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TÓM TẮT
Dự báo quá trình giám sát kinh doanh là một nhiệm vụ dạng chuỗi thời gian đầy thách thức do bản chất phức tạp và biến thiên của các quy trình kinh doanh, liên quan đến việc dự đoán các trường hợp đang diễn ra như hoạt động tiếp theo, hậu tố hoạt động và dự đoán thời gian còn lại trong một quy trình kinh doanh. Quá trình điểm thời gian được sử dụng rộng rãi để mô hình hóa chuỗi các sự kiện xảy ra ở các khoảng thời gian không đồng đều, để mô hình hóa thời gian xảy ra và nắm bắt các phụ thuộc thời gian giữa các sự kiện. Với những tiến bộ gần đây trong mạng nơ-ron sâu, Quá trình điểm thời gian sâu đã nổi lên như một cách tiếp cận đầy hứa hẹn để nắm bắt các mẫu phức tạp trong chuỗi sự kiện với dấu thời gian. Do đó, Quá trình điểm thời gian sâu có thể là một cách tiếp cận tiềm năng để dự đoán quá trình giám sát kinh doanh. Trong bài báo này, chúng tôi thử nghiệm và xem xét hiệu quả của các nghiên cứu gần đây trong Quá trình điểm thời gian sâu đối với vấn đề giám sát quy trình kinh doanh dự đoán. Kết quả của chúng tôi cho thấy rằng các phương pháp Quá trình điểm thời gian sâu có tiềm năng trong hoạt động tiếp theo và dự đoán thời gian còn lại trong dự đoán quy trình giám sát kinh doanh. Những phát hiện này có thể hữu ích cho các chuyên gia và nhà nghiên cứu quan tâm đến việc phát triển các hệ thống dự đoán giám sát cho các quy trình kinh doanh.
Từ khoá: Giám sát quá trình kinh doanh, quá trình điểm thời gian, mạng nơ-ron sâu.
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ABSTRACT
Predictive business process monitoring is a challenging time series task due to the complex and dynamic nature of business processes, which involves predicting the ongoing cases in terms of the next activity, activity suffix, and remaining time prediction on a business process. Temporal point processes (TPPs) are widely used to model sequences of events happening at irregular intervals, to model the occurrence times of events, and to capture the temporal dependencies among them. With the recent advances in deep neural networks, deep TPPs have emerged as a promising approach for capturing complex patterns in event sequences with occurrence timestamps. Hence, deep TPPs can be a potential approach to tackle business predictive monitoring tasks. In this paper, we experiment and review the effectiveness of recent research on deep TPPs on the predictive business process monitoring problem. Our results suggest that TPP methods have the potential in the next activity and remaining time prediction in the predictive business process monitoring problem. The findings can be helpful to practitioners and researchers interested in developing predictive monitoring systems for business processes.
Keywords: Business process monitoring, temporal point process, deep neural network.


