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TÓM TẮT

Trong bài báo này, chúng tôi khảo sát điều kiện để cho một không gian kiểu Zygmund Zω
là một không gian nhỏ, biên ổn định bất biến tự đẳng cấu, trong đó ω là một trọng chuẩn tắc
trên hình cầu đơn vị Bn trong Cn. Kết quả này được áp dụng để nghiên cứu mối quan hệ giữa
tính bị chặn và tính compact của các toán tử hợp liên tục Wψ,φ, f 7→ ψ · (f ◦ φ), từ không gian
kiểu Bloch Bω vào không gian kiểu Zygmund Zω, và từ Zω vào chính nó.

Từ khóa: Không gian Bloch, không gian Zygmund, toán tử hợp có trọng, tính bị chặn, tính
compact.
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ABSTRACT

In this paper, we investigate the conditions under which a Zygmund-type space Zω is an
automorphism invariant boundary regular small space, where ω is a normal weight on the unit
ball Bn of Cn. This result is applied to study the relationship between the boundedness and
compactness of the weighted composition operators Wψ,φ, f 7→ ψ · (f ◦ φ), from the Bloch-type
space Bω to the Zygmund-type space Zω, and from Zω to itself.
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pactness

1. INTRODUCTION

Given a natural number n, let us consider
the open unit ball Bn in Cn and H(Bn) the
space of all holomorphic functions in Bn. The
standard basis for Cn consists of the vectors
e1 = (1, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), . . . ,

en = (0, . . . , 0, 1).

In the paper, for z = (z1, . . . , zn), w =

(w1, . . . , wn) ∈ Cn, we write

⟨z, w⟩ =
n∑
k=1

zkwk,

and

|z| =
√
⟨z, z⟩ =

√
|z1|2 + · · ·+ |zn|2.

For f ∈ H(Bn), let

∇zf(z) =
( ∂f
∂z1

(z), . . . ,
∂f

∂zn
(z)

)
,

Rf(z) = ⟨∇f(z), z⟩, z ∈ Bn

Let D = B1 denote the unit disk of C. If
f ∈ H(D), and supz∈D(1 − |z|2)|f ′′(z)| < ∞
then f is said to belong to the Zygmund
space. In fact, the 1− |z|2 is a kind of weight
function. Later, the weight function was ex-
tended to (1− |z|2)α, 0 < α <∞.

A positive continuous function ω on the
interval [0, 1) is called normal if there are
three constants 0 ≤ δ < 1 and 0 < a < b <∞
such that

ω(t)

(1− t)a
is decreasing on [δ, 1),

lim
t→1

ω(t)

(1− t)a
= 0,

(W1)

ω(t)

(1− t)b
is increasing on [δ, 1),

lim
t→1

ω(t)

(1− t)b
= ∞.

(W2)

If we say that a function ω : Bn → [0,∞) is
normal, we also assume that it is radial, that
is, ω(z) = ω(|z|) for every z ∈ Bn. Strictly
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positive continuous functions on Bn are called
weights.

We define Bloch-type space Bω,
Zygmund-type space Zω, respectively, as fol-
lows:

Bω =
{
f ∈ H(Bn) : ∥f∥sBω <∞

}
,

Zω =
{
f ∈ H(Bn) : ∥f∥sZω <∞

}
,

where

f 7→ ∥f∥sBω = sup
z∈Bn

ω(z)|∇(Rf)(z)|,

f 7→ ∥f∥sZω = sup
z∈Bn

ω(z)|∇(Rf)(z)|

are seminorms on Bω and Zω, respectively.
The spaces Bω, Zω be endowed with Banach
space structures via the norm

∥f∥Bω = |f(0)|+ ∥f∥sBω ,

∥f∥Zω = |f(0)|+ ∥f∥sZω .

