ng dung hoc may trong danh gia rui ro tai chinh cua cac
coéng ty niém yet trén thi trwedng chirng khoan Viét Nam

TOM TAT

Quan 1y riii ro tai chinh 1a diéu can thiét d6i voi cac doanh nghiép vi nd gitip ngan ngira ton that va tbi da hoa
lgi nhuan. Do qua trinh nay phu thude nhiéu vao viée ra quyét dinh dya trén dir li¢u, hoc may mang lai tiém nang phat
trién cac phuong phap va cong nghé sang tao. Trong bai bao nay, ching t6i so sanh kha ning du doan cta cic md
hinh hoc méay khéac nhau va sir dung phuong phap LIME dé dién giai cach ching dua ra quyét dinh. Dt lidu duoc thu
thap tir bao céo tai chinh ctia cac cong ty niém yét tir naim 2009 dén nam 2023. Két qua cho thdy Gradient Boosting
va Random Forest dat hiéu sudt tot nhat. Thém vao do, trong s LIME chi ra rang cac yéu t6 anh huong nhiéu nhét
dén du doan cua cac mo hinh 1a ty 1¢ thanh khoan hién hanh, ty suit loi nhuén trén tai san, ty 1¢ ng va ty 1€ no trén von
chu s¢ hitu.

Tir khéa: Riii ro tai chinh, céng ty niém yét, mé hinh hoc mdy, phiong phéap LIME.



Application of machine learning in assessing financial risk of
listed companies on the Vietnam stock market

ABSTRACT

Financial risk management is essential for businesses as it helps prevent losses and maximize profits. Since
this process depends heavily on data-driven decision-making, machine learning offers a promising avenue for
developing innovative methods and technologies. In this paper, we compare the predictive capabilities of various
machine learning models and use the LIME method to interpret how they make decisions. Data was collected from
the financial statements of listed companies from 2009 to 2023. The results show that Gradient Boosting and Random
Forest achieved the best performance. Additionally, LIME weights indicate that the most influential factors affecting
the models’ predictions are the current ratio, return on assets, debt ratio, and debt-to-equity ratio.

Keywords: Financial risk, listed companies, machine learning models, LIME method.

1. INTRODUCTION

Financial risk arises when there is a chance that
an event will cause a company to underperform
relative to its planned financial targets or
established metrics.® Examples of such financial
metrics or values encompass earnings per share,
return on equity, and cash flows. Financial risks
encompass categories such as market risk, credit
risk, market liquidity risk, operational risk, and
legal risk. Financial risk assessment is critical for
investors, regulators, and corporate managers to
identify potential challenges and mitigate their
impacts.

Financial risk is often associated with the
risk of bankruptcy or insolvency of a business.
Traditional methods of financial risk assessment
often rely on expert judgment and statistical
models. Experts can leverage their domain
knowledge to identify potential risks, assess the
impact of external factors, and interpret the
results of statistical models. However, expert
judgment can be subjective and prone to bias,
particularly when dealing with complex financial
scenarios. Numerous statistical models have been
proposed, such as Z-score, S-score, O-score, X-
score, H-score, B-score,...>” In Vietnam,
researchers have tested the Z-score model in
forecasting corporate failure® and bankruptcy®,
applied the B-score in analyzing factors
influencing financial risk'®, compared various
models in measuring financial distress™,...
Statistical models are straightforward in design,
offer strong explanatory power, and require

relatively short training time. These methods,
however, rely on several rigid preconditions that
frequently prove to be impractical in real-world
situations. These preconditions include, for
example, the existence of linear relationships,
consistent variance across data, and variable
independence. If these preconditions are not met,
the effectiveness of these statistical approaches in
prediction can be diminished.*?

