Cac mé hinh mang no ron héi quy dung cho dw bao dién gié

TOM TAT

Céc gia tri lich sir cua cong suat phat dién gio thuong duoc sir dung trong hau hét cac mé hinh va phuong
phap du bao dién gi6 trong cac tai liéu. Tuy nhién, cac thong s van hanh ¢ thé anh huong dén két qua du bao
chéng han nhu tdc do gi0, goc pitch, nhiét d6 moi truong, vi tri nacelle, va hudng gié chua duge xem xét trong cac
phwong phap hién tai. Do d6, muyc tiéu co ban cta bai bao nay 1a d& xudt cic mé hinh mang no ron hdi quy ding cho
du bao cong sudt phat dién gié c6 xem xét cac tham sé van hanh ndy. Nghién ctru ndy xem xét dir lidu cong suét
phat dién gi6 va cac tham sd van hanh tuong (mg tir may phat tuabin gi6 s6 5 cua 1 trang trai gi6. Dir lidu tir ngay 01
thang 07 ndm 2024 dén 31 thang 07 ndm 2024 dugc thu thap tir hé théng SCADA. Pau tién, mo hinh mang no ron
tu hoi quy phi tuyén co cac dau vao dugc ap dung dé du bao cong suit phat dién gié. Thir hai, mé hinh mang hoi
quy 16p duoc sir dung dé du bao cong suit phat dién gié. Thir ba, md hinh mang no ron tré phan tan dugc dung dé
du bao cong suat phat dién gi6. Thi tu, md hinh mang no ron tré thoi gian duoc hudn luyén dé ude luong dién gio.
Cubi ciing, cac md hinh mang no ron hdi quy nay dugc so sanh dé xac dinh mé hinh dy bao cong suat phat dién gio
t6t hon khi xét theo cac tiéu chi sai s§ tuyét ddi trung binh, sai s6 phan tram tuyét d6i trung binh va sai s6 binh
phuong trung binh.

Tir khéa: Dy bdo dién gi6, mang no ron tw hoi quy phi tuyén cé cac dau vao, mang no ron hoi quy 16p, mang no
ron tré phan tan, mang no ron tré thoi gian.



Recurrent neural network models for wind power forecasting

ABSTRACT

The historical values of wind power generation are generally utilized in most forecasting models and
methods in the literature. Unfortunately, the operational parameters such as wind speed, pitch angle, ambient
temperature, nacelle position, and wind direction may affect the forecasting results. Therefore, the primary objective
of this paper is to propose recurrent neural network models for wind power generation forecasting considering these
operational parameters. In this study, the wind power generation data and the associated operational parameters
from the wind turbine generator 05 of a wind farm are investigated. The data from July 1%, 2024 to July 31%, 2024 is
collected from the SCADA system. Firstly, the nonlinear autoregressive neural network with external input is
applied to make the wind power generation prediction. Secondly, the layer recurrent neural network model is
employed to forecast wind power generation. Thirdly, the distributed delay neural network model is implemented to
predict wind power generation. Fourthly, the time delay neural network model is trained to estimate the wind power.
Finally, these recurrent neural network models are compared to determine the better wind power generation
forecasting model in terms of mean absolute error, mean absolute percent error, and root mean square error.

Keywords: Wind power forecasting, nonlinear autoregressive neural network with external input, layer recurrent
neural network, distributed delay neural network, time delay neural network.

1. INTRODUCTION medium-term, and long-term. Various types of
forecasting models and methods are proposed
for wind power generation time series. The
traditional statistical models and methods are
usually applied by using the previous historical
data to perform a forecast. In WPF, the
statistical models are applied as exponential
smoothing approach 5% autoregressive 7,
autoregressive moving average (ARMA) 89
autoregressive integrated moving average
(ARIMA) 011 Besides, artificial intelligence-
based models are another research direction in
wind power forecasting. Depending on the
neural network (NN) structures, various models
are proposed in wind power generation
forecasting. Feed-forward NN models are used
to make the wind power prediction such as
multi-layer perceptron *2 and back-propagation
NN . Another kind of NN model with feedback
namely the recurrent NN (RNN) model is also
used in this research direction. The RNN model-
based wind power forecasting methods are
Elman NN  layer RNN *° nonlinear
autoregressive NN ¢, long short-term memory
(LSTM) Y, bidirectional LSTM 8 gated
recurrent unit *°, and echo state network %,
Support vector machine %, gradient boosting
regression tree algorithms 22, and ensemble