When ω(r) = 1 − r, from 20 we see
that f ∈ Z1−r := Z if and only if f be-
longs to the ball algebra A(Bn) on Bn and
there exists a constant C > 0 such that
|f(ζ + h) + f(ζ − h) − 2f(ζ)| < C|h|, for all
ζ ∈ ∂Bn and ζ ± h ∈ ∂Bn. The space Zω can
be considered as a generalization of the clas-
sical Zygmund space which was introduced in
16.

Let S(Bn) be the set of holomorphic self-
maps of Bn. Given ψ ∈ H(Bn) and φ ∈
S(Bn). The weighted composition operator
with symbols ψ and φ is the linear operator
Wψ,φ : E → F defined by

Wψ,φ(f) := ψ · (f ◦ φ), for f ∈ E,

where E,F are Banach spaces of holomorphic
functions on Bn.We can regard this operator
as a generalization of a multiplication opera-
tor and a composition operator.

Theory of (weighted/unweighted) compo-
sition operators has been establishing since
the last century. The boundedness, compact-
ness, essential norm, and spectral properties

are always the highlights of research of com-
position operators. Book 4 is a good reference
for studying the composition operators on
classical spaces of analytic functions. More-
over, this theory is also established on the ba-
sis of theory of analytic functions (on the unit
disk), which is basically a convenient tool.

Composition operators mapping into
the classical Zygmund were studied in
1,2,3,8,10,11,18. Many scholars have discussed
similar problems (see 5,6,7,12,13,14,19,21, etc.)

However, for abstract normal weight es-
pecially in high dimensions, when investigat-
ing and using the properties (for example,
discussing weighted/unweighted composition
operator of the Zygmund type space, we of-
ten encounter some obstacles. This is one of
the reasons why the sufficient and necessary
conditions for Wψ,φ to be bounded or com-
pact between Zygmund-type spaces (normal
weight Zygmund spaces) have not been stud-
ied much so far. In order to overcome these
obstacles, we need a variety of means or tech-
niques.

Motivated by the above-mentioned dis-
cussions and the previous investigations, the
purpose of this paper is to uncover additional
characteristics of Zygmund-type spaces and
serve them as technical tools to solve the
problem of the relationship between the
boundedness, compactness of weighted com-
position operators from a Bloch-type space
Bω into the Zygmund-type space Zω and from
Zω into itself.

In Section 2, we provide a condition for
the normal weight ω that is sufficient for the
space Zω to be an automorphism invariant
boundary regular small space. A main moti-
vation for the section is a result of Shapiro
15 (also, Theorem 4.5 of 4) asserting that
the condition ∥φ∥∞ < 1 is necessary for the
composition Cφ to be compact on a “suitably
small” Banach space. In 15, four axioms are
necessary for appropriately small spaces. Two
of these axioms are fundamental, concerning
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norm naturality and the nontriviality of the
spaces. The other two axioms govern the size
of the spaces. That is, suitably small spaces
are small by the boundary regularity axiom,
which ensures continuous extension up to the
boundary, but are not “too small” due to the
automorphism-invariance axiom. For further
details, refer to 15 or 4.

Applying the result in the previous sec-
tion, in Section 3, we establishes the rela-
tion between the boundedness, compactness
of weighted composition operators from Bω
into Zω and from Zω into itself.

Throughout this paper, we use the no-
tions a ≲ b and a ≍ b for non negative quan-
tities a and b to mean a ≤ Cb and, respec-
tively, C−1b ≤ a ≤ Cb for some inessential
constant C > 0.

2. A CHARACTERIZATION OF
ZYGMUND-TYPE SPACES

This section is devoted to the study of the
properties “small ” and “automorphism in-
variant boundary regular ” of the Zygmund-
type spaces which will be necessary in estab-
lishing one of our main result.

For a normal weight ω on Bn we use there
certain quantities, which will be used in this
work:

I1ω(z) :=

∫ |z|

0

dt

ω(t)
,

I2ω(z) :=

∫ |z|

0

(∫ t

0

ds

ω(s)

)
dt, ∀z ∈ Bn.

