN 

training such as resilient back-propagation (i.e., 

trainrp), Bayesian regularization back-

propagation (i.e., trainbr), BFGS quasi-Newton 

back-propagation (i.e., trainbfg), Levenberg-

Marquardt back-propagation (i.e., trainlm), … 

2.6. Evaluation criteria 

MAE: 

 
1

1
n

t t

t

MAE A F
n

=

= −  (4) 

where tA  is the actual value, tF  is the forecasted 

value, and n  is the number of observations. 

WAPE: 

 1

1

n

t t

t

n

t

t

A F

WAPE

A

=

=

−

=




. (5) 

RMSE: 

 ( )
2

1

1
n

t t

t

RMSE A F
n

=

= − . (6) 

3. CASE STUDIES 

The time-series data from the wind turbine 05 

(3.5 MW with a height of 114 meters, 132-meter 

rotor diameter) in a wind farm is collected from 

July 01st, 2024 to July 31st, 2024 (i.e., case study 

3) with 10-minute intervals. Two investigated 

sub-periods in this period are from July 01st, 

2024 to July 07th, 2024 (i.e., case study 1) and 

from July 25th, 2024 to July 31st, 2024 (i.e., case 

study 2). The total number of observations in 

three case studies is given in Table 1.  

 Table 1. Number of observations. 

Data 
Case 

study 1 

Case 

study 2 

Case 

study 3 

Number of 

observations 
1008 1008 4464 

The wind speed, pitch angle, ambient 

temperature, nacelle position, and wind direction 

from July 01st, 2024 to July 31st, 2024 are 

illustrated in Figures 6, 7, 8, 9, and 10, 

respectively.  

 

Figure 6. Wind speed. 
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Figure 7. Pitch angle. 

 

Figure 8. Ambient temperature. 

 

Figure 9. Nacelle position. 

 

Figure 10. Wind direction. 

All the recurrent NN models with one hidden 

layer are implemented. Moreover, all these 

recurrent NN models with 1 feedback delay in 

their corresponding structures are coded and 

trained in Matlab software. The transfer 

function, training function, and number of 

hidden neurons of all the trained Narxnet, 

Layrecnet, Distdelaynet, and Timedelaynet 

models in case studies 1, 2, and 3 are 

represented in Tables 2, 3, and 4, respectively.  

Table 2. Information of the recurrent NN models in 

case study 1. 

Model 
Transfer 

function 

Training 

function 

Hidden 

neurons 

Narxnet Tansig Trainbr 47 

Layrecnet Tansig Trainbr 30 

Distdelaynet Tansig Trainbr 143 

Timedelaynet Logsig Trainbr 253 

Table 3. Information of the recurrent NN models in 

case study 2. 

Model 
Transfer 

function 

Training 

function 

Hidden 

neurons 

Narxnet Logsig Trainbr 21 

Layrecnet Tansig Trainbr 79 

Distdelaynet Tansig Trainlm 232 

Timedelaynet Tansig Trainbr 301 

Table 4. Information of the recurrent NN models in 

case study 3. 

Model 
Transfer 

function 

Training 

function 

Hidden 

neurons 

Narxnet Tansig Trainlm 32 

Layrecnet Tansig Trainbr 48 

Distdelaynet Logsig Trainlm 372 

Timedelaynet Tansig Trainbr 180 

The evaluation values of all the forecasting 

recurrent NN models in all case studies are 

illustrated in Tables 5, 6, and 7, respectively. 

Table 5. Evaluation criteria of the proposed 

forecasting models in case study 1. 

Model MAE WAPE(%) RMSE 

Narxnet 56.0914 22.3584 87.4324 

Layrecnet 18.6198 7.4220 24.9867 

Distdelaynet 65.9784 26.2994 130.9846 

Timedelaynet 49.9778 19.9215 98.3547 

Table 6. Evaluation criteria of the proposed 

forecasting models in case study 2. 