INTRODUCTION
A business process is a collection of tasks performed asynchronously by various resources, such as humans, software, or hardware, to achieve a specific goal.1 The execution of these tasks is tracked and documented in an event log, which records details such as the identifier of the case, the event performed, and the timestamp of the event.2 There may also be optional case attributes, which are shared by events of the same case, or event attributes that are unique to each event. Business process mining is the discipline concerned with the analysis of these logs, tackling it from different perspectives such as discovering the underlying process model from the log, checking that the executions registered in the log are conformant with the process model, or extracting or inferring analytics that enhances the description of what has happened in the process executions.3 Predictive monitoring is a process mining technique that predicts how an ongoing process case will unfold using the event log's information. The ability to make predictions is beneficial for anticipating issues before they arise, enabling the reallocation of resources before they are wasted, and providing recommendations.4
Studying the temporal distribution of events and discovering the relationships among different types of events is a great scientific approach for predictive monitoring and understanding the dynamics and mechanism of events occurrence.5–9 One of its choices is the Temporal Point Process (TPP), the stochastic process with marked events on the continuous domain of time, which can naturally capture the clustering or self-correcting phenomena of such sequences of events.10,11 Often, the rate of event occurrence, known as conditional intensity, is modeled as a function of time based on the prior observation of events to capture the dynamics of the process. Given that the conditional intensity function (CIF) entirely governs the distribution of such a process, statistical prediction, and inference can all be performed via the CIFs.
Despite significant advancements in TPP, especially in models based on deep neural networks (DNNs), most of these models use different history encoders to embed historical events and various forms of intensity functions that are parameterized by the embedded historical sequence of events.12–17 Also, to our knowledge, no experiment has been conducted on the efficiency of TPP in monitoring the business process.18 
Hence, in this paper, we contribute to defining a data preprocessing procedure for the business process monitoring data set to suit the deep TPP models and evaluating different combinations of TPP methods regarding the history encoders and CIFs. We experiment to evaluate the capability and ability of deep TPP models on the predictive business process monitoring datasets.
BACKGROUND
This section provides an overview of the key concepts and techniques used in the study, including predictive business process monitoring and TPPs. It lays the foundation for understanding the experiments and results.
Predictive business process monitoring
	Case ID
	Activity
	Resource
	Timestamp

	Case 1
	Assign seriousness
	Value 1
	2012/10/09 14:50:17

	Case 1
	Take in charge ticket
	Value 1
	2012/10/09 14:51:01

	Case 1
	Take in charge ticket
	Value 2
	2012/10/12 15:02:56

	Case 1
	Resolve ticket
	Value 1
	2012/10/25 11:54:26

	Case 1
	Closed
	Value 3
	2012/11/09 12:54:39

	Case 2
	Assign seriousness
	Value 4
	2012/04/03 08:55:38

	Case 2
	Take in charge ticket
	Value 4
	2012/04/03 08:55:53

	Case 2
	Resolve ticket
	Value 4
	2012/04/05 09:15:52

	Case 2
	Closed
	Value 5
	2012/05/19 09:00:28


The input of business process mining techniques is an event log, usually composed of events with at least a case identifier, an activity, and a timestamp, and, optionally, case attributes, which are values shared by all the events of the same case, and event attributes, which are specific of each event.19,20 A sample log from the Helpdesk data set is shown in Table 1, part of a real-life help desk event log from an Italian Company.21 This event log provides information about each event's case identifier, activity, timestamp, and resource.
Given a certain event prefix of a running case, predictive monitoring is concerned with forecasting how different aspects of the next event or sequence of events will unfold until the end of the case. There are several prediction targets, such as next activity, next activity suffix, next timestamp, next remaining time, next outcome, next attributes, and next attribute suffix.22 In this paper, our interest is the next activity and the next timestamp prediction.
[bookmark: _Ref164806022]Table 1. Excerpt of a Helpdesk’s business process log.
Formally, , ,  represent the activity, timestamp, and event, respectively. Let  be an event prefix such as . Two tackled problems can be defined as the following functions  using the newly predicted activities as new inputs for the next prediction until the dummy activity representing the end of the case (“[EOC]”) is reached:
· The next activity prediction problem: .
· The next timestamp prediction problem: .
Temporal point processes (TPPs)
In this section, we introduce the definition of Marked TPP and CIF.
Marked TPP
Marked TPP is a random process representing as an event sequence  with the increasing arrival times of events  and markers , such that ,  where  is the number of events.
The mark is equivalent to the event's activity within the context of the business process. Thus, both terms can be used interchangeably afterwards. The inter-event time  is also considered due to their convenience in computing.15
Categorical marks  occurring in the time interval  of the type- event. The history  which can be considered the event prefix  in the business monitoring context.
The task of TPP models is to parameterize the  conditional intensity function (CIF) , which can be characterized as follows:

which is defined as the expected instantaneous rate of happening events given the history. The  symbol indicates the conditioning on the history .
Due to the TPP modeling the distribution of the next timestamp  or inter-event  time under the history , the next timestamp prediction task is equivalent to considering the next timestamp  given  denoted as follows:

