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Thiết kế mô hình dự báo chuỗi thời gian mờ tối ưu  
dựa trên đại số gia tử 

 

 

 

 

TÓM TẮT 

Dự báo chuỗi thời gian mờ đã thu hút được sự chú ý đáng kể nhờ khả năng xử lý sự không chắc chắn và thiếu 
chính xác trong dữ liệu chuỗi thời gian. Các mô hình chuỗi thời gian mờ truyền thống thường gặp hạn chế trong việc 

nắm bắt các mối quan hệ phức tạp giữa các biến. Để giải quyết thách thức này, chúng tôi đề xuất một mô hình tiếp 

cận mới gọi là mô hình dự báo chuỗi thời gian mờ dựa trên đại số gia tử (OHAM). Đầu tiên, chúng tôi giới thiệu khái 

niệm về đại số gia tử và ứng dụng của chúng trong phân tích chuỗi thời gian mờ. Sau đó, chúng tôi trình bày các bước 

xây dựng mô hình, bao gồm việc xác định các nhãn ngôn ngữ trong đại số gia tử, xây dựng các quan hệ mờ từ dữ liệu, 

chia đoạn cho không gian tham chiếu. Tiếp đó, chúng tôi đề xuất một thuật toán tối ưu hóa để tinh chỉnh các tham số 

của OHAM, nhằm đạt được hiệu quả dự báo tối ưu. Cuối cùng là thử nghiệm trên một số bộ dữ liệu cụ thể để đánh 

giá tính hiệu quả của mô hình. Kết quả thử nghiệm cho thấy mô hình mới đề xuất ít sai số hơn so với nhiều mô hình 

khác. 

 

Từ khóa: Dự báo, chuỗi thời gian mờ, đại số gia tử, từ mờ, giá trị ngôn ngữ. 
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Design of Optimal Hedge-Algebras-based Model for  
Fuzzy Time Series Forecasting 

 

 

ABSTRACT 

Fuzzy time series forecasting has garnered significant attention due to its ability to handle uncertainty and 

imprecision in time series data. Traditional fuzzy time series models often face limitations in capturing complex 

relationships between variables. To address this challenge, we propose a novel approach called the Optimal Hedge-
Algebras-based Model (OHAM). First, we introduce the concepts of hedge algebra and its application in fuzzy time 

series analysis. Subsequently, we present the model construction steps, including defining linguistic labels in hedge 

algebra, constructing fuzzy relations from data, and partitioning the universe of discourse. Following this, we propose 

an optimization algorithm to fine-tune the parameters of OHAM, aiming to achieve optimal forecasting performance. 

Finally, experiments are conducted on several specific datasets to evaluate the effectiveness of the model. The 

experimental results demonstrate that the newly proposed model exhibits better accuracy than many others. 

Keywords: Forecasting, Fuzzy Time Series, Hedge Algebras, Vague Words, Linguistic Terms. 

  

1. INTRODUCTION 

The proposed hedge algebra by N. C. Ho1,2,3 has 

been tested in various applications, yielding 
positive results in problems such as fuzzy control, 

classification, fuzzy clustering, and fuzzy time 

series forecasting,4,5 among others. 

Forecasting plays a crucial role in numerous 
fields such as finance, weather prediction, and 

stock market analysis.6,7 In recent years, fuzzy 

time series forecasting models have gained 
attention due to their ability to handle the 

uncertainty and vagueness present in real-world 

data. One such model is the hedge-algebras-based 
forecasting model.8 

The hedge-algebras-based forecasting 

model utilizes an algebraic structure to capture the 

relationships between historical data and future 
predictions. However, the performance of this 

model heavily relies on parameter calibration. 

Determining optimal parameters is a challenging 
task that requires an efficient optimization 

algorithm. 

In this paper, we propose the application of 

the Artificial Bee Colony (ABC) algorithm to 
optimize the parameters of the hedge-algebras-

based forecasting model for fuzzy time series. The 

ABC algorithm is a metaheuristic optimization 
technique inspired by the foraging behavior of 

honey bees. It has been successfully applied to 

various optimization problems and showcases 
robustness and convergence efficiency. 

By employing the ABC algorithm, this 

research aims to enhance the accuracy and 

reliability of the hedge-algebras-based forecasting 
model. The ABC algorithm will efficiently search 

the parameter space, finding the optimal 

combination of parameters for the model. This 

process will help in achieving improved forecast 
accuracy, reduced error rates, and enhanced 

decision-making capabilities in diverse 

applications. 