The rapid increase in energy demand forces
people to seek alternative energy sources in
addition to traditional ones that are depleting
and causing pollution issues. Wind power is a
clean and renewable source. From the Global
Wind Report 2024 of GWEC (Global Wind
Energy Council), it is shown that 2023 saw the
highest number of new installations in history
for onshore wind (over 100 GW) and the second
highest for offshore wind (11 GW). Wind
energy installations will increase from a level of
117 GW in 2023 to at least 320 GW of annual
installations by 2030 ®. Actually, wind power
generation plays a significant role in electricity
supply. Wind energy integration into power
systems presents inherent unpredictability
because of the intermittent nature of wind
energy 2. As wind energy makes significant
penetration into the electricity grid, the need for
accurate predictions of wind power generation
becomes critical and urgent 4. To solve these
challenges, wind power forecasting can be a
useful solution. Consequently, numerous WPF
models and methods have been proposed and
executed in the literature. According to the time
horizon, wind power forecasting can be
categorized as ultra short-term, short-term,
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model % belonging to machine learning are also
implemented in wind power forecasting. Other
attempts to combine different models or
methods using different ways to improve the
forecasting results such as autoregressive
fractionally integrated moving average and least
square support vector machine 2%, boosting
algorithm and ARMA model 2, hybrid
CEEMDAN-EWT deep learning method %, and
neuro wavelet and LSTM models . In these
existing studies, most wind power forecasting
models handle the wind power generation time
series data issues without considering the
operational parameters which might affect the
forecasting results. Some significant operational
parameters can be considered wind speed, pitch
angle, ambient temperature, nacelle position,
and wind direction. In this paper, one of the 6
turbines of a wind farm, located on the south-
central coast, Vietnam with a 114-metre height
and a 132-metre rotor is considered. These
operational parameters and wind power
generation time series data are collected at 10-
minute intervals from the SCADA system. The
data is collected from July 01%, 2024 to July 31*,
2024. This data is divided into three different
case studies. Then, numerous RNN models
including nonlinear autoregressive NN with
external input  (Narxnet), layer RNN
(Layrecnet), distributed delay NN
(Distdelaynet), and time delay neural network
(Timedelaynet) investigating both operational
parameters and wind power generation are
proposed for wind power generation forecasting.
To identify the efficiency of wind power
forecasting models, evaluation criteria such as
mean absolute error (MAE), mean absolute
percent error (MAPE), and root mean square
error (RMSE) are used. Based on the final
results, a better forecasting model can be
determined. An overview of wind power
generation forecasting using RNN models can
be represented in Figure 1.

Operating parameters
(wind speed, pitch angle, ambient temperature, Wind power generation
nacelle position, wind direction)

NARXNET

| LAYRECNET | |DISTDELAYNET| | TIMEDELAYNET|

Better forecasting model

Figure 1. Overview of the wind power generation
forecasting using RNN models.

2. METHODOLOGY

2.1. Nonlinear autoregressive neural network
with external input

Narxnet is a nonlinear autoregressive model
with exogenous inputs in time series modeling.
In this model, the current value of a time series
relates to both past values of the same series and
current and past values of exogenous series. The
Narxnet model, applied to time series
forecasting, can be written as follows:

Ve = F (Ve Yeooeo X X g X 20000) (1)

where f denotes an unknown nonlinear
function (i.e., transfer function or activation
function); y, denotes the predicted value of the
time series data of y at adiscrete time t; and x,

denotes the externally determined variable. The
Narxnet model can be shown in Figure 2.
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Figure 2. Narxnet model.
2.2. Layer recurrent neural network

Layrecnet is another type of RNN models.
However, the output of the hidden layer is
connected to the input layer with delays.
Therefore, the network may have an infinite
dynamic response to time series input data. The
Layrecnet model can be shown in Figure 3.
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Figure 3. Layrecnet model.
2.3. Distributed delay neural network

Distdelaynet is another type of RNN models.
The input layer and hidden layer have a tap
delay line associated with them. Therefore, the
network may have a finite dynamic response to
time series input data. The Distdelaynet model
can be shown in Figure 4.
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Figure 4. Distdelaynet model.