In recent years, machine learning (ML) has
emerged as a powerful tool for overcoming the
limitations of traditional methods. ML algorithms
can automatically learn complex patterns from
large datasets, without relying on strict
assumptions. This makes them well-suited for
financial risk assessment, where data is often
noisy, incomplete, and high-dimensional.
Algorithms such as support vector machine
(SVM), decision tree, and artificial neural
network are applied to enhance the efficiency of
traditional methods in volatility forecasting,
bankruptcy prediction, credit scoring,...*
Ensemble learning and hybrid models have been
widely studied in this field.}” Research suggests
that random forest algorithms may surpass other
single or hybrid classifiers.'82!

In this article, we will construct and
compare the performance of several advanced
machine learning models, such as SVM, neural
networks, random forests, gradient boosting,...in
forecasting the financial risks of listed companies
on the Vietnamese stock market. Additionally,
we also assess the importance of features using



LIME to identify the key factors influencing
financial risk and propose solutions to mitigate
these risks.

2. METHODOLOGY
2.1. Data collection and preprocessing

In this study, we utilize data extracted from the
financial statements of 200 companies listed on
the HOSE (Ho Chi Minh Stock Exchange), HNX
(Hanoi Stock Exchange), and UPCOM (Unlisted
Public Company Market). The dataset covers the
period from 2009 to 2023 and includes balance
sheets, income statements, and cash flow
statements. While some companies have
incomplete data for the full 15-year period, each
has at least 8 years of available records.

five widely recognized bankruptcy prediction
models: the Altman Z-score, Springate S-score,
Zmijewski X-score, Taffler Z-score, and Grover
G-score (Table 1). In the Z-score and Taffler Z-
score models, predictions may fall into a gray
area indicating uncertainty. To improve recall for
identifying at-risk cases and ensure consistency
with other models, we classify observations in
this gray area as at-risk (y = 1). As a result, the
decision rules differ slightly from those in the
original models. A company is labeled as 1 (at
risk) if the majority of the five models classify it
as being at risk, and -1 otherwise. Regarding
independent variables, based on several studies,
we use 34 financial ratios as inputs for the
machine learning models, as presented in Table
2. These ratios reflect various aspects of the

This study applies machine learning company, such as liquidity, profitability,
models to predict financial risk, specifically efficiency, and leverage.
bankruptcy risk, formulated as a classification
problem. To identify companies at risk, we utilize
Table 1. Bankruptcy prediction models for defining the target variable.
Model Formula Conclusion
Z-score (1968) | Z=1.2Z1+1.4Z2 + 3.3Z3+ 0.6Z4 + 1.0Z5 2<299%:y=1

Z3 = EBIT / Total assets

Z5 = Sales / Total assets

Z1 = Working capital / Total assets
Z2 = Retained earnings / Total assets

Z4 = Market value of equity / Total liabilities

2>299y=-1

S-score (1978)
S2 = EBIT / Total assets

S4 = Sales / Total assets

S=1.03S1 + 3.07S2 + 0.66S3 + 0.454
S1 = Working capital / Total assets

S3 = Profit before tax / Current liabilities

S<0862:y =1
$>0.862:y = —1

G1 = Working capital / Total asssets
G2 = EBIT / Total assets
G3 =ROA

X-score (1984) | X =-4.336 — 4.513X1 + 5.679X2 — 0.004X3 X>0:y=1
X1 = Net income / Total assets X<0y=-1
X2 = Total liabilities / Total assets
X3 = Current assets / Current liabilites
Taffler Z-score | T=3.20+12.18T1+2.50T2-10.68T3 +0.029T4 | T<03:y =1
(1983) T1 = Profit before tax / Current liabilities T>03:y=-1
T2 = Current assets / Total liabilities
T3 = Current liabilities / Total assets
T4 = No-credit interval
G-score (2001) | G = 1.6505G1 + 3.404G2 — 0.016G3 + 0.057 G<00l:y=1

G>00ly=-1

Table 2. Financial ratios (features) for assessing financial risk.