Remark 2.1. Since ω is positive, contin-
uous, mω,δ := mint∈[0,δ] ω(t) > 0. More-
over, it follows from (W1) that ω is strictly
decreasing on [δ, 1), hence, we obtain that
maxt∈[0,1) ω(t) =: Mω < ∞. Then, it is easy
to check that

ω(z)I1ω(z) < Rω := δ
Mω

mω,δ
+1−δ <∞ (2.1)

and, hence,

ω(z)I2ω(z) < |z|Rω < Rω <∞ (2.2)

for every z ∈ Bn \ {0}.

Proposition 2.1 (21). For every normal
weight ω on Bn we have

Zω = ZR
ω :=

{
f ∈ H(Bn) : ∥f∥ZR

ω
<∞

}
= Z∇

ω :=
{
f ∈ H(Bn) : ∥f∥Z∇

ω
<∞

}
and ∥ · ∥Zω

∼= ∥ · ∥ZR
ω

∼= ∥ · ∥Z∇
ω
, where

R(2)f = R(Rf),

|∇(2)f(z)| =
( n∑
i,j=1

∣∣∣∣ ∂2f

∂zi∂zj
(z)

∣∣∣∣2) 1
2

,

∥f∥ZR
ω
:= |f(0)|+ sup

z∈Bn

ω(z)|R(2)f(z)|,

∥f∥Z∇
ω
:= |f(0)|+ sup

z∈Bn

ω(z)|∇(2)f(z)|,

fỏ every f ∈ Zω.

In this paper, let us write simply we de-
note Zω for the complex (Zω, ∥ · ∥ZR

ω
).

Lemma 2.2. Let ω be a normal weight on
Bn. Then there exists C > 0 such that for
every f ∈ Zω and for every z ∈ Bn we have

|Rf(z)| ≤ CI1ω(z)∥f∥Zω ,

|∇f(z)| ≤ C(1 + I1ω(z))∥f∥Zω ;
(2.3)

and

|f(z)| ≤ |f(0)|+ CI2ω(z)∥f∥Zω . (2.4)

Proof. The estimate (2.3) follows from 17

which says there exists C > 0 such that for
every f ∈ Bω and for every z ∈ Bn we have

|f(z)| ≤ C
(
1 + I1ω(z)

)
∥f∥Bω . (2.5)

Then by (2.3) and (2.5) again we obtain
(2.4).

Note that, in fact, by using (2.5) the es-
timate for |∇f(z)| in (2.3) can be replced by

|∇f(z)| ≲
(
1 + I1ν (z)

)
|∇f(0)|+ I1ν (z)∥f∥Zµ .

(2.6)

Now, by Aut(Bn), we denote the auto-
morphism group of Bn that consists of all bi-
holomorphic mappings of Bn. It is known that
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every φ ∈ Aut(Bn) is a unitary transforma-
tion of Cn if and only if φ(0) = 0 (see 20).

For any α ∈ Bn \ {0}, we define

φα(z) =
α− Pα(z)− sαQα(z)

1− ⟨z, α⟩
, z ∈ Bn,

(2.7)
where sα =

√
1− |α|2, Pα(z) = ⟨z,α⟩

|α|2 α is the
orthogonal projection from Cn onto the one
dimensional subspace [α] generated by α, and
Qα(z) = z − ⟨z,α⟩

|α|2 α is the orthogonal projec-
tion from Cn onto Cn ⊖ [α]. It is clear that

Pa(z) =
⟨z, a⟩
|a|2

a

Qa(z) = z − ⟨z, a⟩
|a|2

a, z ∈ Bn.

When α = 0, we simply define φα(z) =

−z. It is obvious that each φα is a holomor-
phic mapping from Bn into Cn. It is well
known that each φα is a homeomorphism of
the closed unit ball Bn onto Bn and every au-
tomorphism φ of Bn is the form φ = φαU,

where U is a unitary transformation of Cn.