Given the CIF, the distribution  can be represented by any following functions:12,15,16,23,24
1. Probability density function (PDF): 
2. Cumulative distribution function (CDF): 
3. Survival function: 
4. Hazard function: 
5. Cumulative hazard function (CHF): 
Here, we pick the PDF of the type- event at time  as the parametric form, which is defined as:
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where  is an exponential term where the exponent is the negative integral from  (the time of the last event before , namely ) to  of the CIF. This integral represents the expected number of type- events at time , which happens in the time interval . The exponential of the negative of this value penalizes the presence of other events in the interval, making it less likely for a new event to occur at time . The product of these two parts gives the probability density of an event of type  occurring strictly at time . Note that we must integrate this density over that interval to obtain the probability of an event occurring within a specific time interval. By aiming to parameterize a model to fit the timestamp distribution, the TPP can infer PDF or CIF for timestamp prediction, including the next event's timestamp and activity prediction.
Conditional Intensity Formulation (CIF)
The CIF with parameters  is written as . The parameter  is considered a piece-wise function of  as:

where . The formula means that the new occurrence of the type- event changes the  and thus updates the . 
The choice of the family of CIF functions to approximate the target CIF is critical because the function's ability to approximate accurately determines the TPP's performance in fitting the distribution. Additionally, Equation 1 indicates that the integral term is unavoidable if we maximize the likelihood of the observed sequence of events. Hence, the challenge in computing the log-likelihood is the high computational cost due to the integral term. The closed form of this integral term, such as cumulative hazard function, can make the computation of likelihood feasible.15,23,24 In conclusion, the goal of approximating the target CIF is to choose a family of functions in the closed integral form with powerful expressivity.
Modeling the marks
In the business monitoring context, where multiple event types exist, the next activity prediction task is determining the most probable event type based on historical data, which can be dealt with as the categorical classification task. It is generally achieved by first converting the historical encoding to logit scores of a discrete distribution, as shown in the following equation:
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where , . 
Then, we apply a  function to transform logit scores into the categorical distribution, which is the solution to the next activity prediction task as follows:


where  is to choose the -th mark from its output. By forming the loss of activities as the logit scores, the cross-entropy loss for categorical classification is added to the log-likelihood loss given the actual activity  of the -th event to maximize the joint likelihood of the next timestamp and activity, which is considered independent. Several works on maximizing joint likelihood in conditional forms are proposed, such as time conditioned on marks25,26 and marks conditioned on time,15 which can capture the dependencies between timestamp and activity and leverage the TPP models performance in predicting the timestamp and activity simultaneously. In our experiment, we utilize the idea of using the joint negative log-likelihood (NLL) under the independence between the next timestamp and activity, with the type- mark for a single sequence  for categorical marks computed as:
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CLASSIFICATION OF TPP MODELS
This section introduces the classification of TPP models to solve the predictive business process monitoring problem. As illustrated in Figure 1, our procedure considers two essential parts of a deep TPP: the history encoder and the CIF.
Table 2. The classification of all options for each component by history encoder, mixture distribution, and prediction target.
	History Encoder
	Recurrent neural network (RNN), 
Gated recurrent unit (GRU), 
Long-short term memory (LSTM), Attention, Fourier Transformer (FNet)

	Mixture Distribution
	Log-Normal, Gompertz, Log-Cauchy, Exponential decay, Weibull