Symbol | Ratio name Symbol | Ratio name
X1 Price-to-earnings ratio X18 EV-to-EBIT ratio
X2 Price-to-sale ratio X19 Price-to-operating- cash-flow ratio




X3 Price-to-book ratio X20 Debt ratio

X4 Earnings per share X21 Price-to-cash-flow ratio

X5 Return on equity X22 Book value per share

X6 Return on assets X23 Cash ratio

X7 Return on invested capital X24 Return on capital employed
X8 Operating margin X25 Return on sales

X9 Gross margin X26 Cash return on invested capital
X10 Net margin X27 Cash return on equity

X11 EBIT margin X28 Cash return on assets

X12 Current ratio X29 Free cash flow margin

X13 Quick ratio X30 Operating cash flow margin
X14 Debt-to-equity ratio X31 Total asset turnover ratio
X15 Operating cash flow ratio X32 Equity ratio

X16 EV-to-EBITDA ratio X33 Fixed asset turnover ratio
X17 EV-to-sales ratio X34 Receivables turnover ratio

The dataset consists of 2774 observations,
including 598 observations with y = 1 and 2176
observations with y = —1. Before performing
preprocessing steps, the data is split into training
and testing sets at an 8:2 ratio to prevent data
leakage. Data leakage in machine learning arises
when a model, during its training phase, utilizes
data that would not be accessible when making
actual predictions. This form of leakage creates a
deceptive appearance of model accuracy, which
is only revealed to be false upon deployment. In
practice, such models produce unreliable
outcomes, resulting in flawed decision-making
and misleading conclusions. The dataset is then
cleaned by removing outliers and imputing
missing values.

Table 3 presents the descriptive statistics
of the independent variables used in this study.
All attributes contain missing data. Some
variables have negative values, even though they
are theoretically not supposed to, indicating
potential errors in the input data due to manual
entry mistakes or measurement inaccuracies. In
addition, several variables such as X1, X4, X16,
and X21 exhibit standard deviations that are
significantly higher than their means, suggesting
considerable variation across observations. The
large differences between the mean and median
of certain variables (e.g., X1) indicate skewed
distributions, while extremely high maximum
values in variables such as X4 and X22 suggest
the presence of outliers.

Table 3. Descriptive statistics of independent variables.

Variable Count Mean Standgrd Min Median Max
deviation
X1 2611 49.48 676.04 -21296.64 11.63 20255.87
X2 2605 18.82 396.28 -100.67 0.87 19022.45
X3 2611 1.58 191 -10.48 1.10 25.04
X4 2611 1952.95 3910.52 -9363.37 1104.73 144517.65




X5 2629 0.11 0.30 -7.50 0.09 5.23
X6 2629 0.05 0.08 -0.99 0.04 0.84
X7 2537 0.02 0.07 -2.80 0.01 0.45
X8 2745 0.31 9.84 -65.81 0.08 498.81
X9 2612 0.21 0.44 -12.04 0.18 3.18
X10 2612 0.21 6.82 -74.13 0.07 323.09
X11 2612 0.02 1.57 -69.81 0.08 10.30
X12 2633 2.69 7.71 0.06 1.42 136.47
X13 2633 1.75 7.39 0.01 0.80 136.21
X14 2633 1.81 5.53 -31.06 1.14 162.31
X15 2751 0.20 2.30 -62.15 0.11 162.31
X16 2611 -200.51 10827.27 -552344.73 8.71 8988.12
X17 2579 18.84 385.70 -2359.82 1.30 18252.28
X18 2594 -8.48 1708.51 -81777.76 11.56 15055.58
X19 2600 -36.90 1305.46 -59515.61 3.37 1860.59
X20 2769 0.51 0.22 0.00 0.53 1.29
X21 2402 -45.62 3515.88 -78359.49 5.56 43561.17
X22 2575 16910.34 9113.65 -7688.75 14486.85 190111.03
X23 2769 0.57 4.19 0.00 0.16 133.47
X24 2764 0.10 0.20 -7.16 0.07 1.94
X25 2745 0.02 1.54 -69.81 0.03 10.30
X26 2751 -0.09 4.37 -229.29 -0.08 1.42
X27 2751 -0.02 1.13 -13.78 -0.17 49.92
X28 2751 -0.01 0.14 -1.13 -0.07 0.89
X29 2730 -0.39 21.07 -464.72 -0.16 907.89
X30 2730 0.08 23.12 -367.10 -0.03 1101.74
X31 2568 0.76 0.73 0.00 0.26 6.69
X32 2769 0.49 0.22 -0.29 0.32 0.99




