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Ứng dụng học máy trong đánh giá rủi ro tài chính của các 
công ty niêm yết trên thị trường chứng khoán Việt Nam 

 

 

 

 

TÓM TẮT 

Quản lý rủi ro tài chính là điều cần thiết đối với các doanh nghiệp vì nó giúp ngăn ngừa tổn thất và tối đa hóa 

lợi nhuận. Do quá trình này phụ thuộc nhiều vào việc ra quyết định dựa trên dữ liệu, học máy mang lại tiềm năng phát 

triển các phương pháp và công nghệ sáng tạo. Trong bài báo này, chúng tôi so sánh khả năng dự đoán của các mô 

hình học máy khác nhau và sử dụng phương pháp LIME để diễn giải cách chúng đưa ra quyết định. Dữ liệu được thu 

thập từ báo cáo tài chính của các công ty niêm yết từ năm 2009 đến năm 2023. Kết quả cho thấy Gradient Boosting 

và Random Forest đạt hiệu suất tốt nhất. Thêm vào đó, trọng số LIME chỉ ra rằng các yếu tố ảnh hưởng nhiều nhất 

đến dự đoán của các mô hình là tỷ lệ thanh khoản hiện hành, tỷ suất lợi nhuận trên tài sản, tỷ lệ nợ và tỷ lệ nợ trên vốn 

chủ sở hữu. 

Từ khóa: Rủi ro tài chính, công ty niêm yết, mô hình học máy, phương pháp LIME. 
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ABSTRACT 

Financial risk management is essential for businesses as it helps prevent losses and maximize profits. Since 

this process depends heavily on data-driven decision-making, machine learning offers a promising avenue for 

developing innovative methods and technologies. In this paper, we compare the predictive capabilities of various 

machine learning models and use the LIME method to interpret how they make decisions. Data was collected from 

the financial statements of listed companies from 2009 to 2023. The results show that Gradient Boosting and Random 

Forest achieved the best performance. Additionally, LIME weights indicate that the most influential factors affecting 

the models' predictions are the current ratio, return on assets, debt ratio, and debt-to-equity ratio. 

Keywords: Financial risk, listed companies, machine learning models, LIME method. 

 

1. INTRODUCTION  

Financial risk arises when there is a chance that 

an event will cause a company to underperform 

relative to its planned financial targets or 

established metrics.1 Examples of such financial 

metrics or values encompass earnings per share, 

return on equity, and cash flows. Financial risks 

encompass categories such as market risk, credit 

risk, market liquidity risk, operational risk, and 

legal risk. Financial risk assessment is critical for 

investors, regulators, and corporate managers to 

identify potential challenges and mitigate their 

impacts.   

 Financial risk is often associated with the 

risk of bankruptcy or insolvency of a business. 

Traditional methods of financial risk assessment 

often rely on expert judgment and statistical 

models. Experts can leverage their domain 

knowledge to identify potential risks, assess the 

impact of external factors, and interpret the 

results of statistical models. However, expert 

judgment can be subjective and prone to bias, 

particularly when dealing with complex financial 

scenarios. Numerous statistical models have been 

proposed, such as Z-score, S-score, O-score, X-

score, H-score, B-score,…2-7 In Vietnam, 

researchers have tested the Z-score model in 

forecasting corporate failure8 and bankruptcy9, 

applied the B-score in analyzing factors 

influencing financial risk10, compared various 

models in measuring financial distress11,… 

Statistical models are straightforward in design, 

offer strong explanatory power, and require 

relatively short training time. These methods, 

however, rely on several rigid preconditions that 

frequently prove to be impractical in real-world 

situations. These preconditions include, for 

example, the existence of linear relationships, 

consistent variance across data, and variable 

independence. If these preconditions are not met, 

the effectiveness of these statistical approaches in 

prediction can be diminished.12 

 In recent years, machine learning (ML) has 

emerged as a powerful tool for overcoming the 

limitations of traditional methods. ML algorithms 

can automatically learn complex patterns from 

large datasets, without relying on strict 

assumptions. This makes them well-suited for 

financial risk assessment, where data is often 

noisy, incomplete, and high-dimensional. 