	Prediction
	Next timestamp, Next activity


Historical event encoders
Since CIF or PDF is a function of  and historical events before , namely , we have to encode the history sequence of each event  as a feature vector  to formulate the CIF or PDF of the occurrence of different events to model the process. For the -th event's history, , -th event in the history set is embedded in a high-dimensional space including time and mark features, as follows:

where:
·  represents the time feature that transforms one-dimension temporal information  (or inter-event time ) into a high-dimension vector directly or via its logarithm16,26 or trigonometric functions.12,27
·  represents the mark feature, an embedding matrix for marks, and  is the one-hot encoding of mark .
A historical encoder  can be obtained via concatenation of the sequence of embedding  into a vector space of dimension  under the following formula:

 can be chosen as Recurrent-based encoders, Attention-based encoders, or Fourier transform encoders, and  is utilized for the CIF parameterization.
Recurrent-based encoders
Recurrent-based encoders, including RNN units, GRU, and LSTM, can be used as history encoders.14–16 Their CIF can be formulated as follows:

where the initial state of the history encoder,  is set as zero. For each subsequent time step , the new state, , is updated based on the previous state,  and the previous event, , through the RNN function. The RNN takes as inputs the previous state and the previous event and outputs the new state. This state represents the RNN's memory, encoding information about past events that it can use to predict future events.
The advantage of using recurrent-based encoders as the history encoder is that it requires low storage space due to the capability of serial computing. The states and events are processed one at a time, meaning that the RNN does not need to store all of them at once, which can be beneficial in situations where storage space is limited.
However, there are also disadvantages to this approach. The serial computing nature of RNNs can limit their computational speed in both the forward and backward processes.28 Additionally, RNNs can suffer from issues such as the gradient vanishing effect, where the gradients used in learning become very small, making learning slow or even impossible.29 They can also suffer from long-term memory loss, struggling to retain information about events that occurred long [image: A diagram of a computer program

Description automatically generated]ago. These issues can potentially compromise the performance of the RNN history encoder.[bookmark: _Ref164530425]Figure 1. The procedure of TPPs framework for predictive business process monitoring.

Attention-based encoders 
Attention-based encoders are part of encoder-decoder architectures that utilize the concept of attention. This mechanism allows models to focus on relevant parts of the input sequence when generating an output.30 Self-attention is proposed as the history encoder in TPPs with fast parallel computing and the capability of encoding more long-term sequences than recurrent-based encoders.12 The attention-based history encoders for CIF can be defined as follows:

where  represents the encoded history at time . This history is computed as a weighted sum of transformed event embeddings , where the attention mechanism determines the weights . The attention mechanism  is a function that takes two event embeddings as inputs and outputs a scalar called the attention weight. This weight determines the importance or relevance of the event  when encoding the history at the time . The transformation function  transforms the event embedding  into a series of -dimensional vectors called values. These transformed embeddings are then used to compute the encoded history.
While attention-based encoders overcome some of the problems with RNNs, their space complexity of the attention matrix is , which can become problematic when dealing with very long sequences because the attention mechanism computes pairwise interactions between all events, leading to a quadratic increase in storage requirements as the number of events increases.31 This problem can be temporarily resolved by limiting the encoder only to access the last  events , which can reduce the time complexity to .15
Fourier transform encoders
The Fast Fourier Transform (FFT) module was generally used in the natural language processing (NLP) field32 and recently adopted into the history encoder family under the TPP context called FNet, which aims to speed up the computation and replace the attention mechanism. 
    
where the  represents the FFT, which operates on the events' embedding, then on the whole sequence. Then,  means choosing the highest  frequencies in the set as the history encoding. The dimension of the feature vector  has to equal  dimension. Top- needs to be chosen due to the unequal event embedding history sequence length, so the padding operation is required for batch processing as many sequences contain the same padding values, which contain useless information and lead to low-frequency values in spectra. Therefore, filtering the low frequency can capture and retain more information about the historical sequence in the high frequency.
FFT encoder inherits fast computational time complexity in  and the ability to capture long-term patterns due to the global property of the sequences' spectrum.33 However, one disadvantage of this approach is that the backward process of gradient propagation leads to significant memory complexity.
Mixture distribution
The mixture distribution family is the major component in TPP that approximates the target PDF under CIF.
Log-normal mixture
Log-normal Mixutre is proposed to approximate any distribution due to the feasible computation of its PDF and cumulative distribution function (CDF) in the closed form of CIF and CHF, where the mixture form reads as follows:15 