X33 2564 31.16

664.32

-84.94 1.14 32540.83

X34 2568 7.70

20.43

-0.03 1.55 674.56

Therefore, the dataset needs to be preprocessed
through several steps: removing observations
with excessive missing values, handling outliers
using the IQR method, imputing the remaining
missing values using the k-Nearest Neighbors
technique with k =5, and standardizing the
variables so that they have a mean of 0 and a
standard deviation of 1.

2.2. Dimensionality reduction

Dimensionality reduction involves decreasing the
number of features to enable efficient model
development. It has two main methods: feature
selection and feature extraction. Feature selection
chooses the most important original features.
Feature extraction makes new features by
combining or changing the originals.

Here, we will use the feature selection to
retain the original meaning of the variables in the
dataset. Our data has numerical attributes, and the
target variable is categorical, so we will use the
ANOVA F-test technique.?? ANOVA, or
“analysis of variance”, is a parametric test to
check if means of two or more samples come
from the same distribution. It's an F-test, a type of
statistical test that compares variances, like
variance across samples or explained versus
unexplained variance in ANOVA. This method is
particularly useful when one variable is
numerical and the other is categorical, such as
numerical input features and a categorical target
variable in classification tasks. The results of
ANOVA can be applied in feature selection by
identifying and removing features that are
independent of the target variable, helping to
refine the dataset for better model performance.

2.3. Machine learning models to predict
financial risk

In this study, we implement and compare the
effectiveness of statistical and machine learning
models, including Logistic Regression (LR),
Support Vector Machine (SVM), Random Forest
(RF), Adaptive Boosting (AdaBoost), Gradient
Boosting, and Multi-layer Perceptron (MLP).
These models were selected based on their
widespread  application in  classification
problems, particularly in the context of financial
risk assessment. Logistic Regression serves as a
strong baseline due to its simplicity and

interpretability. SVM is effective for high-
dimensional data. Ensemble models such as
Random Forest, AdaBoost, and Gradient
Boosting are known for their robustness and
ability to handle complex feature interactions.
Meanwhile, MLP, a type of neural network, is
included to explore the potential of deep learning
in capturing nonlinear patterns in the data.

2.3.1. Logistic Regression

Logistic regression is a widely used statistical
method for binary outcome prediction.? In this
study, it is applied to determine financial risk
status. The model produces an output B,, which
represents the probability of being at risk based
on the input variables X. This probability is
derived using Equation (1).

1
1+e~(Bo+B1X1++BpX)

Ry =1X) =

€y

Logistic regression often serves as a
baseline in studies designed to measure the
performance  of  alternative  forecasting
approaches. Its primary strength lies in the
simplicity and clarity of its results, making them
accessible and easy to interpret for most users.
This high level of interpretability makes logistic
regression a popular choice in practical
applications, particularly  within  financial
institutions.

The loss function for logistic regression
algorithm which is called log-loss (cross-entropy
loss), is represented as follows:

1 N C
L=-5 Zl’ji log(a;;)

i=1j=1

(2)

where N is the size of training set, C is the number
of classes in the problem, y;; is actual one-hot
label of ith sample and a;; is predicted probability
for class j of ith sample.

2.3.2. Support Vector Machine

Support Vector Machine (SVM) is a robust
machine learning algorithm designed for both
classification and regression tasks.?* In this study,
it is employed to classify data points into distinct
categories based on input features X. The model
constructs an optimal hyperplane that maximizes
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the margin between support vectors. The
classification process will take place according to
Equation (3):

y = sign(w’x + b) 3)

SVM s particularly effective in handling
high-dimensional data and is often combined
with kernel functions to address non-linear
problems. Its main advantage lies in its ability to
generalize well, even with limited data, making it
a standard choice in applications like image
classification,  bioinformatics, and  text
categorization.