Algorithms such as support vector machine 

(SVM), decision tree, and artificial neural 

network are applied to enhance the efficiency of 

traditional methods in volatility forecasting, 

bankruptcy prediction, credit scoring,…13-16 

Ensemble learning and hybrid models have been 

widely studied in this field.17 Research suggests 

that random forest algorithms may surpass other 

single or hybrid classifiers.18-21 

 In this article, we will construct and 

compare the performance of several advanced 

machine learning models, such as SVM, neural 

networks, random forests, gradient boosting,…in 

forecasting the financial risks of listed companies 

on the Vietnamese stock market. Additionally, 

we also assess the importance of features using 
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LIME to identify the key factors influencing 

financial risk and propose solutions to mitigate 

these risks.  

2. METHODOLOGY 

2.1. Data collection and preprocessing 

In this study, we utilize data extracted from the 

financial statements of 200 companies listed on 

the HOSE (Ho Chi Minh Stock Exchange), HNX 

(Hanoi Stock Exchange), and UPCOM (Unlisted 

Public Company Market). The dataset covers the 

period from 2009 to 2023 and includes balance 

sheets, income statements, and cash flow 

statements. While some companies have 

incomplete data for the full 15-year period, each 

has at least 8 years of available records. 

 This study applies machine learning 

models to predict financial risk, specifically 

bankruptcy risk, formulated as a classification 

problem. To identify companies at risk, we utilize 

five widely recognized bankruptcy prediction 

models: the Altman Z-score, Springate S-score, 

Zmijewski X-score, Taffler Z-score, and Grover 

G-score (Table 1). In the Z-score and Taffler Z-

score models, predictions may fall into a gray 

area indicating uncertainty. To improve recall for 

identifying at-risk cases and ensure consistency 

with other models, we classify observations in 

this gray area as at-risk (𝑦 = 1). As a result, the 

decision rules differ slightly from those in the 

original models. A company is labeled as 1 (at 

risk) if the majority of the five models classify it 

as being at risk, and -1 otherwise. Regarding 

independent variables, based on several studies, 

we use 34 financial ratios as inputs for the 

machine learning models, as presented in Table 

2. These ratios reflect various aspects of the 

company, such as liquidity, profitability, 

efficiency, and leverage.  

Table 1. Bankruptcy prediction models for defining the target variable. 

Model Formula Conclusion 

Z-score (1968) Z = 1.2Z1 + 1.4Z2 + 3.3Z3+ 0.6Z4 + 1.0Z5 

Z1 = Working capital / Total assets 

Z2 = Retained earnings / Total assets 

Z3 = EBIT / Total assets 

Z4 = Market value of equity / Total liabilities 

Z5 = Sales / Total assets 

Z < 2.99: 𝑦 = 1  

Z ≥ 2.99: 𝑦 = −1 

S-score (1978)  S = 1.03S1 + 3.07S2 + 0.66S3 + 0.4S4 

S1 = Working capital / Total assets 

S2 = EBIT / Total assets 

S3 = Profit before tax / Current liabilities 

S4 = Sales / Total assets 

S < 0.862: 𝑦 = 1 

S ≥ 0.862: 𝑦 = −1 

 

X-score (1984) X = -4.336 – 4.513X1 + 5.679X2 – 0.004X3 

X1 = Net income / Total assets 

X2 = Total liabilities / Total assets 

X3 = Current assets / Current liabilites 

X ≥ 0: 𝑦 = 1 

X < 0: 𝑦 = −1 

Taffler Z-score 

(1983) 

T = 3.20 + 12.18T1 + 2.50T2 – 10.68T3 + 0.029T4 

T1 = Profit before tax / Current liabilities 

T2 = Current assets / Total liabilities 

T3 = Current liabilities / Total assets 

T4 = No-credit interval 

T ≤ 0.3: 𝑦 = 1 

T > 0.3: 𝑦 = −1 

 

G-score (2001) G = 1.6505G1 + 3.404G2 – 0.016G3 + 0.057 

G1 = Working capital / Total asssets 

G2 = EBIT / Total assets 

G3 = ROA  

G ≤ 0.01: 𝑦 = 1 

G > 0.01: 𝑦 = −1 

 

Table 2. Financial ratios (features) for assessing financial risk. 