where .  are mixture distribution numbers,  are non-negative mixture weights and , .
The distribution of the next timestamp  under the log-normal mixture can be modeled by different functions such as PDF, CDF, survival function, hazard function, or cumulative hazard function. Moreover, the preferable function to model the distribution  is the cumulative hazard function due to its ability to compute the NLL in the closed form without numerical integration, leading to the loss function in Eq. (3) replaces the  by the . Although the CDF has no closed form, the approximation of the function has minor deviation and permits gradient back-propagation, allowing both the forward and backward processes.
 Gompertz mixture
Gompertz Mixture is proposed to predict both timestamps and marks of future events without any prior knowledge about the hidden functional forms of the latent temporal dynamics.14 The CIF of Gompertz distribution reads as:

where . The corresponding PDF can be obtained as follows:

which its PDF reads:

for , where , and . The process  becomes the Poisson distribution when . The mixture can be formulated as follows:

for , where  and  for any . The parameters are obtained as a function of history encoding  for  as follows:

Exp-decay mixture
Zhang et al.12 extend the expressivity of the multivariate Hawkes Process by the Self-Attentive Hawkes Process (SAHP) by adapting the self-attention mechanism to fit the intensity function of the Hawkes processes. This allows the Exp-decay mixture to capture longer historical information and is more interpretable because the learned attention weight tensor shows the contributions of each historical event. It models the intensity function as the exponential-decaying form like the classical Exp-decay Hawkes Process and extends with a nonlinear transform  stacked after. This is also the cause of unmanageable computation of the integral term when dealing with long data sequences due to attention weights computation for each pair of events in the sequence under the self-attention mechanism.
To solve the infeasible computation, the final transformation of non-linearity is removed, and the CIF of the defined Exp-decay distribution can be obtained as follows:          

where the first term indicates the impacts of historical events decay with an exponential ratio added with the , which is the basic intensity.
By using the distribution as a component, the mixture of Exp-decay distribution reads the PDF as follows:

for , whose parameters are all positive, calculated by .  
Weibull mixture
Weibull Mixture assumes a population of two or more subpopulations with different Weibull distributions.34 The Weibull distribution has the advantage of high approximating ability due to no numerical instability, so the parameter range is not limited to a certain range. The parameters of the Weibull mixture model can be estimated using the maximum likelihood estimation (MLE) or Bayesian methods. Its CIF reads:

where . CIF will increase when , decrease when , and be constant when .
And its PDF represents:

Log-Cauchy mixture
Log-Cauchy Mixture is utilized because the Log-Cuachy distribution can model a wide range of data due to its flexibility by handling both symmetric and asymmetric data and super-heavy-tailed distributions with no given mean or standard deviation.35 The Log-Cauchy distribution is also robust to outliers, which is helpful in monitoring the business.36 The Log-Cauchy mixture with the PDF is written as:

EXPERIMENTS
This section details the experimental setup, including the datasets used, the procedure followed, and the evaluation metrics employed for next activity prediction and next timestamp prediction tasks. This section also provides the necessary context for interpreting the results.
Dataset
We evaluate two real-time event logs extracted from the 4TU Center for Research Data to evaluate different combinations of history encoders and conditional intensities: Helpdesk21 and BPI 201237. Table 3 shows relevant statistics from these logs, namely, the number of cases, the number of different activities, the number of events, the average and maximum case length, the maximum and mean event duration in days, the mean and maximum case duration in days and the number of different variants.
[bookmark: _Ref164285259]Table 3. Statistics of the event logs used for benchmarking. Time-related measures are shown in days.
	Statistics
	Helpdesk21
	BPI 201237