In the case of SVM algorithm, the loss
function is shown as:

N
I = max(0,1 — y;(w'x; + b)) (4)
2

where N is the size of training set, y; is actual
label of ith sample and w”x; + b is predicted
value of ith sample.

2.3.3. Random Forest

Random Forest is a highly effective ensemble
algorithm  frequently employed for both
classification and regression. This method builds
a collection of decision trees during training and
then synthesizes their outputs to improve
prediction accuracy and limit overfitting.?® Each
tree is trained on a random subset of data, and
only a random subset of features is considered for
splitting at each node, enhancing diversity among
the trees. The final prediction is made through
majority voting (for classification) or averaging
(for regression). Known for its robustness and
ability to handle high-dimensional, non-linear
data, Random Forest is widely applied in areas
like financial risk assessment, medical diagnosis,
and image classification.

The loss function used by the Random
Forest algorithm, known as “Gini Impurity”, is
presented below:

(o)
Gini(S) = 1 — Z P2 (5)
c=1

where S is training set at the current node, C is the
number of classes in the classification problem
and p, is the probability of class c at the current
node.

2.3.4. Adaptive Boosting

Boosting constructs a model on training data,
then creates another model to fix the first model's
errors. This technique is repeated until errors

diminish and data prediction is accurate.
Boosting combines multiple weak models into a
strong model for the final result.

AdaBoost works by initially assigning
equal weights to all samples in the training
dataset.?® The algorithm then iterates for a
predefined number of iterations or until a
stopping criterion is met. In each iteration, a weak
classifier f; (e.g., a one-level decision tree) is
trained on the data. The weights of the samples
are updated, giving higher weights to
misclassified examples to focus more on them in
subsequent iterations. The weak classifiers are
evaluated based on their errors, with lower-error
classifiers receiving higher weights. The sample
weights are then normalized to sum up to 1. The
final prediction is made by combining the
predictions of all p weak classifiers using a
weighted majority vote:

p

fe =sign| Y wfi®)]  ©®

=1

This process repeats until the specified number of
iterations is completed or the stopping criterion is
satisfied.

In the following, the loss function for
AdaBoost is illustrated.

N 14

L= Zexp —%inijfj(xi) ™)

i=1 j=1

where N is the size of training set, p is the number
of weak classifiers, y; is actual label of ith
sample, a; is weight of jth weak classifier and

fj(xl-) is predicted value made by jth weak
classifier for ith sample.

2.3.5. Gradient Boosting

Gradient Boosting, a powerful boosting
algorithm, creates strong learners by combining
weak ones. It trains each new model to minimize
the previous model's loss—Ilike mean squared
error or cross-entropy—using gradient descent.
In each step, the algorithm calculates the loss
function's gradient against the ensemble's
predictions and trains a new weak model to
reduce this gradient.?’ The ensemble is built
incrementally by adding predictions from each
new model, a process that continues until a
stopping point is reached. Different from
AdaBoost which adjusts sample weights,
Gradient Boosting focuses on training each new
predictor to target the residual errors from the
previous one, using these residuals as the learning
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objective. Gradient Boosted Trees, a well-known
implementation, is based on CART
(Classification and Regression Trees).

Gradient Boosting uses the same loss
function as logistic regression (log loss — (2)).

2.3.6. Multi-layer Perceptron (MLP)

Multi-layer Perceptron (MLP) is the most
common neural network architecture, composed
of input, hidden, and output layers.? For each
neuron in a hidden layer, the operation involves
taking a weighted sum of its inputs. This sum is
then subjected to a non-linear activation,
examples of which include the Rectified Linear
Unit (ReLU), Sigmoid, and Hyperbolic Tangent
(Tanh).