Symbol Ratio name Symbol Ratio name 

X1 Price-to-earnings ratio X18 EV-to-EBIT ratio 

X2 Price-to-sale ratio X19 Price-to-operating- cash-flow ratio 
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X3 Price-to-book ratio X20 Debt ratio 

X4 Earnings per share X21 Price-to-cash-flow ratio 

X5 Return on equity X22 Book value per share 

X6 Return on assets X23 Cash ratio 

X7 Return on invested capital X24 Return on capital employed 

X8 Operating margin X25 Return on sales 

X9 Gross margin X26 Cash return on invested capital 

X10 Net margin X27 Cash return on equity 

X11 EBIT margin X28 Cash return on assets 

X12 Current ratio X29 Free cash flow margin 

X13 Quick ratio X30 Operating cash flow margin 

X14 Debt-to-equity ratio X31 Total asset turnover ratio 

X15 Operating cash flow ratio X32 Equity ratio 

X16 EV-to-EBITDA ratio X33 Fixed asset turnover ratio 

X17 EV-to-sales ratio X34 Receivables turnover ratio 

 The dataset consists of 2774 observations, 

including 598 observations with 𝑦 = 1 and 2176 

observations with 𝑦 = −1. Before performing 

preprocessing steps, the data is split into training 

and testing sets at an 8:2 ratio to prevent data 

leakage. Data leakage in machine learning arises 

when a model, during its training phase, utilizes 

data that would not be accessible when making 

actual predictions. This form of leakage creates a 

deceptive appearance of model accuracy, which 

is only revealed to be false upon deployment. In 

practice, such models produce unreliable 

outcomes, resulting in flawed decision-making 

and misleading conclusions. The dataset is then 

cleaned by removing outliers and imputing 

missing values.  

 Table 3 presents the descriptive statistics 

of the independent variables used in this study. 

All attributes contain missing data. Some 

variables have negative values, even though they 

are theoretically not supposed to, indicating 

potential errors in the input data due to manual 

entry mistakes or measurement inaccuracies. In 

addition, several variables such as X1, X4, X16, 

and X21 exhibit standard deviations that are 

significantly higher than their means, suggesting 

considerable variation across observations. The 

large differences between the mean and median 

of certain variables (e.g., X1) indicate skewed 

distributions, while extremely high maximum 

values in variables such as X4 and X22 suggest 

the presence of outliers. 

Table 3. Descriptive statistics of independent variables.

Variable Count Mean 
Standard 

deviation 
Min Median Max 

X1 2611 49.48 676.04 -21296.64 11.63 20255.87 

X2 2605 18.82 396.28 -100.67 0.87 19022.45 

X3 2611 1.58 1.91 -10.48 1.10 25.04 

X4 2611 1952.95 3910.52 -9363.37 1104.73 144517.65 
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X5 2629 0.11 0.30 -7.50 0.09 5.23 

X6 2629 0.05 0.08 -0.99 0.04 0.84 

X7 2537 0.02 0.07 -2.80 0.01 0.45 

X8 2745 0.31 9.84 -65.81 0.08 498.81 

X9 2612 0.21 0.44 -12.04 0.18 3.18 

X10 2612 0.21 6.82 -74.13 0.07 323.09 

X11 2612 0.02 1.57 -69.81 0.08 10.30 

X12 2633 2.69 7.71 0.06 1.42 136.47 

X13 2633 1.75 7.39 0.01 0.80 136.21 

X14 2633 1.81 5.53 -31.06 1.14 162.31 

X15 2751 0.20 2.30 -62.15 0.11 162.31 

X16 2611 -200.51 10827.27 -552344.73 8.71 8988.12 

X17 2579 18.84 385.70 -2359.82 1.30 18252.28 

X18 2594 -8.48 1708.51 -81777.76 11.56 15055.58 

X19 2600 -36.90 1305.46 -59515.61 3.37 1860.59 

X20 2769 0.51 0.22 0.00 0.53 1.29 

X21 2402 -45.62 3515.88 -78359.49 5.56 43561.17 

X22 2575 16910.34 9113.65 -7688.75 14486.85 190111.03 

X23 2769 0.57 4.19 0.00 0.16 133.47 

X24 2764 0.10 0.20 -7.16 0.07 1.94 

X25 2745 0.02 1.54 -69.81 0.03 10.30 

X26 2751 -0.09 4.37 -229.29 -0.08 1.42 

X27 2751 -0.02 1.13 -13.78 -0.17 49.92 

X28 2751 -0.01 0.14 -1.13 -0.07 0.89 

X29 2730 -0.39 21.07 -464.72 -0.16 907.89 

X30 2730 0.08 23.12 -367.10 -0.03 1101.74 

X31 2568 0.76 0.73 0.00 0.26 6.69 

X32 2769 0.49 0.22 -0.29 0.32 0.99 
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X33 2564 31.16 664.32 -84.94 1.14 32540.83 

X34 2568 7.70 20.43 -0.03 1.55 674.56 

Therefore, the dataset needs to be preprocessed 

through several steps: removing observations 

with excessive missing values, handling outliers 

using the IQR method, imputing the remaining 

missing values using the 𝑘-Nearest Neighbors 

technique with 𝑘 = 5, and standardizing the 

variables so that they have a mean of 0 and a 

standard deviation of 1. 