	Number of cases
	4580
	13087

	Number of event types
	14
	36

	Number of events
	21348
	262200

	Mean case length
	4.66
	20.04

	Maximum case length
	15
	175

	Mean event duration
	11.16
	0.45

	Maximum event duration
	59.92
	102.85

	Mean case duration
	40.86
	8.62

	Maximum case duration
	59.99
	137.22

	Variants
	266
	4366


Procedure
Figure 1 shows the procedure of our framework from preprocessing the data sets, data splitting, and training the history encoder and CIF until inferring the timestamps and activities. We perform data splitting and evaluate all TPP combinations in identical conditions to ensure comparable results. The goal is to simulate a scenario where past knowledge is utilized for training a predictive model, which is then used to predict the future. To achieve this, we perform a 5-fold cross-validation, where every approach is tested once per fold. The event log traces are sorted by their initial event timestamp and split into training, validation, and test sets with a distribution of 64%, 16%, and 20%, respectively. Timestamps and activities are extracted from each fold data set and then encoded into history embeddings  and sequence embeddings  by a chosen history encoder . These embeddings are modeled under a specific CIF  to extract the time distribution and mark logit as the next timestamp and activity predictions. Later, we utilize the ground truth to compute the joint NLL (Equation 3) and optimize the parameters for the embeddings, the encoder, and the CIF.
Metrics
We use the following metrics to evaluate the TPP combinations' performance on the next activity prediction and next timestamp prediction tasks, along with the goodness-of-fit by NLL as Eq. (3). The results are reported as the mean performance of each TPP combination on five folds. Additionally, our evaluation appends a dummy event as an (“[EOC]”) token to the end of every log trace, which can reduce the process state and provide a clear stopping point for activity prediction.
Next activity prediction
We use the accuracy metric since the next activity prediction task is a classic classification problem. The accuracy measures the proportion of correct classifications in relation to the number of predictions done, which is implemented as follows:



[bookmark: _Ref164869423]Table 4. Experimental results of the next timestamp prediction MAE in days and the next activity accuracy of modeling the overall CIF with different combinations of history encoder and family of distribution. The arrows ↑/↓ indicate that the higher/lower results, the better. The metrics are computed as the mean of the 5-fold cross-validation. The metrics in bold mean that the model achieves the top-5 performance in the column.
where  is obtained by Eq. (2) to measure the predicted discrete probability.
Next timestamp prediction
Since the time prediction problem is a regression task, the metric chosen for measuring the TPP performance in the next timestamp prediction task is the Mean Absolute Error (MAE). Instead of evaluating TPP performance based on the normalized value taken directly from the distribution under the Mean Absolute Percentage Error (MAPE), we alter the normalization step and postprocessing step to return the next timestamp prediction in days to have a fair comparison with our benchmarks. MAE metric has the advantage of not over-penalizing the variability in the observations, which is important in the time prediction in predictive process monitoring, where the time between two events in a trace can be potentially large. The MAE is defined as follows:

where  is the -th predicted timestamp.

	Methods
	Helpdesk
	BPI 2012

	
	NLL ↓
	MAE ↓
	Top-1 ACC ↑
	Top-3 ACC ↑
	NLL ↓
	MAE ↓
	Top-1 ACC ↑
	Top-3 ACC ↑

	LogNormMix+RNN
	-2.046201
	279.991608
	0.695686
	0.814908
	-4.419353
	19.107306
	0.809411
	0.934645

	LogNormMix+GRU
	-2.049259
	269.787903
	0.696841
	0.814715
	-4.498922
	19.963001
	0.811243
	0.935909

	LogNormMix+LSTM
	-1.965748
	265.744049
	0.698613
	0.814715
	-4.805172
	17.676338
	0.810400
	0.935561

	LogNormMix+Attention
	-2.025522
	243.183641
	0.698927
	0.814715
	-4.970017
	19.699347
	0.804081
	0.942155

	LogNormMix+FNet
	-2.088489
	354.522430
	0.697804
	0.814715
	-3.997465
	17.554281
	0.700791
	0.924937

	GomptMix+RNN
	0.862758
	26.262592
	0.694530
	0.815293
	-1.943585
	3.082433
	0.811463
	0.935542