To evaluate the proposed approach, 

extensive experiments will be conducted using 

real-world datasets from different domains. 
Comparative analyses will be carried out, 

comparing the performance of the optimized 

hedge-algebras-based forecasting model with 

other well-established optimization techniques. 
The results obtained will provide insights into the 

effectiveness and efficiency of the ABC algorithm 

in parameter optimization for fuzzy time series 
forecasting models. 

2.  PROBLEM OF FUZZY TIME SERIES 

FORECASTING 

The problem in time series forecasting is to 
accurately predict future values or trends based on 

historical data. This involves addressing 

challenges such as identifying and modeling 
trends, handling seasonality and noise, accounting 

for non-linear relationships and non-stationarity, 

and choosing the optimal model and parameters. 
The goal is to develop a robust forecasting method 

that can generalize well beyond the training data 
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and provide reliable predictions for effective 
decision-making. Overcoming these challenges 

requires a combination of statistical techniques, 

machine learning algorithms, and domain 

expertise to achieve accurate and meaningful 
forecasts. 

Fuzzy time series, a concept derived from 

fuzzy set theory, is a powerful tool for modeling 
and forecasting time-dependent data with inherent 

uncertainty and imprecision. Unlike traditional 

time series analysis, which assumes crisp values, 

fuzzy time series allows for the representation of 
vague and uncertain information through 

linguistic terms and membership functions. By 

incorporating fuzzy logic into the modeling 
process, fuzzy time series enables the handling of 

complex data, making it particularly suitable for 

real-world scenarios where uncertainty is 
prevalent. This approach has found applications in 

various domains, including finance, economics, 

weather prediction, and decision-making systems, 

providing valuable insights and accurate 
predictions in situations where conventional 

methods may fall short. 

The problem is stated as follow: Given n 
values y(t1), y(t2),…, y(tn) where t1, t2, …, tn are 

point times. How to predict the next value? 

2.1. Some basic definitions 

The fuzzy time series model was first proposed by 

Q. Song and B. S. Chissom.9 Then, it is improved 

by S.M Chen10,11 to process some arithmetic 

calculations. From that point, they can get more 
exact forecasting results. In this session, we briefly 

review the concepts of fuzzy time series as in 

Q.Song.9  

Let U be the universe of discourse, where  

U = {u1, u2,..., un}. A fuzzy set defined in the 

universe of discourse U can be represented as 

follows: A = fA(u1)/u1 + fA(u2)/u2 + ··· + fA(un)/un , 
where fA denotes the membership function of the 

fuzzy set A, fA : U → [0, 1], and fA(ui) denotes the 

degree of membership of ui belonging to the fuzzy 

set A, and fA(ui) ∈ [0, 1], and 1 ≤ i ≤ n. 

Definition 1. 9 Let Y(t) (t = ...,0,1,2,...) be the 

universe of discourse and be a subset of R. 
Assume fi(t) (i = 1,2,...) are defined on Y(t), and 

assume that F(t) is a collection of f1(t), f2(t), ..., 

then F(t) is called a fuzzy time series definition 

Y(t)  (t = ...,0,1,2,...). 

Definition 2. 9 Assume that F(t) is caused by 

F(t−1) only, denoted as F(t − 1) → F(t), then this 

relationship can be expressed as F(t) = 
F(t−1)◦R(t,t − 1), where F(t) = F(t − 1)◦ R(t, t−1) 

is called the first-order model of F(t), R(t, t − 1) is 

the fuzzy relationship between F(t − 1) and F(t), 
and “◦” is the Max-Min composition operator. 

Definition 3. 9 Assume that the fuzzified input 

data of the ith year/month is Aj and the fuzzified 

input data of the i+1th year/month is Ak, where Aj 
and Ak are two fuzzy sets defined in the universe 

of discourse U, then the fuzzy logical relationship 

can be represented by Aj → Ak, where Aj is called 
the current state of the fuzzy logical relationship. 

If we have Ai → Aj1, Ai → Aj2, ..., Ai → Ajk 

then we can write Ai → Aj1, Aj2, ..., Ajk.    

 2.2. Rules for calculating output value 

Assume that Aj is the value of F(t − 1), the 

forecasted output F(t) be defined as in research:10  

If there exists a relation 1-1 within the group 
of the relations where Aj is on the left of the rule, 

suppose that Aj → Ak , and the maximum 

membership value of Ak occurs at interval uk , then 

the output of F(t) is the middle point of uk .  

a) If Ak = , that means Aj →  and the 

maximum membership value of Aj occurs at 
interval uj, then the output of F(t) is the middle 

point of uj.  

b) If we have Aj → A1, A2 ,…, An, and the 

maximum membership values of A1, A2 ,…, An 

occur at intervals u1, u2,…, un respectively, then 
the output of F(t) is average of the middle points 

m1, m2, …, mn of u1, u2 ,…, un, that is (m1 + m2 + … 

+ mn)/n. 

