
Hàm năng lượng tự do của mô hình Ising với từ trường mạnh

TÓM TẮT

Trong bài báo này, chúng tôi trình bày kết quả về miền giải tích của hàm năng lượng tự do cho mô hình Ising chỉ

cho phép mỗi spin tương tác với các spin lân cận của nó. Nghiên cứu của chúng tôi dựa trên khai triển cụm, một công cụ

mạnh mẽ trong vật lý thống kê, kết hợp những hiểu biết mới từ Fernandez và Procacci về tiêu chí hội tụ của nó.

Từ khóa: Mô hình Ising, khai triển cụm, hàm năng lượng tự do
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The free energy function of Ising model in a strong magnetic field

ABSTRACT

In this paper, we study the analytic domain of free energy function for Ising model, specifically for cases
where only neighboring spins interact. Our study comes from using cluster expansion, a powerful tool in statistical
physics, incorporating new insights from Fernandez and Procacci on its convergence criteria.

Keywords: Ising model, cluster expansion, free energy function.

1. INTRODUCTION

The Ising model is a mathematical representation
of ferromagnetism in statistical mechanics. It con-
sists of discrete variables that represent the magnetic
dipole moments of atomic “spins”, which can take on
one of two states: +1 or -1. These spins are arranged
in a graph, typically a crystal lattice, where the local
structure repeats periodically in all directions, allow-
ing each spin to interact with its neighbors. One area
of interest for mathematicians and physicists is the
analytical validity of the free energy function in the
Ising model. These issues can be referenced in Friedli
and Velenik’s book.1

The free energy function in mathematics and
physics is defined as the logarithm of the partition
function. Analyzing the properties of the free energy
function is crucial for understanding phase transi-
tions, particularly in the Isingmodel. This approach is
also applicable to more complex mathematical mod-
els in statistical mechanics, such as the Potts model,
Blume-Capel model, and Curie-Weiss model. To in-
vestigate the analytical properties of the free energy

function, we typically calculate its analytical domain.

One of the tools used to study the analytical prop-
erties of the free energy function is the cluster expan-
sion technique. The cluster expansion represents a
power series with respect to auxiliary parameters, of-
ten referred to as fugacity. The first application of the
cluster expansion was to examine the pressure func-
tion at equilibrium as a power series based on the den-
sity function derived from the empirical descriptions
of gases and liquids. In the theoretical framework of
fluids, these parameters correspond to pressures de-
termined respectively from the ideal gas law or the
pressure of certain suitable reference components.
This problem is discussed in various references.1,2

Cluster expansion has extensive applications in
various fields, including probability theory and im-
proving the bounds on colored graphs. These appli-
cations hinge on representing the partition function
specific to each problem, along with the associated
reference parameters for their characteristics. Further
insights into the applications of cluster expansion can
be found in references.1–4
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A common question that arises in these contexts
is when the free energy function behaves as an ana-
lytic function in relation to the identified parameters.
One method to improve the analytic range of the free
energy function in the Ising model involves refining
the convergence criteria of the cluster expansion.

Study on the convergence domain of cluster ex-
pansion began in the late sixties,5,6 but it did not re-
ceive significant attention until several decades later.
The convergence of cluster expansion has been ex-
amined using variousmethods, including: Kirkwood-
Salzburg equation,5 tree-graph boundaries,7 induc-
tion methods,8 and partition schemes9 (for a com-
parison of these methods, see reference10). Among
these approaches, the partition scheme has yielded
the most promising results and has been the focus of
several applications and improvements in the paper.9

This work has been expanded upon in various stud-
ies, summarized in reference.2 Nevertheless, the ad-
vancements made by Fernandez-Procacci regarding
the convergence criteria remain the most promising
for practical applications.

This paper aims to explore the expansion of the
analytical domain of the free energy function for the
Ising model, building on the advancements made by
Fernandez-Procacci in the convergence domain of
the cluster expansion. Specifically, we will provide
the analytic domainwhen the external field is not zero
(in reference,1 this model is referred to as the Ising
model with a strong field).

2. ISING MODEL IN A STRONG FIELD
AND MAIN RESULTS

We consider the set Ω = {−1, 1}Zd . Configura-
tions denote asσ = (σx)x∈Zd . Let us consider a finite
set Λ ⊂ Zd, configurations σΛ ∈ {−1, 1}Λ := ΩΛ

and Hamiltonians with free boundary condition

H∅
Λ;β,h(σΛ) := −β

∑
{i,j}∈Λ

f(i, j)σiσj − h
∑
i∈Λ

σi,

(1)

where β ∈ R≥0 is the inverse temperature, h ∈ R is
the external field, and the interaction f(·, ·) is defined
as

f(i, j) =

{
1 if ∥i− j∥1 = 1

0 otherwise
. (2)

Let us consider a finite set Λ ⊂ Zd, configurations
σΛωΛc ∈ Ω and Hamiltonians

Hω
Λ;β,h(σΛωΛc) := H∅

Λ;β,h(σΛ)− β
∑
i∈Λ

j∈Λc

f(i, j)σiωj ,

(3)

where the interaction f(·, ·) is defined in (2), a con-
figuration σΛωΛc ∈ Ω includes two part σΛ ∈
{−1, 1}Λ := ΩΛ, and ωΛc ∈ {−1, 1}Λc which is
usually called a boundary of the systems, or configu-
rations are frozen outside of finite setΛ, and the term,

β
∑
i∈Λ

j∈Λc

f(i, j)σiωj ,

refers to the interaction between the internal and ex-
ternal components of the system.