Theorem 2.3. Let ω be normal weight on
Bn such that I2ω(1) <∞. Then the Zygmund-
type space Zω is an automorphism invariant
boundary regular small space in the following
sense:

(i) Every function in Zω extends continu-
ously to the closed unit ball,

(ii) Zω contains all the polynomials,

(iii) Evaluation at each point of Bn is a
bounded linear functional,

(iv) If φ ∈ Aut(Bn) and f ∈ Zω then
f ◦ φ ∈ Zω.

Remark 2.2. The axioms (i) and (iii) guar-
antee convergence in the norm of Zω implies
convergence in the sup norm: the identity
map from (Zω, ∥·∥Zω) to (Zω, ∥·∥∞) is contin-
uous by the closed graph theorem. Moreover,
another closed graph theorem argument us-
ing the axiom (iii) shows that the axiom (iv)

implies that Cφ is bounded on Zω whenever
φ is a conformal automorphism of Bn.

Proof. From the definitions it is easy to see
that (ii)-(iii) hold for Zω. Under the condi-
tion

∫ 1
0

dt
ω(t) < ∞ the space Zω satisfies (i)

(see 14).

To show that (iv) holds, we need to prove
that for any conformal automorphism φ =

φaU = (φ1, . . . , φn) of Bn, if f ∈ Zω then
f ◦ φ ∈ Zω where a is a point of Bn and U is
a unitary transformation of Cn. Without loss
of generality, we may assume that φ = φa
for some a ∈ Bn. Note that φj ∈ H(Bn),
j = 1, . . . , n, from (2.7), which implies that
R(k)φj ∈ H(Bn) and R(k)φj is bounded in Bn
for any positive integer k. Thus,

M (1)
φ := sup

z∈Bn

|Rφ(z)| <∞,

M (2)
φ := sup

z∈Bn

|R(2)φ(z)| <∞.
(2.8)

Let λ ∈ (0, 1) be such that |Rφ(z)| ≤ 1

and |R(2)φ(z)| ≤ 1 for |φ(z)| ≤ λ. There ex-
ists D0 > 0 such that

1 ≤ D0I
1
ω(λ), 1 ≤ D0I

2
ω(λ). (2.9)

Then, thers exists D1 > 0 such that

sup
|φ(z)|≤λ

ω(φ(z))|Rφ(z)|
(
1 + I1ω(φ(z))

)
≤ D1 sup

|φ(z)|≤λ
ω(φ(z))||Rφ(z)|I1ω(φ(z)),

sup
|φ(z)|≤λ

ω(φ(z))|R(2)φ(z)|
(
1 + I2ω(φ(z))

)
≤ D1 sup

|φ(z)|≤λ
ω(φ(z))|R(2)φ(z)|I2ω(φ(z)).

(2.10)
Let D = max{D0+1, D1}. For every f ∈ Zω,
by (2.1)−(2.4), (2.10), and a standard calcu-
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lation, we have

ω(z)|R(2)(f ◦ φ)(z)|

≤ ω(z)
[
|R(2)f(φ(z))φ(z)|

+ 2|Rf(φ(z))Rφ(z)|+ |f(φ(z))R(2)φ(z)|
]

=
ω(z)

ω(φ(z))
ω(φ(z))

[
|R(2)f(φ(z))φ(z)|

+ 2|Rf(φ(z))Rφ(z)|+ |f(φ(z))R(2)φ(z)|
]

≤ ω(z)

ω(φ(z))

[
1+

+ Cω(φ(z))
(
2|Rφ(z)|(1 + I1ω(φ(z)))

+ |R(2)φ(z)|(1 + I2ω(φ(z)))
)]
∥f∥Zω

≤ ω(z)

ω(φ(z))

[
1

+ CD sup
|φ(z)|≥λ

ω(φ(z))[2M (1)
φ +M (2)

φ ]
]
∥f∥Zω

=
ω(z)

ω(φ(z))

[
1 + CDRω[2M

(1)
φ +M (2)

φ ]
]
∥f∥Zω

(2.11)
for every z ∈ Bn.

(i) First, we consider the case where a =

0. Then |φ(z)| ≤ |z| for every z ∈ Bn. Denote

Bδ := {z ∈ Bn : |φ(z)| ≤ δ}.