3.  THE MODEL OF FORECASTING TIME SERIES 

BASED ON HEDGE ALGEBRAS 

In this section, we provide a brief overview of the 

algebraic approach to the semantics of vague 
words in natural languages, as explored in previous 

studies,1-4 and introduce a new forecasting method 

based on hedge algebra theory. 

3.1. Algebraic structure of vague term domain 

Hedge algebras, denoted as AX = (𝒳, 𝔾, ℂ, ℋ, ≤), 

are a mathematical structure to handle uncertainty 

and vagueness. In hedge algebras, 𝒳 represents a 
set of words ℋ is the set of linguistic hedges or 

modifiers considered as 1-ary operations of the 

algebra AX; ℂ = {0, W, 1} is a set of special words 
which are, respectively, the least, the medium and 

the greatest elements of 𝒳 and regarded as 

constants of AX since they are fixed points; 𝔾 = 

{c−, c+} is a set of the primary or atomic words of 

the linguistic variable X, the first one is called the 

negative word, and the second, the positive one.  𝔾 

 ℂ is the set of the generators of the algebra AX 

that is ℋ(𝔾  ℂ) = 𝒳 = ℂ  ℋ(𝔾), the underlying 
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set of AX where for a subset Z of 𝒳, the set ℋ(Z) 

denotes the set of all elements freely generated 

from the words in Z. I.e. ℋ(Z) = {x : x  Z and  

 ℋ*}, where ℋ* is the set of all strings of hedges 

in ℋ, including the empty string . Note that for  

= , x = x and, hence, Z  ℋ(Z). In the case Z = 

{x} we shall write ℋ(x) instead of ℋ({x}).  is a 

semantical order relation upon 𝒳.  

Consider a hedge algebra AX = (𝒳, 𝔾, ℂ, ℋ, ) of 

an attribute X with numeric reference interval 

domain U normalized to be [0,1], for convenience 
in a unified presentation of the quantification of the 

hedge algebras. Formally, the numeric semantics 

of the words of 𝒳 can be determined by a so-called 

Semantically Quantifying Mapping (SQM), 

f : 𝒳 → [0, 1], defined as follows. 

Definition 4. 3 A mapping f: 𝒳 → [0, 1] is said to 

be an SQM of AX, if we have: 

• f is an order isomorphism, i.e. it is one-to-one 

and for x, y  𝒳, x  y  f(x)  f(y). 

• The image of 𝒳 under f, f(𝒳), is topologically 

dense in the universe [0, 1]. 

Definition 5. 3 A function fm: 𝒳 → [0, 1] is said 
to be a fuzziness measure of the hedge algebra AX 

associated with the given variable X, if it satisfies 

the following axioms, for any x  𝒳 and h  ℋ: 

• fm(c−) + fm(c+) = 1. 

• ∑ 𝑓𝑚(ℎ𝑗𝑥)−𝑞 ≤𝑗 ≤𝑝,𝑗 ≠ 0 = 𝑓𝑚(𝑥). 

• fm(hx) = (h)fm(x), where (h) is called for 

convenience the fuzziness measure of h as well.
  

• For x = hnhn – 1 … h1c,  fm(x) = fm(hnhn – 1 … 

h1c) = (hn)(hn – 1) … (h1)fm(c), c 𝔾 = { c−, 

c+}. 

• Setting ∑ 𝜇(ℎ𝑗)−𝑞 ≤𝑗 ≤ −1 = 𝛼  & 

∑ 𝜇(ℎ𝑗)1 ≤𝑗 ≤ 𝑝 = 𝛽 , we have 𝛼 +  𝛽 =

∑ 𝜇(ℎ𝑗)−𝑞 ≤𝑗 ≤𝑝,𝑗 ≠ 0 = 1. 