2.2. Dimensionality reduction 

Dimensionality reduction involves decreasing the 

number of features to enable efficient model 

development. It has two main methods: feature 

selection and feature extraction. Feature selection 

chooses the most important original features. 

Feature extraction makes new features by 

combining or changing the originals. 

 Here, we will use the feature selection to 

retain the original meaning of the variables in the 

dataset. Our data has numerical attributes, and the 

target variable is categorical, so we will use the 

ANOVA F-test technique.22 ANOVA, or 

“analysis of variance”, is a parametric test to 

check if means of two or more samples come 

from the same distribution. It's an F-test, a type of 

statistical test that compares variances, like 

variance across samples or explained versus 

unexplained variance in ANOVA. This method is 

particularly useful when one variable is 

numerical and the other is categorical, such as 

numerical input features and a categorical target 

variable in classification tasks. The results of 

ANOVA can be applied in feature selection by 

identifying and removing features that are 

independent of the target variable, helping to 

refine the dataset for better model performance. 

2.3. Machine learning models to predict 

financial risk 

In this study, we implement and compare the 

effectiveness of statistical and machine learning 

models, including Logistic Regression (LR), 

Support Vector Machine (SVM), Random Forest 

(RF), Adaptive Boosting (AdaBoost), Gradient 

Boosting, and Multi-layer Perceptron (MLP). 

These models were selected based on their 

widespread application in classification 

problems, particularly in the context of financial 

risk assessment. Logistic Regression serves as a 

strong baseline due to its simplicity and 

interpretability. SVM is effective for high-

dimensional data. Ensemble models such as 

Random Forest, AdaBoost, and Gradient 

Boosting are known for their robustness and 

ability to handle complex feature interactions. 

Meanwhile, MLP, a type of neural network, is 

included to explore the potential of deep learning 

in capturing nonlinear patterns in the data. 

2.3.1. Logistic Regression 

Logistic regression is a widely used statistical 

method for binary outcome prediction.23 In this 

study, it is applied to determine financial risk 

status. The model produces an output 𝑃𝑛, which 

represents the probability of being at risk based 

on the input variables 𝑿. This probability is 

derived using Equation (1).  

       

𝑃𝑛(𝑦 = 1|𝑿) =
1

1+𝑒−(𝛽0+𝛽1𝑋1+⋯+𝛽𝑘𝑋𝑘)
 (1) 

 Logistic regression often serves as a 

baseline in studies designed to measure the 

performance of alternative forecasting 

approaches. Its primary strength lies in the 

simplicity and clarity of its results, making them 

accessible and easy to interpret for most users. 

This high level of interpretability makes logistic 

regression a popular choice in practical 

applications, particularly within financial 

institutions. 

 The loss function for logistic regression 

algorithm which is called log-loss (cross-entropy 

loss), is represented as follows: 

𝐿 =  −
1

𝑁
∑ ∑ 𝑦𝑗𝑖 log(𝑎𝑗𝑖) 

𝐶

𝑗=1

𝑁

𝑖=1

 (2) 

where 𝑁 is the size of training set, 𝐶 is the number 

of classes in the problem, 𝑦𝑗𝑖 is actual one-hot 

label of 𝑖th sample and 𝑎𝑗𝑖 is predicted probability 

for class 𝑗 of 𝑖th sample. 

2.3.2. Support Vector Machine 

Support Vector Machine (SVM) is a robust 

machine learning algorithm designed for both 

classification and regression tasks.24 In this study, 

it is employed to classify data points into distinct 

categories based on input features 𝑿. The model 

constructs an optimal hyperplane that maximizes 
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the margin between support vectors. The 

classification process will take place according to 

Equation (3):  

𝑦 = sign(𝒘𝑇𝒙 + 𝑏) (3) 

 SVM is particularly effective in handling 

high-dimensional data and is often combined 

with kernel functions to address non-linear 

problems. Its main advantage lies in its ability to 

generalize well, even with limited data, making it 

a standard choice in applications like image 

classification, bioinformatics, and text 

categorization. 