	GomptMix+GRU
	0.756814
	36.176449
	0.698190
	0.814522
	-1.989259
	3.715980
	0.814430
	0.935689

	GomptMix+LSTM
	0.803448
	33.733837
	0.694915
	0.814909
	-1.718078
	1.786893
	0.811939
	0.935103

	GomptMix+Attention
	0.198063
	24.308924
	0.798151
	0.974923
	-2.651078
	2.053919
	0.810492
	0.936513

	GomptMix+FNet
	0.922608
	26.557230
	0.695300
	0.812982
	-1.338134
	1.192549
	0.658058
	0.919295

	LogCauMix+RNN
	-0.245449
	24.777443
	0.697612
	0.815100
	-2.425044
	1.674708
	0.809997
	0.933234

	LogCauMix+GRU
	-0.238866
	25.448597
	0.693374
	0.812789
	-2.447077
	4.090276
	0.809778
	0.935616

	LogCauMix+LSTM
	-0.213667
	9.497505
	0.697034
	0.811633
	-2.442514
	2.642548
	0.810345
	0.935744

	LogCauMix+Attention
	-0.572755
	20.529713
	0.697612
	0.812982
	-2.426620
	1.027533
	0.806151
	0.928967

	LogCauMix+FNet
	-0.229975
	24.389563
	0.698960
	0.814137
	-2.372896
	2.651052
	0.698978
	0.924735

	WeibMix+RNN
	-1.920710
	354.471039
	0.690100
	0.814522
	-4.106110
	17.718061
	0.807818
	0.933308

	WeibMix+GRU
	-1.807741
	35.020641
	0.689137
	0.811633
	-4.190582
	14.316733
	0.808514
	0.933930

	WeibMix+LSTM
	-1.856559
	295.800934
	0.686248
	0.811633
	-4.111487
	15.760619
	0.812818
	0.935542

	WeibMix+Attention
	-1.986018
	123.920174
	0.687982
	0.812982
	-4.050585
	19.363649
	0.796498
	0.931842

	WeibMix+FNet
	-1.750751
	308.825226
	0.683166
	0.808166
	-3.867040
	19.018917
	0.694252
	0.923929

	ExpDecayMix+RNN
	1.778744
	67.937225
	0.696263
	0.814908
	1.221636
	20.735715
	0.811005
	0.935011

	ExpDecayMix+GRU
	1.889372
	117.146721
	0.697612
	0.815293
	-1.230995
	20.580959
	0.814375
	0.935689

	ExpDecayMix+LSTM
	1.963200
	85.079498
	0.696456
	0.813367
	-1.205069
	20.735718
	0.812086
	0.935231

	ExpDecayMix+Attention
	1.447936
	354.209351
	0.696841
	0.814522
	-1.521961
	20.748582
	0.808111
	0.934700

	ExpDecayMix+FNet 
	1.800676
	351.875275
	0.697997
	0.814522
	-1.036910
	20.735718
	0.699857
	0.924918