In the general case, for given values of the 
fuzziness parameters of X, we can establish a 

recursive expression to compute the SQM fm, 

called the SQM induced by the given fm, as 

follows:3 

• fm(W) =   = fm(c−), fm(c−) =  − fm(c−)= 

fm(c−), fm(c+) =  +fm(c+); 

• 𝑓𝑚(ℎ𝑗𝑥) = 𝑓𝑚(𝑥) + 𝑠𝑖𝑔𝑛(ℎ𝑗𝑥) ×

(∑ 𝜇𝑖(ℎ𝑖) + (1 − 𝜔(ℎ𝑗𝑥)) 𝜇(ℎ𝑗)𝑗−1
𝑖=𝑠𝑖𝑔𝑛(𝑗) ) 𝑓𝑚(𝑥) 

where 

 𝜔(ℎ𝑗𝑥) =
1

2
[1 + 𝑠𝑖𝑔𝑛(ℎ𝑗𝑥)𝑠𝑖𝑔𝑛(ℎ𝑝ℎ𝑗𝑥)(𝛽 − 𝛼)] ∈

{𝛼, 𝛽}, for all j  [−q…p], j ≠ 0, and sign() function 

is defined as in research3,4.   

3.2.  Converting values between semantic and 

reference domains 

To convert the values from the reference domain 

to the semantic domain of a variable X and vice 
versa, we synthesize some transformations as: 

Assume that [a, b] is a reference domain of the 

variable X, and [as,bs]  [0, 1] is the semantic 

domain. The conversion value x from [a, b] to 

[as,bs] is called semantization, denoted S(x) and 
the conversion value y from [as,bs] to [a,b] is 

called desemantization, denoted D(y).  

For flexibility in semantization or 
desemantization, we add some parameters sp, dp 

[-1, 1] then: S(x)  =  f(x, sp), satisfy 0 ≤ f(x, sp) ≤ 

1 ,  f(x=a, sp) = 0, f(x=b, sp) = 1. And, D(y)  = 

g(y, dp), satisfy a ≤ g(y, dp) ≤ b, g(y = 0, dp) = a, 

g(y = 1, dp) = b.  

In this paper, we use the functions: S(x) = 

f(x,sp) = (sp×x(1-x)+x)/(b-a) and D(y) = g(y, dp)= 

dp×(f(y, sp)– a)×(b – f(y, sp))/(b – a)+ f(y, sp). 

Figure 1 illustrates the hedge algebra AX = 

(𝒳, 𝔾, ℂ, ℋ, ) with the hedge set ℋ ={Very-V, 

More-M, Rather-R, Less-L} and the transfer of 

values from the semantic domain to the reference 

domain and vice versa.
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Figure 1. A graph representation of ℋ(Z)  ℋ(c-) and transform a value from [0, 1] to [a, b] and vice versa. 

 

3.3.  Hedge-Algebras-based Model (HAM) for 

time series forecasting 

We consider each reference domain in the 

forecasting problem to correspond to a hedge 
algebra. Let PAR be a set of parameters, including 

the fuzzy measures of the hedges and the values sp 

and dp. Given that PAR has been determined, in 
this section, we present the fuzzy time series 

forecasting algorithm as follows. 

Algorithm 1. HAM(PAR) 

INPUT:  

- n values of data {y(t1), y(t2),…, y(tn)} with 
t1, t2, …, tn are point times. 

- System of the parameters of hedge 

algebras and sp, dp for semantization and 
desemantization, denoted PAR. 

OUTPUT: the forecasted value F(ti). 

Step 1. Define the discourse U 

Put U = [Dmin, Dmax] where Dmin = min{y(t1), 

y(t2),…, y(tn)} and Dmax = max{y(t1), y(t2),…, 

y(tn)}.  

Step 2. Building the intervals upon U by using 
the fuzziness model of hedge algebra. 

Based on an algebra AX = (𝒳, 𝔾, ℂ, ℋ, ≤) 

we divide U into k intervals u1, u2, …, uk w.r.t 
level l (see Figure 1). The interval ui is 

labeled Ai, i = 1, 2,…, k satisfying A1 < A2 < 

… < Ak. We calculate fui = fm(Ai)×(Dmax - 

Dmin), i = 1, 2, …, k. So we have u1 = [u1d, 
u1c] = [Dmin, Dmin + fu1], u2 = [u2d, u2c] = 

[u1c+1, u2d+fu2], …, uk = [ukd, ukc] = [u(k-

1)c+1, ukd+fuk].  

Step 3. Quantifying semantics of the linguistic 

values A1, A2, …, Ak . 

To quantify the semantic of A1, A2, …, Ak, we 

use SQM fm as SA1 = fm(A1), SA2 = fm(A2), 

..., SAk = fm(Ak). By properties of hedge 

algebras, it is clear that SA1 < SA2 < ... < 
SAk. 