During training, MLP utilizes a two-step
learning process: forward propagation and
backpropagation. In forward propagation, the
output of a neuron is computed as follows:

7z = wx-1) 4 p® (8)
a® = f(z(l)) 9)

where W® and b® are the weight matrix and
bias vector for layer [, (=1 is the input from the
previous layer, and f(.) is the activation
function. The backpropagation algorithm then
updates the network’s weights by computing
gradients of the loss function with respect to the
weights using the chain rule. The gradient descent
optimization technique, often with variations
such as Stochastic Gradient Descent (SGD) or
Adam, is applied to minimize the loss iteratively.

MLP is widely used in classification and
regression tasks due to its ability to learn complex
patterns in data. It serves as a foundation for more
advanced deep learning models and is
particularly effective in applications such as
image recognition, speech processing, and time
series prediction.

In the same manner as logistic regression,
MLP makes use of log loss (2) as its loss function.

2.4. Local Interpretable Model-agnostic
Explanations (LIME)

Local Interpretable Model-agnostic Explanations
(LIME) is an algorithmic approach designed to
elucidate the predictions of any classifier or
regressor. It achieves this by creating a locally
faithful approximation using an interpretable
model.?

Often classified as a “surrogate model”
approach, the LIME explainability model is
constructed through a step-by-step procedure.

First, to generate a substitute dataset, the LIME
algorithm subtly alters the feature values of the
original dataset — the very data that trained the
black-box model. Next, these newly created
samples are assigned weights that reflect their
similarity to the particular instance under
explanation. Lastly, an inherently understandable
model, like a decision tree or logistic regression,
is employed as a surrogate machine learning
model and trained on this weighted, artificially
created dataset. The learned model should be a
good approximation of the machine learning
model predictions locally, but it does not have to
be a good global approximation. This kind of
accuracy is also called local fidelity. The
explanation produced by LIME is obtained by the
following:

§(x) = arggéréinﬁ(f, 9,m) +Q(g)  (10)

LIME explains instance x with a model g (like
linear regression) that minimizes a loss £ (e.g.,
mean squared error). Loss £ measures how well
g mimics the original model f (e.g., AdaBoost)
predictions, while keeping g simple (low Q(g)).
G is the set of possible g models, for example, all
linear regressions. m, defines the neighborhood
size around x used for explanation.

3. RESULTS AND DISCUSSION

3.1. Dimensionality
multicollinearity check

reduction and

Figure 1 illustrates the F-statistics of 34 features
after performing ANOVA. X14 (debt-to-equity
ratio) appears to be the most relevant, and 16 out
of 34 features have significantly higher scores
compared to the rest. We will retain these 16
features and remove the other 18.

Before feeding these 16 features into the
models, we calculated the Variance Inflation
Factor (VIF), which indicates the presence of
multicollinearity in the model. A VIF value
below 10 is considered acceptable. Table 4 shows
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Figure 1. F-statistics of the features.

that there is no multicollinearity, as all 16
selected features have VIF values below 10.

Table 4. VIF values of the selected features.

Feature VIF Feature VIF
X4 9.21 X13 3.06
X5 6.57 X14 4.04
X6 9.45 X20 9.33
X8 8.09 X22 2.13
X9 2.65 X23 1.73

X10 8.74 X24 4.17
X11 6.34 X25 6.34
X12 3.16 X32 9.15

3.2. Performance of machine learning models

When training a machine learning model, we fit
the model's parameters. However, before the
Table 5. Performance of the models on test set.