2.4. Time delay neural network

Timedelaynet is another type of RNN models.
The input layer has a tap delay line associated
with it. Therefore, the network may have a finite
dynamic response to time series input data. The
Timedelaynet model can be shown in Figure 5.
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Figure 5. Timedelaynet model.
2.4. Transfer function

Normally, three transfer functions are used as
follows:

Linear (i.e., purelin):

f =x. @
Hyperbolic tangent sigmoid (i.e., tansig):

2

f= -1. 2

1+e @)
Log-sigmoid (i.e., logsig):
1

f= . 3

1+e7% ®)

2.5. Training algorithm

The weights of the network are randomly
initialized, and then repeatedly adjusted through
the minimization of the cost function, which is
calculated by measuring the difference between
the actual output and the desired value 2.
Several training algorithms are used in NN
training such as resilient back-propagation (i.e.,
trainrp),  Bayesian  regularization  back-
propagation (i.e., trainbr), BFGS quasi-Newton
back-propagation (i.e., trainbfg), Levenberg-
Marquardt back-propagation (i.e., trainlm), ...

2.6. Evaluation criteria
MAE:

MAE:EZM—FJ (4)
t=1

where A is the actual value, F, is the forecasted
value, and n is the number of observations.

WAPE:

> |a-F

WAPE =t | (5)

> |Al
t=1

13 2
RMSE = ,E;(A—H) : (6)

3. CASE STUDIES

The time-series data from the wind turbine 05
(3.5 MW with a height of 114 meters, 132-meter
rotor diameter) in a wind farm is collected from
July 01%, 2024 to July 31%, 2024 (i.e., case study
3) with 10-minute intervals. Two investigated
sub-periods in this period are from July 01%,
2024 to July 07", 2024 (i.e., case study 1) and
from July 25%, 2024 to July 31%, 2024 (i.e., case
study 2). The total number of observations in
three case studies is given in Table 1.

RMSE:

Table 1. Number of observations.

Case Case Case

Data study 1 | study 2 | study 3

Number of

observations 1008 1008 | 4464

The wind speed, pitch angle, ambient
temperature, nacelle position, and wind direction
from July 01%, 2024 to July 31%, 2024 are
illustrated in Figures 6, 7, 8, 9, and 10,
respectively.

Figure 6. Wind speed.

) L o
1500 2000 2500
Number of observations




Figure 7. Pitch angle.
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Figure 9. Nacelle position.

Figure 10. Wind direction.

All the recurrent NN models with one hidden
layer are implemented. Moreover, all these
recurrent NN models with 1 feedback delay in
their corresponding structures are coded and
trained in Matlab software. The transfer
function, training function, and number of
hidden neurons of all the trained Narxnet,
Layrecnet, Distdelaynet, and Timedelaynet
models in case studies 1, 2, and 3 are
represented in Tables 2, 3, and 4, respectively.

Table 2. Information of the recurrent NN models in
case study 1.

Transfer | Training | Hidden

Model function | function | neurons
Narxnet Tansig | Trainbr | 47
Layrecnet Tansig | Trainbr | 30

Distdelaynet | Tansig | Trainbr | 143

Timedelaynet | Logsig | Trainbr | 253

Table 3. Information of the recurrent NN models in
case study 2.

Transfer | Training | Hidden

Model . .
function | function | neurons

Narxnet Logsig | Trainbr |21

Layrecnet Tansig | Trainbr | 79

Distdelaynet | Tansig | Trainlm | 232

Timedelaynet | Tansig | Trainbr | 301

Table 4. Information of the recurrent NN models in
case study 3.

Transfer | Training | Hidden

Model ; .
function | function | neurons

Narxnet Tansig | Trainlm | 32

Layrecnet Tansig | Trainbr | 48

Distdelaynet | Logsig | Trainlm | 372

Timedelaynet | Tansig | Trainbr | 180

The evaluation values of all the forecasting
recurrent NN models in all case studies are
illustrated in Tables 5, 6, and 7, respectively.

Table 5. Evaluation criteria of the proposed
forecasting models in case study 1.