Step 4. Constructing the relationships 

Suppose that, F(t − 1) is Ai, F(t) is Aj, and 
F(t) is caused by F(t − 1). Clearly, we have 

a relation between Ai and Aj, denoted Ai  → 

Aj.      

Step 5. Grouping relationships 

If Ai  → Aj1, Ai  → Aj2,..., Ai  → Ajm, then we 

establish the relation by grouping all of them 

into a unique relation Ai  → Aj1, Aj2, ..., Ajm. 

Step 6. Calculating output value 

From a group of the relations in Step 5, 

applying the rules as in Section 2.2 we get 

the results of F(t), scilicet: If there is a 

relation Ai  → Aj, then F(j) = D(SAj) upon uj 

= [ujd, ujc]. If Ai →  then F(j) = D() upon 

ui = [uid, uic]. If Ai → Aj1, Aj2, ..., Ajk then F(j) 

= D(Wi,j1×SAj1 + Wi,j2×SAj2 +... + Wi,jk×SAjk) 
upon interval [min{uj1d, uj2d, ..., ujkd}, 

max{uj1c, uj2c, ..., ujkc}] where Wi,j is the 

weights measured in the ratio number of 
times of real data in the interval ui  to sum of 

number of times of real data in the intervals 

uj1, uj2, ..., ujk. 

Step 7. Return the values F(ti), i = 1,…, n. 
 

4.  THE OPTIMAL HEDGE-ALGEBRAS-BASED 

MODEL  

In Step 2 of the HAM model above, we assume 
that each point at a time will belong to a word in 
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the hedge algebra AX = (𝒳, 𝔾, ℂ, ℋ, ≤), ℂ = {c-, 

c+}, ℋ = {h-q, …, h-1, h1,…hp} with given 

parameters (hi), hi  ℋ. Obviously, all 
parameters to be used in HAM contain n = p+q+2 

parameters, which are (h-q), (h-q+1),… (h-1), 

(h1),…, (hp), and sp, dp for semantization and 
desemantization. So we can present that by the 

vector PAR = (x1, x2, …, xn) where x1 = (h-q) ,  

x2 = (h-q+1) ,… xn-2 = (hp) , xn-1 = sp , xn = dp. 
Vector PAR is also an artificial bee in the OHAM 

below. 

To optimize the parameters, we choose the 
fitness function to be the Root Mean Square Error 

(RMSE), where a smaller value indicates better 

fitness. The root mean squared error can be 

expressed as follows: 

RMSE = √
Σ𝑡=1

𝑛 (𝑦𝑡−𝑦̂𝑡)2

𝑛
 

where 𝑦𝑡 is the actual data point at time t, and 𝑦̂𝑡 

is the predicted value at time t. 

The fitness function can be written: 

Algorithm 2. Fitness(PAR) 

INPUT: A system of parameters PAR 

represented for a bee; a real dataset {𝑦𝑡}𝑡=1
𝑛 . 

OUTPUT: Value of fitness of PAR. 

Step 1. Generate language lattice of HA and 

quantify those values based on 
parameters in PAR. 

Step 2. Calculate forecast values 𝑦̂𝑡  (t = 1,…, n) 

by HAM(PAR). 

Step 3. Set Err = 0. 

Step 4. For each real value 𝑦𝑡  and forecasted 

value 𝑦̂𝑡 at t time, we put:  

Err = Err + (𝑦𝑡 − 𝑦̂𝑡)2. 

Step 5. RMSE = √
𝐸𝑟𝑟

𝑛
. 

Step 6. Return value RMSE. 

 

The model is built as: 

Algorithm 3. OHAM() 

INPUT: n values of data {y(t1), y(t2),…, y(tn)} 

with t1, t2, …, tn are point times. 

OUTPUT: the best system of parameters for 

solving optimization forecast problems.  

Step 1. Initialization 

Start by randomly initializing a population 
of artificial bees, where each bee represents 

a potential solution to the optimization 

problem. The population size is typically 
defined beforehand. 

Step 2. Employed Bees' Phase 

Each employed bee explores a new solution 

by adjusting its current position based on 
information shared with a randomly 

selected neighbor bee. The new solution is 

generated by modifying the position using 
specific search operators or strategies. After 

generating the new solution, the fitness of 

both the current and new solutions is 

evaluated. 

Step 3. Onlooker Bees' Phase 

Onlooker bees probabilistically choose a 

solution to explore based on the fitness 
values of employed bees. The better the 

fitness value, the higher the probability of 

being chosen. This phase allows good 
solutions to be shared among the population 

and improves the overall search process. 