Since µ is decreasing on [δ, 1) we have

ω(z)

ω(φ(z))
≤ Mω

mω,δ
∀z ∈ Bδ;

ω(z)

ω(φ(z))
< 1 ∀z ∈ Bn \Bδ.

Therefore, it follows from (2.11) that

sup
z∈Bn

ω(z)|R(2)(f ◦ φ)(z)|

≤ sup
z∈Bδ

ω(z)|R(2)(f ◦ φ)(z)|

+ sup
z∈Bn\Bδ

ω(z)|R(2)(f ◦ φ)(z)|

≤
( Mω

mω,δ
+ 1

)
×
(
1 + CDRω[2M

(1)
φ +M (2)

φ ]
)
∥f∥Zω <∞.

(2.12)
Hence, f ◦ φ ∈ Zω.

(ii) Now, we consider the case a ̸= 0. Take
a γ ∈ Aut(Bn) such that γ(0) = a. Then

η := φ ◦ γ ∈ Aut(Bn) and η(0) = 0. By (i),
g := f ◦ η ∈ Zω. Note that γ−1 ∈ Aut(Bn),
as the above, we have R(k)γ−1 is bounded
in Bn for any positive integer k. Then, since
f ◦φ = g◦γ−1, as the estimate (2.12) we have

sup
z∈Bn

ω(z)|R(2)(f ◦ φ)(z)|

= sup
z∈Bn

ω(z)|R(2)(g ◦ γ−1)(z)|

≤
( Mω

mω,δ
+ 1

)
×
(
1 + CDRω[2M

(1)
γ−1 +M

(2)
γ−1 ]

)
∥g∥Zω <∞.

Consequently, f ◦ φ ∈ Zω.

Remark 2.3. The condition I2ω(1) <∞ can-
not be omitted. Indeed, consider the weight
function ω(t) = (1 − t)2 for t ∈ [0, 1) which
satisfies I2ω(1) = ∞. Then ir is easy to check
that the function f ∈ Zω given by f(z) =

ln(1− z) for every z ∈ B1 function in Zω can
not extend continuously to B1. This means
that the condition (i) is not true for Zω.

3. A RELATION BETWEEN
WEIGHTED COMPOSITION OPER-
ATORS Bω → Zω AND Zω → Zω

In order to conclude the paper we establishes
the relation between the boundedness, com-
pactness of weighted composition operators
from Bω into Zω and from Zω into itself.

Before stating the theorem first let us
note that for each j = 1, . . . , n the func-
tion idj given by idj(z) := zj belongs to
Zω. Then, in the case ψ ∈ H∞(Bn) with
∥ψ∥∞ ≤ 1 and Wψ,φ : Zω → Zω is compact,
Wψ,φ(idj) = ψ · φj hence, θj := ψ · φj ∈ Zω,
j = 1, . . . , n. For each m ≥ 1, put

θm = (θm1 , . . . , θ
m
n ) :=

m−1∏
k=0

(ψ ◦ φk) · φm,

where φ0 = id, and φk := φ ◦ · · · ◦ φ︸ ︷︷ ︸
k times

for

k ≥ 1.
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By Theorem 2.3(i) we can assume that
θm, m ≥ 0, are continuous functions on the
closed unit the closed unit ball Bn.

Theorem 3.1. Let ψ ∈ H∞(Bn), φ =

(φ1, . . . , φn) ∈ S(Bn) and ν, ω be normal
weights on Bn and

∫ 1
0

dt
ω(t) <∞.Then the fol-

lowing are equivalent:

(1) Wψ,φ : Bν → Zω is compact;

(2) Wψ,φ : Bν → Zω is bounded;

(3) Wψ,φ : Zω → Zω is compact;

(4) ψ,ψ · φj ∈ Zω for every j = 1, . . . , n and
∥φ∥∞ < 1.

In order to prove the theorem we need
some lemmas.