 In the case of SVM algorithm, the loss 

function is shown as: 

𝐿 =  ∑ max(0,1 − 𝑦𝑖(𝑤𝑇𝑥𝑖 + 𝑏))

𝑁

𝑖=1

 (4) 

where 𝑁 is the size of training set, 𝑦𝑖 is actual 

label of 𝑖th sample and 𝑤𝑇𝑥𝑖 + 𝑏 is predicted 

value of 𝑖th sample. 

2.3.3. Random Forest 

Random Forest is a highly effective ensemble 

algorithm frequently employed for both 

classification and regression. This method builds 

a collection of decision trees during training and 

then synthesizes their outputs to improve 

prediction accuracy and limit overfitting.25 Each 

tree is trained on a random subset of data, and 

only a random subset of features is considered for 

splitting at each node, enhancing diversity among 

the trees. The final prediction is made through 

majority voting (for classification) or averaging 

(for regression). Known for its robustness and 

ability to handle high-dimensional, non-linear 

data, Random Forest is widely applied in areas 

like financial risk assessment, medical diagnosis, 

and image classification. 

 The loss function used by the Random 

Forest algorithm, known as “Gini Impurity”, is 

presented below: 

𝐺𝑖𝑛𝑖(𝑆) = 1 − ∑ 𝑝𝑐
2

𝐶

𝑐=1

  (5) 

where 𝑆 is training set at the current node, 𝐶 is the 

number of classes in the classification problem 

and 𝑝𝑐 is the probability of class 𝑐 at the current 

node. 

2.3.4. Adaptive Boosting 

Boosting constructs a model on training data, 

then creates another model to fix the first model's 

errors. This technique is repeated until errors 

diminish and data prediction is accurate. 

Boosting combines multiple weak models into a 

strong model for the final result. 

 AdaBoost works by initially assigning 

equal weights to all samples in the training 

dataset.26 The algorithm then iterates for a 

predefined number of iterations or until a 

stopping criterion is met. In each iteration, a weak 

classifier 𝑓𝑖 (e.g., a one-level decision tree) is 

trained on the data. The weights of the samples 

are updated, giving higher weights to 

misclassified examples to focus more on them in 

subsequent iterations. The weak classifiers are 

evaluated based on their errors, with lower-error 

classifiers receiving higher weights. The sample 

weights are then normalized to sum up to 1. The 

final prediction is made by combining the 

predictions of all 𝑝 weak classifiers using a 

weighted majority vote: 

𝑓(𝒙) = sign (∑ 𝛼𝑖𝑓𝑖(𝒙)

𝑝

𝑖=1

) (6) 

This process repeats until the specified number of 

iterations is completed or the stopping criterion is 

satisfied. 

 In the following, the loss function for 

AdaBoost is illustrated. 

𝐿 =  ∑ exp (−
1

2
𝑦𝑖 ∑ 𝛼𝑗𝑓𝑗(𝑥𝑖)

𝑝

𝑗=1

)

𝑁

𝑖=1

(7) 

where 𝑁 is the size of training set, 𝑝 is the number 

of weak classifiers, 𝑦𝑖 is actual label of 𝑖th 

sample, 𝛼𝑗 is weight of 𝑗th weak classifier  and 

𝑓𝑗(𝑥𝑖) is predicted value made by 𝑗th weak 

classifier for 𝑖th sample. 

2.3.5. Gradient Boosting 

Gradient Boosting, a powerful boosting 

algorithm, creates strong learners by combining 

weak ones. It trains each new model to minimize 

the previous model's loss—like mean squared 

error or cross-entropy—using gradient descent. 

In each step, the algorithm calculates the loss 

function's gradient against the ensemble's 

predictions and trains a new weak model to 

reduce this gradient.27 The ensemble is built 

incrementally by adding predictions from each 

new model, a process that continues until a 

stopping point is reached. Different from 

AdaBoost which adjusts sample weights, 

Gradient Boosting focuses on training each new 

predictor to target the residual errors from the 

previous one, using these residuals as the learning 
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objective. Gradient Boosted Trees, a well-known 

implementation, is based on CART 

(Classification and Regression Trees). 

 Gradient Boosting uses the same loss 

function as logistic regression (log loss – (2)). 