Step 4. Scout Bees' Phase 

If an employed bee exhausts its exploration 
resources without finding a better solution, 

it becomes a scout bee. Scout bees generate 

a new random solution to diversify the 
search space and prevent the algorithm 

from getting stuck in local optima. 

Step 5. Memorize the best solution (BestPAR) 
achieved so far. 

Step 6. Termination 

The algorithm will be stopped if a 

termination condition is satisfied. If not, go 
back to Step 2. 

Step 7. Return BestPAR. 

 

 

5.  EXPERIMENTAL RESULTS 

In this section, the proposed approach is applied to 

forecast the price of State Bank of India (SBI) 
shares at BSE India from April 2008 to March 

2010, the enrollments at the University of 

Alabama from years 1971 to 1992, and the TAIEX 
Index of November and December 2004. The 

result will then be compared with different 

published methods. To measure the accuracy of 
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the forecasting methods, the following metrics are 
used for comparison with RMSE. 

For each test dataset, we used hedge algebra 

consisting of four hedge operators: Very, More, 

Possible, and Little, along with two parameters, sp 
and dp, for semantization and desemantization. 

The OHAM model was implemented using the 

ABC optimization algorithm with a maximum of 
3000 iterations, and the number of employed and 

onlooker bees was set to 50. The optimal 

parameters obtained correspond to the 

experimental datasets: the SBI price, student 

enrollment at the University of Alabama, and the 
TAIEX stock index, as presented in Table 1. 

Using the RMSE metric to evaluate 

forecasting performance, it is evident that the 

OHAM model produces less error than other 
models (see the last column of Tables 2-4). 

Visually, from Figures 2-4, the forecasted data 

curves generated by the proposed method follow 
the actual trend more closely compared to other 

models. Notably, at points with large amplitude 

variations, the OHAM model's predictions remain 

closer to the actual values, further demonstrating 
the high adaptability of the proposed model.

Table 1.  The optimal parameters obtained by OHAM.

Parameters 

Forecasting problems µ(Little) µ(Possible) µ(More) µ(Very) sp dp 

SBI 0.316 0.286 0.204 0.194 0.467 -0.457 

Enrollment 0.205 0.213 0.395 0.187 0.066 -0.167 

TAIEX 0.194 0.239 0.149 0.418 0.113 -0.449 

5.1.  SBI prices Forecasting 

Table 2.  Results of the forecasting models for SBI data.
  

Months 

Actual 

SBI 

Prices 

Chen10 

(1996) 

Huarng12  

(2001) 

Pathak and  

Singh13 

(2011) 

Joshi and  

Kumar14 

(2012) 

Kumar and  

Gangwar15 

(2015) 

Bisht and 

Kumar6 

(2016) 

OHAM 

April-08 1819.95 - - - - - - - 

May-08 1840.00 1900 1855 1770.00 1777.80 1725.98 1877.657 1867.00 

June-08 1496.70 1900 1855 1832.50 1865.71 1725.98 1877.657 1583.00 

July-08 1567.50 1500 1575 1470.00 1531.50 1512.39 1466.360 1583.00 

August-08 1638.90 1500 1505 1570.00 1531.50 1512.39 1466.360 1583.00 

September-08 1618.00 1600 1610 1670.00 1777.80 1574.35 1533.504 1583.00 

October-08 1569.90 1600 1610 1603.33 1531.50 1574.35 1533.504 1583.00 

November-08 1375.00 1500 1505 1670.00 1531.50 1512.39 1466.360 1366.00 

December-08 1325.00 1433 1482 1382.50 1504.23 1305.52 1520.652 1366.00 

January-09 1376.40 1433 1365 1332.50 1504.23 1665.90 1520.652 1366.00 

February-09 1205.90 1433 1482 1332.50 1504.23 1305.52 1520.652 1192.00 

March-09 1132.25 1433 1155 1195.00 1258.23 1294.27 1144.718 1192.00 

April-09 1355.00 1300 1365 1145.00 1258.23 1294.27 1322.446 1366.00 

May-09 1891.00 1433 1482 1357.50 1504.23 1665.90 1520.652 1867.00 

June-09 1935.00 1900 1890 1882.50 1865.71 2006.51 1877.657 1867.00 

July-09 1840.00 1900 1890 1970.00 1883.93 2006.51 1895.491 1867.00 

August-09 1886.90 1900 1855 1470.00 1865.71 1725.98 1877.657 1867.00 

September-09 2235.00 1900 1855 1970.00 1865.71 2006.51 1877.657 2259.00 

October-09 2500.00 2300 2485 2245.00 2142.04 2520.00 2311.382 2498.00 

November-09 2394.00 2300 2415 2470.00 2245.65 2420.00 2374.204 2384.00 

December-09 2374.75 2300 2345 2395.00 2191.75 2365.99 2352.723 2384.00 

January-10 2315.25 2300 2205 2395.00 2191.75 2365.99 2352.723 2384.00 
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February-10 2059.95 2300 2205 2295.00 2142.04 2020.00 2311.382 2083.00 