Lemma 3.2. Assume that φ(0) = 0 and
Wψ,φ : Zω → Zω is compact. Then ∥θm∥∞ →
0.

Proof. Without loss of generality we may as-
sume that ∥ψ∥∞ ≤ 1. We have two cases to
consider:

(i) In the case |ψ(0)| = 1, it follows from
Theorem 2.3(i) and the maximum modulus
principle we have ψ ≡ 1. Then Wψ,φ = Cφ,

the composition operator on Zω, and hence,
the lemma follows from Lemma 2.2 of 15.

(ii) Now we assume that |ψ(0)| < 1.

We will prove that Wψ,φ has spectral ra-
dius ϱ(Wψ,φ) < 1.

Let λ ̸= 0 be a spectral point of Wψ,φ.

SinceWψ,φ is compact, λmust to be an eigen-
value. Fix f ∈ Zω, an eigenfunction of Wψ,φ

for the eigenvalue λ. ThusWψ,φ(f) = λf and
there is a point a ∈ Bn for which f(a) ̸= 0.

Denote Ba :=
{
z ∈ Bn : |z| < 1+|a|

2

}
.

Note that, |φ(z)| < |z| for every z ∈ Bn,
since otherwise, the composition operator Cφ
would be an isomorphism. Consequently, by
∥ψ∥∞ ≤ 1, (ψ · Cφ)(BZω) is not relatively
compact subset of the unit ball BZω of Zω.
This means ψ ·Cφ is not a compact operator.
This contradicts the compactness of Wψ,φ.

Then, by the Schwarz Lemma, φ(Ba) is a rel-
atively compact subset of Ba. A second ap-
plication of the Schwarz Lemma, this time to
the (suitably normalized) restriction of φ to
φ(Ba), and go on, shows that φm(a) → 0 as
m→ ∞.

Now, since limm→∞ |ψ(φm−1(a))| =

|ψ(0)| ≠ 1, by using the fact that, if 0 <

am < 1 and {am}m≥1 does not converge to 1

then
∏∞
m=1 am = 0, we obtain

λmf(a) = [Wψ,φ]
m(f)(a)

=
(m−1∏
k=0

ψ(φk(a))
)
· f(φm(a)) → 0 · f(0)

as m → ∞. Because f(a) ̸= 0 it therefore
must has |λ| < 1. The compactness of Wψ,φ

also forces its spectrum to consist of the point
0 along with an at most countable set of
eigenvalues which can cluster only at 0. Thus
the spectral radius of Wψ,φ is the magnitude
of the largest eigenvalue of Wψ,φ, which we
have just seen to be < 1. The spectral radius
formula now shows that

lim
m→∞

∥[Wψ,φ]
m∥1/m = ϱ(Wψ,φ) < 1,

so in particular, limm→∞ ∥[Wψ,φ]
m∥ = 0.

Note that θmj = [Wψ,φ]
m(idj) ∈ Zω, j =

1, . . . , n. Then,

∥θmj ∥Zω = ∥[Wψ,φ]
m(idj)∥Zω

≤ ∥[Wψ,φ]
m∥∥idj∥Zω → 0 as m→ ∞.

On the other hand, it follows from The-
orem 2.3(i & iii) that the topology of Zω is
stronger than the sup-norm topology. Conse-
quently, ∥θm∥∞ → 0 as m → ∞. Lemma is
proved.

Lemma 3.3. Let ψ ∈ H(Bn), φ ∈ S(Bn) and
µ, ν be normal weights on Bn. Let X = Bν
or Zν . Then the operators Wψ,φ : X → Zµ
is compact if and only if for any bounded
sequence {fm} ⊂ X which converges to 0
uniformly on any compact subsets of Bn as
m → ∞, we have ∥Wψ,φ(fm)∥Zµ → 0 as
m→ ∞.
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The lemma for the case X = Bν has been
proven in 9. For the case X = Zν , it is sim-
ilar to that of X = Bν and will therefore be
omitted.