2.3.6. Multi-layer Perceptron (MLP) 

Multi-layer Perceptron (MLP) is the most 

common neural network architecture, composed 

of input, hidden, and output layers.28 For each 

neuron in a hidden layer, the operation involves 

taking a weighted sum of its inputs. This sum is 

then subjected to a non-linear activation, 

examples of which include the Rectified Linear 

Unit (ReLU), Sigmoid, and Hyperbolic Tangent 

(Tanh). 

 During training, MLP utilizes a two-step 

learning process: forward propagation and 

backpropagation. In forward propagation, the 

output of a neuron is computed as follows: 

𝒛(𝑙) = 𝑾(𝑙)𝒙(𝑙−1) + 𝒃(𝑙) (8)

𝒂(𝑙) = 𝑓(𝒛(𝑙)) (9)
 

where 𝑾(𝑙) and 𝒃(𝑙) are the weight matrix and 

bias vector for layer 𝑙, 𝒙(𝑙−1) is the input from the 

previous layer, and 𝑓(. ) is the activation 

function. The backpropagation algorithm then 

updates the network’s weights by computing 

gradients of the loss function with respect to the 

weights using the chain rule. The gradient descent 

optimization technique, often with variations 

such as Stochastic Gradient Descent (SGD) or 

Adam, is applied to minimize the loss iteratively. 

 MLP is widely used in classification and 

regression tasks due to its ability to learn complex 

patterns in data. It serves as a foundation for more 

advanced deep learning models and is 

particularly effective in applications such as 

image recognition, speech processing, and time 

series prediction. 

 In the same manner as logistic regression, 

MLP makes use of log loss (2) as its loss function. 

2.4. Local Interpretable Model-agnostic 

Explanations (LIME) 

Local Interpretable Model-agnostic Explanations 

(LIME) is an algorithmic approach designed to 

elucidate the predictions of any classifier or 

regressor. It achieves this by creating a locally 

faithful approximation using an interpretable 

model.29 

 Often classified as a “surrogate model” 

approach, the LIME explainability model is 

constructed through a step-by-step procedure. 

First, to generate a substitute dataset, the LIME 

algorithm subtly alters the feature values of the 

original dataset – the very data that trained the 

black-box model. Next, these newly created 

samples are assigned weights that reflect their 

similarity to the particular instance under 

explanation. Lastly, an inherently understandable 

model, like a decision tree or logistic regression, 

is employed as a surrogate machine learning 

model and trained on this weighted, artificially 

created dataset. The learned model should be a 

good approximation of the machine learning 

model predictions locally, but it does not have to 

be a good global approximation. This kind of 

accuracy is also called local fidelity. The 

explanation produced by LIME is obtained by the 

following: 

𝜉(𝑥) = argmin
𝑔∈𝐺

ℒ(𝑓, 𝑔, 𝜋𝑥) + Ω(𝑔) (10) 

LIME explains instance 𝑥 with a model 𝑔 (like 

linear regression) that minimizes a loss ℒ (e.g., 

mean squared error). Loss ℒ measures how well 

𝑔 mimics the original model 𝑓 (e.g., AdaBoost) 

predictions, while keeping 𝑔 simple (low Ω(𝑔)). 

𝐺 is the set of possible 𝑔 models, for example, all 

linear regressions. 𝜋𝑥 defines the neighborhood 

size around 𝑥 used for explanation. 

3. RESULTS AND DISCUSSION 

3.1. Dimensionality reduction and 

multicollinearity check 

Figure 1 illustrates the F-statistics of 34 features 

after performing ANOVA. X14 (debt-to-equity 

ratio) appears to be the most relevant, and 16 out 

of 34 features have significantly higher scores 

compared to the rest. We will retain these 16 

features and remove the other 18.  

 Before feeding these 16 features into the 

models, we calculated the Variance Inflation 

Factor (VIF), which indicates the presence of 

multicollinearity in the model. A VIF value 

below 10 is considered acceptable. Table 4 shows 
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that there is no multicollinearity, as all 16 

selected features have VIF values below 10. 

Table 4. VIF values of the selected features. 