March-10 2120.05 2100 2135 2070.00 1883.93 2120.00 2166.247 2083.00 

RMSE 187.26 164.04 205.96 200.17 131.28 179.03 36.50 

 

 

 
Figure 2.  Line chart of forecast method results for SBI data.

5.2.  Enrollment student Forecasting 

Table 3.  Results of the forecasting models for enrollment student.

Actual 

data 

Song and 

Chissom9 

(1993) 

Chen10 

(1996) 

Huarng12 

(2001) 

Lee and 

Chou16 

(2004) 

SC_time 

variant17 

(1994) 

Cheng 

et al.18 

(2006) 

Cheng 

et al.19 

(2008) 

Yolcu et 

al.20 

(2009) 

Qiu et 

al.21 

(2011) 

Joshi 

and 

Kumar14 

(2012) 

Kumar 

and 

Gangwar15 

(2015) 

Bisht 

and 

Kumar6 

(2016) 

OHAM 

13055 - - - - - - - - - - - - - 

13563 14000 14000 - 14025 - 14230 14242 14031.35 14195 14250 - 13595.67 13752 

13867 14000 14000 - 14568 - 14230 14242 14795.36 14424 14246 13693 13814.75 13752 

14696 14000 14000 14000 14568 - 14230 14242 14795.36 14593 14246 13693 14929.79 14753 

15460 15500 15500 15500 15654 14700 15541 15474.3 14795.36 15589 15491 14867 15541.27 15341 

15311 16000 16000 15500 15654 14800 15541 15474.3 16406.57 15645 15491 15287 15540.62 15341 

15603 16000 16000 16000 15654 15400 15541 15474.3 16406.57 15634 15491 15376 15540.62 15341 

15861 16000 16000 16000 15654 15500 16196 15474.3 16406.57 16100 16345 15376 15540.62 16040 

16807 16000 16000 16000 16197 15500 16196 16146.5 16406.57 16188 16345 15376 16254.5 16879 

16919 16813 16833 17500 17283 16800 16196 16988.3 17315.29 17077 15850 16523 17040.41 16879 

16388 16813 16833 16000 17283 16200 17507 16988.3 17315.29 17105 15850 16066 17040.41 16040 

15433 16789 16833 16000 16197 16400 16196 16146.5 17315.29 16369 15850 17519 16254.5 15341 

15497 16000 16000 16000 15654 16800 15541 15474.3 16406.57 15643 15450 16606 15540.62 15341 

15145 16000 16000 15500 15654 16400 15541 15474.3 16406.57 15648 15450 15376 15540.62 15341 

15163 16000 16000 16000 15654 15500 15541 15474.3 16406.57 15622 15491 15376 15541.27 15341 

15984 16000 16000 16000 15654 15500 15541 15474.3 16406.57 15623 15491 15376 15541.27 16040 

16859 16000 16000 16000 16197 15500 16196 16146.5 16406.57 16231 16345 15287 16254.5 16879 
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18150 16813 16833 17500 17283 16800 17507 16988.3 17315.29 17090 17950 16523 17040.41 18283 

18970 19000 19000 19000 18369 19300 18872 19144 19132.79 18325 18961 17519 18902.3 19291 

19328 19000 19000 19000 19454 17800 18872 19144 19132.79 19000 18961 19500 19357.3 19291 

19337 19000 19000 19000 19454 19300 18872 19144 19132.79 19000 18961 19000 19168.56 19291 

18876 - 19000 19000 - 19600 18872 19144 19132.79 19000 18961 19500 19168.56 19291 

RMSE 650.40 880.73 638.36 476.97 501.28 511.04 478.45 805.17 511.33 433.76 493.56 428.63 178.21 

 

 
Figure 3.  Line chart of forecast method results for enrollment student data.

5.3.  TAIEX index Forecasting 

Table 4.  Results of the forecasting models for TAIEX index. 