Model MAE WAPE(%) RMSE 

Narxnet 269.7987 17.0885 382.9613 

Layrecnet 80.9957 5.1301 104.7831 

Distdelaynet 341.8460 21.6519 490.9236 
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Timedelaynet 207.4276 13.1381 289.5628 

Table 7. Evaluation criteria of the proposed 

forecasting models in case study 3. 

Model MAE WAPE(%) RMSE 

Narxnet 168.6443 18.3242 263.3885 

Layrecnet 41.3159 4.4892 58.1676 

Distdelaynet 248.0907 26.9565 388.8692 

Timedelaynet 164.6041 17.8852 256.3703 

Based on the results in Table 5, the Narxnet 

model can provide better forecasting results 

(with MAE = 56.0914, WAPE = 22.3584%, and 

RMSE = 87.4324) compared to the Distdelaynet 

model (with MAE = 65.9784, WAPE = 

26.2994%, and RMSE = 130.9846). In addition, 

the Timedelaynet model with MAE = 49.9778, 

WAPE = 19.9215%, and RMSE = 98.3547 can 

provide better prediction results compared to the 

Narxnet model. Finally, the Layrecnet model 

with MAE = 18.6198, WAPE = 7.4220%, and 

RMSE = 24.9867 can provide better prediction 

results compared to the Timedelaynet model. 

Obviously, the Layrecnet model is the best wind 

power forecasting method in this case study. 

Similarly, as shown in Table 6, the Layrecnet 

model (with MAE = 80.9957, WAPE = 

5.1301%, and RMSE = 104.7831) can provide 

better wind power forecasting results compared 

to the Timedelaynet model (with MAE = 

207.4276, WAPE = 13.1381%, and RMSE = 

289.5628), the Narxnet model (with MAE = 

269.7987, WAPE = 17.0885%, and RMSE = 

382.9613), and the Distdelaynet model (with 

MAE = 341.8460, WAPE = 21.6519%, and 

RMSE = 490.9236). As shown in Table 7, the 

Layrecnet model (with MAE = 41.3159, WAPE 

= 4.4892%, and RMSE = 58.1676) also can 

provide better wind power forecasting results 

compared to the Timedelaynet model (with 

MAE = 164.6041, WAPE = 17.8852%, and 

RMSE = 256.3703), the Narxnet model (with 

MAE = 168.6443, WAPE = 18.3242%, and 

RMSE = 263.3885), and the Distdelaynet model 

(with MAE = 248.0907, WAPE = 26.9565%, 

and RMSE = 388.8692). The four forecasting 

results from Narxnet, Layrecnet, Distdelaynet, 

and Timedelaynet models with the actual wind 

power generation data in case studies 1, 2, and 3 

are shown in Figures 11, 12, and 13, 

respectively. The actual wind power values are 

represented by the solid line (blue color). The 

forecasted values using the Narxnet, Layrecnet, 

Distdelaynet, and Timedelaynet models are 

demonstrated by the dash lines with red color, 

blue color, purple color, and light blue color, 

respectively. 

 

Figure 11. The forecasted results of wind power generation in case study 1. 
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Figure 12. The forecasted results of wind power generation in case study 2. 

 

Figure 13. The forecasted results of wind power generation in case study 3. 

4. CONCLUSION 

In this paper, the operational parameters such as 

wind speed, pitch angle, ambient temperature, 

nacelle position, and wind direction are 

considered in wind power generation 

forecasting. A wind farm including 6 turbines 

(capacity of 3.5 MW per turbine) with a height 

of 114 meters and 132-meter rotor diameter is 

considered. The time series data of turbine 05 

from July 01st, 2024 to July 31st, 2024 is 

collected. Several recurrent neural network 

models consisting of Narxnet, Layrecnet, 

Distdelaynet, and Timedelaynet are proposed as 

alternative wind power generation forecasting 

methods. The Layrecnet model can provide 

better wind power forecasting results compared 

to these other models in terms of MAE, WAPE, 

and RMSE. For further study, the optimal 

structures of these models can be identified to 

provide better solutions. 
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