Lemma 3.4. Let ψ ∈ H(Bn), φ =

(φ1, . . . , φn) ∈ S(Bn) and µ, ν be normal
weights on Bn. Assume that Wψ,φ : Zν → Zµ
is bounded. Then

sup
z∈Bn

µ(z)|Aψ,φ(z)| <∞,

sup
z∈Bn

µ(z)|Bψ,φ(z)| <∞,
(3.1)

where

Aψ,φ(z) := 2Rψ(z)Rφ(z) + ψ(z)R(2)φ(z),

Bψ.φ(z) := ψ(z)((Rφ1(z))
2, . . . , (Rφn(z))

2).

Proof. First, by taking f0(z) = 1 ∈ Zν , it
follows from the boundedness of Wψ,φ that
ψ ∈ Zµ.

At the same time, for each j ∈ {1, . . . , n},
by considering fj(z) = zj and gj(z) = z2j for
every z = (z1, . . . , zn) ∈ Bn we can check that
ψ · φj , ψ · φ2

j ∈ Zµ.
Then, since

R(2)[ψ(z)φj(z)]

= R(2)ψ(z)φj(z) + 2Rψ(z)Rφj(z)

+ ψ(z)R(2)φj(z)

= R(2)ψ(z)φj(z) +Aψ,φj
(z),

R(2)[ψ(z)φ2
j (z)]

= φj(z)
(
R(2)ψ(z)φj(z) + 4Rψ(z)Rφj(z)

+ 2ψ(z)R(2)φj(z)
)
+ 2ψ(z)

(
Rφj(z)

)2
= φj(z)

[
2R(2)[ψ(z)φj(z)]−R(2)ψ(z)

]
+ 2Bψ,φj

(z)

(3.2)
for every z ∈ Bn and every j = 1, . . . , n we
have

sup
z∈Bn

µ(z)|Aψ,φj
(z)|

≤ ∥ψ · φj∥Zµ + ∥ψ∥Zµ <∞,

sup
z∈Bn

µ(z)|Bψ,φj
(z)|

≤ ∥ψ · φ2
j∥Zµ + 2∥ψ · φj∥Zµ + ∥ψ∥Zµ <∞

for every j = 1, . . . , n. Consequently, (3.1) is
proved.

Proof of Theorem 3.1. Theorem is trivial if
∥ψ∥∞ = 0.Without loss of generality we may
assume that 0 < ∥ψ∥∞ ≤ 1, since for orther-
wise we can consider the ∥ψ∥−1

∞ ψ instead of
ψ.

(1) ⇒ (2): It is obvious.

(2) ⇒ (3): Suppose {fm}m≥1 is a
bounded sequence in Zω and it converges
to 0 uniformly on compact subsets of Bn.
By the Weierstrass theorem the sequences
{Rfm}m≥1, {R(2)fm} also converge to 0 uni-
formly on compact subsets of Bn. We now
prove that ∥fm∥Bω converges to 0. Given
ε > 0. Since limt→1 ω(t) = 0 there exists
ϱ ∈ (δ, 1) such that ω(|z|) < ε whenever ϱ <
|z| < 1. Meanwhile, there exists a positive in-
teger N such that |fm(0)| < ε, |Rfm(z)| < ε,

|R(2)fm(z)| < ε for all |z| ≤ ϱ and all m ≥ N.

Then, by (2.3)

∥fm∥Bω ≤ |fm(0)|+ sup
z∈Bn

ω(z)|Rfm(z)|

≤ ε+ sup
|z|≤ϱ

ω(z)|Rfm(z)|

+ sup
ϱ<|z|<1

ω(z)|Rfm(z)|

≤ ε+ εMω + sup
ϱ<|z|<1

ω(z)
∣∣∣Rfm( z

2|z|

)
+

∫ 1

1/(2|z|)
R(2)fm(tz)

dt

t

∣∣∣
≤ ε+ εMω + ε sup

m≥1
sup

|w|=1/2
|Rfm(w)|

+ 2ε

∫ ϱ/|z|

1/(2|z|)
|R(2)fm(tz)||z|dt

+ 2 sup
ϱ<|z|<1

ω(z)