Date 
Actual 

Index 

Chen’ 

Forecasted 

Index10 

Loc’ 

Forecasted 

Index7 (a) 

Loc’ 

Forecasted 

Index8 (b) 

OHAM 

2/11/2004 5759.61  5674.81  5743.00   5768 

3/11/2004 5862.85  5768.14   5852.00  5886  5863 

4/11/2004 5860.73  5854.81  5876.04  5886  5863 

5/11/2004 5931.31  5908.26  5876.04  5934  5942 

8/11/2004 5937.46  5934.81  5912.05  5934  5942 

9/11/2004 5945.2  5943.81  5912.05  5934  5942 

10/11/2004 5948.49  5934.81  5912.05  5978  5942 

11/11/2004 5874.52  5937.12  5912.05  5886  5863 

12/11/2004 5917.16  5908.26  5919.27  5934  5903 

15/11/2004 5906.69  5934.81  5919.27  5934  5903 

16/12/2004 5910.85  5934.81  5919.27  5934  5903 

17/11/2004 6028.68  5937.12  5919.27  5978  6038 
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18/11/2004 6049.49  6068.14  5979.18  5978  6038 

19/11/2004 6026.55  6068.14  5979.18  5978  6038 

22/11/2004 5838.42  5976.47  5979.18  5886  5833 

23/11/2004 5851.10  5854.81  5876.04  5886  5833 

24/11/2004 5911.31  5934.85  5876.04  5934  5903 

25/11/2004 5855.24  5934.81  5919.27  5886  5863 

26/11/2004 5778.65  5854.81  5876.04  5768  5768 

29/11/2004 5785.26  5762.12  5797.89  5768  5768 

30/11/2004 5844.76  5762.12  5852.00  5886  5833 

1/12/2004 5798.62  5834.85  5876.04  5768  5768 

2/12/2004 5867.95  5803.26  5797.89  5886  5863 

3/12/2004 5893.27  5854.81  5876.04  5886  5903 

6/12/2004 5919.17  5854.81  5919.27  5934  5903 

7/12/2004 5925.28  5937.12  5912.05  5934  5942 

8/12/2004 5892.51  5876.47  5912.05  5886  5903 

9/12/2004 5913.97  5854.81  5919.27  5934  5903 

10/12/2004 5911.63  5934.81  5919.27  5934  5903 

13/12/2004 5878.89  5937.12  5919.27  5863 5863 

14/12/2004 5909.65  5854.81  5919.27  5903 5903 

15/12/2004 6002.58  5934.81  5919.27  5994 5994 

16/12/2004 6019.23  6068.14  5979.18  6038 6038 

17/12/2004 6009.32  6062.12  5979.18  5994 5994 

20.12.2004 5985.94  6062.12  5979.18  5994 5994 

21/12/2004 5987.85  5937.12  5979.18  5994 5994 

22/12/2004 6001.52  5934.81  5979.18  5994 5994 

23/12/2004 5997.67  6068.14  5979.18  5994 5994 

24/12/2004 6019.42  5934.81  5979.18  6038 6038 

27/12/2004 5985.94  6068.14  5979.18  5994 5994 

28/12/2004 6000.57  5937.12  5979.18  5994 5994 

29/12/2004 6088.49  6068.14  5979.18  6125 6125 

30/12/2004 6100.86  6062.12  6119.36  6125 6125 

31/12/2004 6139.69  6137.12  6143.57  6125 6125 

RMSE 56,86  48.02  26.88  12.731 
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Figure 4.  Line chart of forecast method results for TAIEX index data.

6.  CONCLUSIONS 

In this study, we propose a new fuzzy time series 

forecasting method using hedge algebra. We also 
introduce a segmentation approach for the 

reference space based on k-level and the fuzziness 

measure of linguistic terms of hedge algebra.  

  The effectiveness of this fuzzy time series 
forecasting method is demonstrated by applying it 

to the benchmark problem of forecasting the 

enrollment numbers at the University of Alabama. 
The relatively small RMSE value indicates that the 

proposed model outperforms other methods. 

Moreover, financial time series exhibit intrinsic 

characteristics such as relatively high volatility and 
frequent fluctuations in individual time series data 

over time, making forecasting more challenging 

compared to other types of time series data. Even 
well-established time series forecasting methods 

tend to produce high forecasting errors. However, 

the proposed OHAM model proves to be highly 
suitable and effective for forecasting financial time 

series, where nonlinearity, intrinsic characteristics, 

and fuzziness complicate the forecasting process. 
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