Model MAE | WAPE(%) | RMSE

Narxnet 56.0914 | 22.3584 | 87.4324
Layrecnet | 18.6198 | 7.4220 24.9867
Distdelaynet | 65.9784 | 26.2994 | 130.9846
Timedelaynet | 49.9778 | 19.9215 | 98.3547

Table 6. Evaluation criteria of the proposed
forecasting models in case study 2.

Model MAE WAPE(%) | RMSE

Narxnet 269.7987 | 17.0885 382.9613
Layrecnet 80.9957 |5.1301 104.7831
Distdelaynet | 341.8460 | 21.6519 490.9236
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207.4276 | 13.1381 289.5628

Timedelaynet

Table 7. Evaluation criteria of the proposed
forecasting models in case study 3.

Model MAE WAPE (%) | RMSE
Narxnet 168.6443 | 18.3242 263.3885
Layrecnet 41.3159 | 4.4892 58.1676
Distdelaynet | 248.0907 | 26.9565 | 388.8692
Timedelaynet | 164.6041 | 17.8852 256.3703

Based on the results in Table 5, the Narxnet
model can provide better forecasting results
(with MAE = 56.0914, WAPE = 22.3584%, and
RMSE = 87.4324) compared to the Distdelaynet
model (with MAE = 65.9784, WAPE =
26.2994%, and RMSE = 130.9846). In addition,
the Timedelaynet model with MAE = 49.9778,
WAPE = 19.9215%, and RMSE = 98.3547 can
provide better prediction results compared to the
Narxnet model. Finally, the Layrecnet model
with MAE = 18.6198, WAPE = 7.4220%, and
RMSE = 24.9867 can provide better prediction
results compared to the Timedelaynet model.
Obviously, the Layrecnet model is the best wind
power forecasting method in this case study.
Similarly, as shown in Table 6, the Layrecnet

2500

model (with MAE = 80.9957, WAPE =
5.1301%, and RMSE = 104.7831) can provide
better wind power forecasting results compared
to the Timedelaynet model (with MAE
207.4276, WAPE = 13.1381%, and RMSE
289.5628), the Narxnet model (with MAE
269.7987, WAPE = 17.0885%, and RMSE
382.9613), and the Distdelaynet model (with
MAE = 341.8460, WAPE = 21.6519%, and
RMSE = 490.9236). As shown in Table 7, the
Layrecnet model (with MAE = 41.3159, WAPE
= 4.4892%, and RMSE = 58.1676) also can
provide better wind power forecasting results
compared to the Timedelaynet model (with
MAE = 164.6041, WAPE = 17.8852%, and
RMSE = 256.3703), the Narxnet model (with
MAE = 168.6443, WAPE = 18.3242%, and
RMSE = 263.3885), and the Distdelaynet model
(with MAE = 248.0907, WAPE = 26.9565%,
and RMSE = 388.8692). The four forecasting
results from Narxnet, Layrecnet, Distdelaynet,
and Timedelaynet models with the actual wind
power generation data in case studies 1, 2, and 3
are shown in Figures 11, 12, and 13,
respectively. The actual wind power values are
represented by the solid line (blue color). The
forecasted values using the Narxnet, Layrecnet,
Distdelaynet, and Timedelaynet models are
demonstrated by the dash lines with red color,
blue color, purple color, and light blue color,
respectively.
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Figure 11. The forecasted results of wind power generation in case study 1.
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Figure 12. The forecasted results of wind power generation in case study 2.
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Figure 13. The forecasted results of wind power generation in case study 3.

4. CONCLUSION

In this paper, the operational parameters such as
wind speed, pitch angle, ambient temperature,
nacelle position, and wind direction are
considered in  wind power generation
forecasting. A wind farm including 6 turbines
(capacity of 3.5 MW per turbine) with a height
of 114 meters and 132-meter rotor diameter is
considered. The time series data of turbine 05
from July 01%, 2024 to July 31%, 2024 is
collected. Several recurrent neural network
models consisting of Narxnet, Layrecnet,
Distdelaynet, and Timedelaynet are proposed as
alternative wind power generation forecasting

methods. The Layrecnet model can provide
better wind power forecasting results compared
to these other models in terms of MAE, WAPE,
and RMSE. For further study, the optimal
structures of these models can be identified to
provide better solutions.
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