Features

model begins learning, certain parameters are
pre-set—these are called hyperparameters. We
can improve the model's performance by tuning
these hyperparameters. There are several
hyperparameter tuning methods, such as grid
search, random search, and Bayesian
optimization. Among them, grid search is widely
used. Grid search works by building a grid of all
hyperparameter settings. Then, it trains and tests
the model with each setting and picks the best
one. This complete search of hyperparameters
makes sure every option is checked. Moreover,
grid search is typically used with cross-
validation, specifically k-fold cross-validation.
Here, the training set is divided into k parts. In
each iteration, k — 1 parts are used to train the
model, while the remaining part is used for
validation. The best set of hyperparameters is the
one that yields the highest average performance.
Finally, the models with the optimal set of
hyperparameters are tested on the test set using
various metrics. Table 5 presents the hyper-
parameter settings and the evaluation of the
models on different metric.

Models Hyperparameter settings

F1

Accuracy | Precision | Recall AUC

Score

Logistic C=1, max_iter=300, penalty=°1",
Regression solver= ‘saga’

0.9331 0.8861 | 0.8952 | 0.8901 | 0.9693

C=1, degree=2, gamma="‘scale’,

SVM kernel=‘rbf’

0.8642 0.7799 | 0.8729 | 0.8097 | 0.9534




bootstrap=False, max_depth=10,

Random max_features=‘sqrt’,
Forest min_samples_split=20,

n_estimators=100

0.9484 0.9133 | 0.9166 | 0.9149 | 0.9836

AdaBoost learning_rate=1, n_estimators=500 0.9331 0.8904 | 0.8873 | 0.8888 | 0.9780
learning_rate=0.5, loss=‘log_loss’,
Gradient max_depth=7, max_features=‘sqrt’,
Boosting min_samples_split=20, 0.9579 0.9276 | 0.9344 | 0.9309 | 0.9870
n_estimators=100
activation=‘relu’, alpha=0.01,
MLP hidden_layer_sizes=(100,), 09312 | 08785 | 0.9020 | 0.8896 | 0.9788

learning_rate=‘adaptive’,
solver=‘adam’

Gradient Boosting achieved the best
performance across all metrics, indicating high
predictive accuracy and a good balance between
precision and recall. Random Forest ranked
second with high accuracy and AUC,
demonstrating strong and consistent
classification ability. MLP also showed good
results across all metrics, particularly in AUC.

AdaBoost and Logistic Regression had
similar performance with accuracy but showed
lower precision and recall compared to Gradient
Boosting and Random Forest. SVM had the
lowest performance across all metrics,
particularly in precision and F1 score, indicating
difficulties in accurate classification and
balancing precision and recall.

Gradient Boosting performs best in this
financial risk prediction task due to several key
advantages. First, Gradient Boosting effectively
captures complex, non-linear relationships and
interactions among financial ratios, which are
common in real-world financial data. Second, it
automatically emphasizes important features
while minimizing the impact of irrelevant or
noisy ones, which is crucial given the large
number of input variables. Third, it handles class
imbalance effectively, which is particularly
relevant in our dataset where the class y = —1
accounts for nearly 80% of the observations. The
model can be adapted using customized loss
functions or sample weighting strategies to better
learn the characteristics of the minority class and
improve predictive performance for
underrepresented cases.

3.3. Interpretations of results

We used LIME to interpret the two best-
performing models: Gradient Boosting and
Random Forest. A random instance from the test
set was selected to generate a local explanation
for this specific instance (Figure 2, 3).

Gradient Boosting
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Figure 2. A local explaination of Gradient Boosting.

Random Forest
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Figure 3. A local explaination of Random Forest.
The chosen instance has a true label of y =

—1, indicating no risk. Both models identified
features X12 and X24 as the most influential.
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Specifically, X12 contributes to the model's
prediction of y = —1, as indicated by its negative
weight (shown in red), whereas X24 supports the
prediction of the opposite class with a positive
weight (shown in green). For Gradient Boosting,
the impact of features decreases noticeably from
top to bottom, highlighting the model’s tendency
to focus on the most important features. In
contrast, Random Forest distributes influence
more evenly across features, reflecting its nature
of aggregating predictions from multiple
independent decision trees.