∫ 1

ϱ/|z|
|R(2)fm(tz)||z|dt

≤ ε+ εMν + ε sup
m≥1

sup
|w|=1/2

|Rfm(w)|

+ 2ε∥fm∥Zω

∫ ϱ

1/2

dt

ω(t)

+ 2∥fm∥Zω sup
ϱ<|z|<1

ω(z)

∫ |z|

δ

dt

ω(t)
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≤ ε+ εMω + ε sup
m≥1

sup
|w|=1/2

|Rfm(w)|

+ 2ε∥fm∥Zω

∫ ϱ

1/2

dt

ω(t)
+ 2ε∥fm∥Zω

≤ εK for all m ≥ N.

Then, the boundedness of Wψ,φ implies that
∥Wψ,φ(fm)∥Zω ≲ ∥fm∥Bω → 0 as m → ∞.

Therefore, Wψ,φ is compact by Lemma 3.3.
(3) ⇒ (4): Without loss of generality, we

may assume that ∥ψ∥∞ < 1.

(i) First we consider the case φ(0) = 0.

Assume the contrary, that ∥φ∥∞ = 1. Then
there is a rotation ζ, z 7→ eiαz, such that
φ̃ := ζ ◦φ has a fixed point z0 ∈ Bn. We may
choose ζ such that ψ(z0) ̸= 0. Put

ψ̃ :=
ψ

ψ(z0)
.

Then, for every m ≥ 1 we obtain that

(θ̃)m :=
(m−1∏
k=0

ψ̃ ◦ (φ̃)k
)
(φ̃)m

has a fixed point z0, hence, ∥(θ̃)m∥∞ ≥ 1.

It follows from Lemma 3.2 that the operator
W
ψ̃,φ̃
, and hence,Wψ,φ̃ is cannot be compact.

Note that Wψ,φ̃ = Wψ,φ ◦ Cζ where the
composition operator Cζ is an isomorphism
of Zω. This implies that Wψ,φ is not com-
pact. This contradicts the hypothesis.

(ii) We now consider the case φ(0) = a ̸=
0. Let γ be the conformal automorphism of
Bn taking a to 0, and set η = γ ◦ φ. It fol-
lows from Theorem 2.3(iv & iii) that Cγ is
a bounded operator on Zω, hence, Wψ,η is
compact on Zω becauseWψ,η =Wψ,φ◦Cγ . Fi-
nally, it follows from the case (i) that ∥η∥∞ <

1, and hence, ∥φ∥∞ < 1.

(4) ⇒ (1): Let {fm}m≥1 be a bounded
sequence in Bν converging to 0 uniformly on
compact subsets of Bn. By Cauchy integral
formula again, it is clear that

sup
|φk(z)|≤λ

|Rφ(z)fm(φ(z))| → 0,

sup
|φk(z)|≤λ

|∇(2)
φ(z)fm(φ(z))| → 0 as m→ ∞.

with λ = ∥φ∥∞ < 1. Then by ψ ∈ Zω, (3.1)
and a standard calculation we have

∥Wψ,φ(fm)∥Zω

≤ |fm(0)|+ ω(z)|R(2)[ψ(z)]|fm(φ(z))|
+ ω(z)|Aψ,φ(z)|Rfm(φ(z))|

+ ω(z)|Bψ,φ(z)|R(2)fm(φ(z))|
≤ |fm(0)|+ ∥ψ∥Zω sup

|φ(z)|≤∥φ∥∞
|fm(φ(z))|

+ sup
z∈Bn

ω(z)|Aψ,φ(z)| sup
|φ(z)|≤∥φ∥∞

|Rfm(φ(z))|

+ sup
z∈Bn

ω(z)|Bψ,φ(z)| sup
|φ(z)|≤∥φ∥∞

|R(2)fm(φ(z))|

→ 0

as m → ∞. By Lemma 3.3, Wψ,φ is com-
pact.
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