Feature VIF Feature VIF 

X4 9.21 X13 3.06 

X5 6.57 X14 4.04 

X6 9.45 X20 9.33 

X8 8.09 X22 2.13 

X9 2.65 X23 1.73 

X10 8.74 X24 4.17 

X11 6.34 X25 6.34 

X12 3.16 X32 9.15 

 3.2. Performance of machine learning models 

When training a machine learning model, we fit 

the model's parameters. However, before the 

model begins learning, certain parameters are 

pre-set—these are called hyperparameters. We 

can improve the model's performance by tuning 

these hyperparameters. There are several 

hyperparameter tuning methods, such as grid 

search, random search, and Bayesian 

optimization. Among them, grid search is widely 

used. Grid search works by building a grid of all 

hyperparameter settings. Then, it trains and tests 

the model with each setting and picks the best 

one. This complete search of hyperparameters 

makes sure every option is checked. Moreover, 

grid search is typically used with cross-

validation, specifically k-fold cross-validation. 

Here, the training set is divided into 𝑘 parts. In 

each iteration, 𝑘 − 1 parts are used to train the 

model, while the remaining part is used for 

validation. The best set of hyperparameters is the 

one that yields the highest average performance. 

Finally, the models with the optimal set of 

hyperparameters are tested on the test set using 

various metrics. Table 5 presents the hyper-

parameter settings and the evaluation of the 

models on different metric.

Table 5. Performance of the models on test set. 

Models Hyperparameter settings Accuracy Precision Recall 
F1 

Score 
AUC 

Logistic 

Regression 

C=1, max_iter=300, penalty=‘1’, 

solver= ‘saga’ 
0.9331 0.8861 0.8952 0.8901 0.9693 

SVM 
C=1, degree=2, gamma=‘scale’, 

kernel=‘rbf’ 
0.8642 0.7799 0.8729 0.8097 0.9534 

Figure 1. F-statistics of the features. 



 

10 

 

Random 

Forest 

bootstrap=False, max_depth=10, 

max_features=‘sqrt’, 

min_samples_split=20, 

n_estimators=100 

0.9484 0.9133 0.9166 0.9149 0.9836 

AdaBoost learning_rate=1, n_estimators=500 0.9331 0.8904 0.8873 0.8888 0.9780 

Gradient 

Boosting 

learning_rate=0.5, loss=‘log_loss’, 

max_depth=7, max_features=‘sqrt’, 

min_samples_split=20, 

n_estimators=100 

0.9579 0.9276 0.9344 0.9309 0.9870 

MLP 

activation=‘relu’, alpha=0.01, 

hidden_layer_sizes=(100,), 

learning_rate=‘adaptive’, 

solver=‘adam’ 

0.9312 0.8785 0.9020 0.8896 0.9788 

 Gradient Boosting achieved the best 

performance across all metrics, indicating high 

predictive accuracy and a good balance between 

precision and recall. Random Forest ranked 

second with high accuracy and AUC, 

demonstrating strong and consistent 

classification ability. MLP also showed good 

results across all metrics, particularly in AUC. 

 AdaBoost and Logistic Regression had 

similar performance with accuracy but showed 

lower precision and recall compared to Gradient 

Boosting and Random Forest. SVM had the 

lowest performance across all metrics, 

particularly in precision and F1 score, indicating 

difficulties in accurate classification and 

balancing precision and recall. 

 Gradient Boosting performs best in this 

financial risk prediction task due to several key 

advantages. First, Gradient Boosting effectively 

captures complex, non-linear relationships and 

interactions among financial ratios, which are 

common in real-world financial data. Second, it 

automatically emphasizes important features 

while minimizing the impact of irrelevant or 

noisy ones, which is crucial given the large 

number of input variables. Third, it handles class 

imbalance effectively, which is particularly 

relevant in our dataset where the class 𝑦 = −1 

accounts for nearly 80% of the observations. The 

model can be adapted using customized loss 

functions or sample weighting strategies to better 

learn the characteristics of the minority class and 

improve predictive performance for 

underrepresented cases. 

3.3. Interpretations of results 

We used LIME to interpret the two best-

performing models: Gradient Boosting and 

Random Forest. A random instance from the test 

set was selected to generate a local explanation 

for this specific instance (Figure 2, 3). 

 

Figure 2. A local explaination of Gradient Boosting. 

 

Figure 3. A local explaination of Random Forest. 

 The chosen instance has a true label of 𝑦 =
−1, indicating no risk. Both models identified 

features X12 and X24 as the most influential. 
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Specifically, X12 contributes to the model's 

prediction of 𝑦 = −1, as indicated by its negative 

weight (shown in red), whereas X24 supports the 

prediction of the opposite class with a positive 

weight (shown in green). For Gradient Boosting, 

the impact of features decreases noticeably from 

top to bottom, highlighting the model’s tendency 

to focus on the most important features. In 

contrast, Random Forest distributes influence 

more evenly across features, reflecting its nature 

of aggregating predictions from multiple 

independent decision trees.  