Local explanations are valuable for
understanding the reasoning behind individual
predictions. However, analyzing a single instance
does not provide a comprehensive understanding
of the model's overall behavior. To gain deeper
insights into the model's decision-making
process, we can aggregate local explanations
across multiple predictions. Specifically, by
combining the LIME weights of numerous
instances and visualizing them through various
types of charts, we can better capture the model's
general patterns and feature importance.

The first aggregation can help us
understand which of the features are most
important. Features with either high positive or
negative LIME weights had a larger impact on a
prediction. For each feature, we take the absolute
mean of all the LIME weights. Features with
large mean weights have, in general, made large
contributions to the predictions. Figure 4 and
Figure 5 shows the average weights of the
features in the two models. It can be observed that
the important features are relatively similar
across both models. These features are the current
ratio (X12), return on assets (X6), debt ratio
(X20), and debt-to-equity ratio (X14).

Gradient Boosting

T T T T T
0.08 010 012 014 016

Mean|Weight|

T T T
0.02 004 0.06

Figure 4. Absolute mean of LIME weights of features
in Gradient Boosting.

Random Forest

T T T T T T
0.03 0.04 0.05 0.06 0.07 0.08
Mean|Weight|

L T T
0.00 0.01 002

Figure 5. Absolute mean of LIME weights of features
in Random Forest.

Next, we analyze how the values of key
features affect the model’s predictions by plotting
their corresponding LIME weights (Figure 6). A
higher LIME weight suggests that the feature
contributes more strongly to predicting a case as
“At risk” (y = 1). Figure 6 illustrates that as the
values of X12 and X6 rise, their LIME weights
shift from positive to negative. X12, representing
the current ratio, assesses a company's short-term
liquidity. A low current ratio suggests potential
liquidity problems, which increase financial risk
and result in a positive LIME weight. In contrast,
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Figure 6. Feature trends for the four most important features.
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a high current ratio indicates a stronger ability to
meet debt obligations, reducing financial risk and
producing a negative LIME weight. This negative
weight decreases the probability of being
classified as risky (y = 1). Meanwhile, X8,
which measures return on assets (ROA), reflects
how efficiently a company generates profit from
its assets. A low ROA indicates weak profitability
and higher financial risk, leading to a positive
LIME weight. Conversely, a high ROA signifies
effective asset management and lower risk,
resulting in a negative LIME weight.

On the other hand, the LIME weights for
X20 and X14 increase as their values grow. X20,
the debt ratio, indicates the proportion of a
company’s assets financed through debt. A high
debt ratio suggests significant reliance on
borrowed funds, which raises financial leverage
and risk due to fixed interest obligations.
Similarly, X14, the debt-to-equity ratio,
compares total debt to shareholders' equity. A
high value for X14 indicates a greater
dependence on debt compared to equity, leading
to increased financial burden and risk.

4. CONCLUSIONS

In this study, we developed and compared
advanced machine learning models to predict the
financial risk of companies listed on the
Vietnamese stock market. Based on financial
ratios, various models were constructed,
hyperparameters were optimized, and evaluations
were conducted using different metrics. The two
best-performing models were Gradient Boosting
and Random Forest, achieving over 94%
accuracy and more than 91% recall. This
demonstrates the superiority of ensemble
learning methods over single  models.
Furthermore, the LIME method was utilized to
explain the models' predictions and the influence
of different features on their decisions. The
results indicate that to reduce financial risk,
businesses should improve their current ratio
(X12) by efficiently managing inventory and
accelerating receivables collection, thereby
reducing the likelihood of liquidity issues.
Additionally, enhancing return on assets (ROA -
X6) through optimized production processes can
lower financial risk. Companies should also
closely monitor the debt ratio (X20) and debt-to-
equity ratio (X14) by avoiding excessive
borrowing and increasing equity financing to
reduce interest burdens. Moreover, diversifying
funding sources by balancing debt and equity
financing will optimize the capital structure and

minimize financial risk in the long term. The
findings of this study provide a foundation for
businesses to manage risks more effectively,
make safer business decisions, and optimize their
strategies.
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