RESULTS
This section presents the findings from the experiments, highlighting the performance of different TPP models based on their combinations of history sequence encoders and formulations of conditional intensity functions. This section summarizes the key observations and insights gained from the experiments.
Table 4 evaluates different combinations of history encoders and overall conditional intensities on two real-world datasets, namely Helpdesk and BPI 2012. 
· Goodness-of-fit is typically evaluated via the NLL result. The choice of history encoders such as RNN-based, Attention-based, and FNet-based methods usually does not affect the overall performance of TPP models regarding the goodness-of-fit. Meanwhile, the intensity functions used for CIF approximation matter most. ExpDecayMix shows the worst fitting ability. Besides, LogNormMix and WeibMix usually fit the data best due to the ability to fit the distribution via the NLL.
· Next timestamp prediction is evaluated according to the MAE. The choice of intensity function is also crucial, where LogCauMix and GomptMix usually predict significantly better than others. In the Helpdesk dataset, interestingly, the LSTM with LogCauMix performs far better than any other combinations of TPP models. 
· Next activity prediction is evaluated via the Top-1 ACC and Top-3 ACC. The results show that the history encoder is critical because the prediction depends on its encodings. Attention-based encoders usually have good predictive performance because they can capture long-term features from historical events. Besides, GRU and LSTM also achieve high results due to their ability to capture long memory.
To sum up, the NLL and MAE calculated by timestamps are predominantly influenced by the formulation of intensity and short-term influences, which the five history encoders can adequately capture. Though FNet is a new proposed approach and does not achieve high results compared with other history encoders, it still shows potential when pairing with suitable intensity functions such as LogCauMix. All history encoders can sufficiently model the dynamics of arrival time, given their minor differences. In contrast, Attention-based encoders usually surpass other history encoders to model the dynamics of the next activity due to the capability of capturing the long-term impacts of historical events. 
DISCUSSION
In this section, we present our key findings which are concluded from the experimental results, and outline our future study.
Key findings
The experimental results presented in this study provide valuable insights into the performance of different TPP models for predictive business process monitoring tasks. The findings highlight the importance of selecting an appropriate combination of history sequence encoders and CIFs to achieve optimal results. One key observation is that the choice of CIF plays a crucial role in the next timestamp prediction task. The LogCauMix and GomptMix intensity functions consistently outperform other options, indicating their suitability for capturing the temporal dynamics of business processes. This suggests that the formulation of the intensity function should be carefully considered when designing TPP models for timestamp prediction. Another notable finding is the impact of the history encoder on the next activity prediction task. Attention-based encoders, such as the self-attention mechanism, demonstrate superior performance compared to other encoders. This can be attributed to their ability to capture long-term dependencies and selectively focus on relevant historical events. The results underscore the importance of leveraging attention mechanisms to effectively model the complex relationships between past activities and future predictions. The experiments also reveal that the FNet encoder, despite being a relatively new approach, shows potential when paired with suitable intensity functions like LogCauMix. While its performance may not surpass other established encoders, the FNet's ability to capture temporal patterns efficiently makes it a promising direction for future research in TPP models for business process monitoring. Conclusively, the performance of TPP models can vary depending on the characteristics of the dataset and the specific business process being monitored. The Helpdesk and BPI 2012 datasets used in this study represent real-world scenarios, but the generalizability of the findings to other domains and processes should be further investigated. Future research could explore the application of TPP models to a wider range of business processes and datasets to validate the robustness of the observed trends.
Future study on explainability
Another important aspect to consider when applying TPP models in predictive business process monitoring is explainability.38 As businesses increasingly rely on automated decision-making systems, the ability to interpret and understand the predictions made by these models becomes crucial. Explainability helps to build trust in the model's outputs, facilitates debugging and error analysis, and enables stakeholders to gain insights into the factors influencing the predictions.39–41 However, it is important to note that achieving explainability in TPP models is not without challenges. The complexity of the models, the high-dimensional nature of the input data, and the temporal dependencies can make it difficult to provide simple and intuitive explanations. Striking a balance between model performance and interpretability is an ongoing research challenge. Future work in this area could focus on developing novel explainability techniques tailored to TPP models, as well as conducting user studies to assess the effectiveness and usability of these explanations in real-world business settings.
CONCLUSION
In this paper, we evaluate the performance of different TPP models via their combinations of the history sequence encoder and formulation of CIF on the predictive business process monitoring data sets. The results show that the formulation of intensity influences the next timestamp prediction and can be captured by any of the history encoders. The next event prediction is dominated by the ability to capture long-term impacts from historical events, especially attention-based encoders. In our future work, we plan to conduct a more profound experiment around several aspects of TPP models, such as loss computation, history embedding's normalization, the relational discovery of events, and optimizations. In our future work, we extend the capability of TPP models on other prediction problems such as activity suffix and remaining time prediction, and continue research on explainability to bridge the gap between model performance and interpretability, ultimately leading to more effective and user-friendly monitoring systems.
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