 Local explanations are valuable for 

understanding the reasoning behind individual 

predictions. However, analyzing a single instance 

does not provide a comprehensive understanding 

of the model's overall behavior. To gain deeper 

insights into the model's decision-making 

process, we can aggregate local explanations 

across multiple predictions. Specifically, by 

combining the LIME weights of numerous 

instances and visualizing them through various 

types of charts, we can better capture the model's 

general patterns and feature importance. 

 The first aggregation can help us 

understand which of the features are most 

important. Features with either high positive or 

negative LIME weights had a larger impact on a 

prediction. For each feature, we take the absolute 

mean of all the LIME weights. Features with 

large mean weights have, in general, made large 

contributions to the predictions. Figure 4 and 

Figure 5 shows the average weights of the 

features in the two models. It can be observed that 

the important features are relatively similar 

across both models. These features are the current 

ratio (X12), return on assets (X6), debt ratio 

(X20), and debt-to-equity ratio (X14). 

 

Figure 4. Absolute mean of LIME weights of features 

in Gradient Boosting. 

 

Figure 5. Absolute mean of LIME weights of features 

in Random Forest. 

 Next, we analyze how the values of key 

features affect the model’s predictions by plotting 

their corresponding LIME weights (Figure 6). A 

higher LIME weight suggests that the feature 

contributes more strongly to predicting a case as 

“At risk” (𝑦 = 1). Figure 6 illustrates that as the 

values of X12 and X6 rise, their LIME weights 

shift from positive to negative. X12, representing 

the current ratio, assesses a company's short-term 

liquidity. A low current ratio suggests potential 

liquidity problems, which increase financial risk 

and result in a positive LIME weight. In contrast, 

Figure 6. Feature trends for the four most important features. 
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a high current ratio indicates a stronger ability to 

meet debt obligations, reducing financial risk and 

producing a negative LIME weight. This negative 

weight decreases the probability of being 

classified as risky (𝑦 = 1). Meanwhile, X6, 

which measures return on assets (ROA), reflects 

how efficiently a company generates profit from 

its assets. A low ROA indicates weak profitability 

and higher financial risk, leading to a positive 

LIME weight. Conversely, a high ROA signifies 

effective asset management and lower risk, 

resulting in a negative LIME weight. 

 On the other hand, the LIME weights for 

X20 and X14 increase as their values grow. X20, 

the debt ratio, indicates the proportion of a 

company’s assets financed through debt. A high 

debt ratio suggests significant reliance on 

borrowed funds, which raises financial leverage 

and risk due to fixed interest obligations. 

Similarly, X14, the debt-to-equity ratio, 

compares total debt to shareholders' equity. A 

high value for X14 indicates a greater 

dependence on debt compared to equity, leading 

to increased financial burden and risk. 

4. CONCLUSIONS 

In this study, we developed and compared 

advanced machine learning models to predict the 

financial risk of companies listed on the 

Vietnamese stock market. Based on financial 

ratios, various models were constructed, 

hyperparameters were optimized, and evaluations 

were conducted using different metrics. The two 

best-performing models were Gradient Boosting 

and Random Forest, achieving over 94% 

accuracy and more than 91% recall. This 

demonstrates the superiority of ensemble 

learning methods over single models. 

Furthermore, the LIME method was utilized to 

explain the models' predictions and the influence 

of different features on their decisions. The 

results indicate that to reduce financial risk, 

businesses should improve their current ratio 

(X12) by efficiently managing inventory and 

accelerating receivables collection, thereby 

reducing the likelihood of liquidity issues. 

Additionally, enhancing return on assets (ROA - 

X6) through optimized production processes can 

lower financial risk. Companies should also 

closely monitor the debt ratio (X20) and debt-to-

equity ratio (X14) by avoiding excessive 

borrowing and increasing equity financing to 

reduce interest burdens. Moreover, diversifying 

funding sources by balancing debt and equity 

financing will optimize the capital structure and 

minimize financial risk in the long term. The 

findings of this study provide a foundation for 

businesses to manage risks more effectively, 

make safer business decisions, and optimize their 

strategies.  
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