The partition function with free boundary condi-
tion in Λ is

Z∅
Λ (β, h) :=

∑
σΛ∈ΩΛ

exp
(
−H∅

Λ;β,h(σΛ)
)
, (4)

the (finite-volume) free energy function (pressure
function) with free boundary condition is

P∅
Λ (β, h) :=

1

|Λ|
logZ∅

Λ (β, h). (5)

And the partition function with ω−boundary condi-
tion in Λ is

Zω
Λ (β, h) :=

∑
σΛ∈ΩΛ

exp
(
−Hω

Λ;β,h(σΛωΛc)
)
,

(6)
the (finite-volume) free energy function with
ω−boundary condition in Λ is

Pω
Λ (β, h) :=

1

|Λ|
logZω

Λ (β, h). (7)

The thermodynamic free energy function p# is ob-
tained through the thermodynamic limit

p#(β, h) = lim
Λ↑Zd

P #
Λ(β, h) (8)
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e.g. in Fisher sense, where # := ∅ or ω.

We utilize the fact that thermodynamic pressure
is independent of boundary conditions (for reference,
please take a look in Theorem 3.81) and, for the sake
of algebraic convenience, we will focus in this sec-
tion on “plus” boundary conditions: ωi = 1 for all
i ̸∈ Λ. The interaction between the inside and out-
side of the system can be described as the following
term.

β
∑

i∈Λ, j ̸∈Λ
∥i−j∥=1

σi .

To get the presentation of partition function, we add
and subtract 1 to each term in this Hamiltonian and
for each σΛ ∈ ΩΛ, let us introduce the set

Λ−(σΛ) = {i ∈ Λ : σi = −1} . (9)

We obtain

H+
Λ;β,h(σΛ) =− β |EΛ| − h |Λ|+ 2β

∣∣∂eΛ−(σΛ)
∣∣

+ 2h
∣∣Λ−(σΛ)

∣∣ (10)

where

∂eΛ
−(σΛ) =

{
{i, j} : i ∈ Λ−(σΛ),

j /∈ Λ−(σΛ), ∥i− j∥1 = 1
}

and

Eb
Λ =

{
{i, j} ⊂ Zd : {i, j}∩Λ ̸= ∅, ∥i−j∥1 = 1

}
.

Each σΛ corresponds one to one a term of devia-
tions from the ground state Λ−(σΛ) (the configu-
ration with minimal energy), which is the “all +1”
configuration. As a consequence, the partition func-
tion can be expressed in terms of deviations from the
ground state:

Z+
Λ (β, h) = exp(β|Eb

Λ|+ h|Λ|)ZLF
Λ (β, h), (11)

where the large field polymers partition function
ZLF
Λ (β, h) is given as

ZLF
Λ (β, h) :=

∑
Λ−⊂Λ

exp
(
−2β|∂eΛ−| − 2h|Λ−|

)
.

Before going on with the new expression of partition
functionZ+

Λ (β, h), let us remind the definition of dis-
tance,

d(i, j) := ∥i− j∥1 = max
1≤k≤d

|ik − jk|

for i, j ∈ Λ, and

d(Si, Sj) := inf{d(κ, ℓ) : κ ∈ Si, ℓ ∈ Sj}

for Si, Sj ⊂ Λ. From the definition of the distance,
let us declare that two vertices i, j ∈ Λ− connected
if and only if d(i, j) ≤ 1, we can decompose Λ− into
maximally connected components (For example, see
Figure 1),

Λ− = S1 ∪ ... ∪ Sn

with d(Si, Sj) > 1 for i ̸= j.

Figure 1. A configuration of the Ising model.
Each connected component of the shaded area
delimits one of the polymers S1, . . . , S8

Before giving a alternative expression of large
field polymers partition function, let us introduce the
definitions of compatible and incompatible objects as
follows:
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Definition 2.1. Let us define S, S′ to be compatible,
and denote S ∼ S′, if d(S, S′) ≥ 2. Otherwise S, S′

are incompatible and we denote S ≁ S′.

Denote

ζ(S, S′) =

{
1 if S ∼ S′

0 if S ≁ S′ .

Since |∂eΛ−| =
∑n

i=1 |∂eSi| and |Λ−| =
∑n

i=1 |Si|,
then the expression of large field polymers partition
function can rewrite the following form

ZLF
Λ (β, h) = 1

+
∑
n≥1

1

n!

∑
(S1,...,Sn)∈Pn

Λ

∏
1≤i<j≤n

ζ(Si, Sj)
n∏

i=1

wβ,h(Si),

(12)

with

PΛ = {S ⊂ Λ : S is non-empty and connected of Λ}

and

wβ,h(Si) = exp(−2β|∂eSi| − 2h|Si|). (13)

Theorem 2.1. The pressure with +1-boundary con-
dition in Λ can be expressed as the following form:

P+
Λ (β, h) = β

|EΛ|
|Λ|

+ h+
1

|Λ|
logZLF

Λ (β, h), (14)

where

logZLF
Λ (β, h)

=

∞∑
n=1

1

n!

∑
(S1...Sn)∈Pn

Λ

aTn (S1, . . . , Sn)

n∏
i=1

wβ,h(Si),

(15)

with Ursell function ωT
n (·) defined as

aTn (S1, . . . , Sn) :=
∑

G∈C[n]

∏
{i,j}∈E(G)

[ζ(Si, Sj)− 1].

(16)
Expression (15) is well-known as cluster expansion.

Proof. Expression (12) serves as the partition func-
tion for a gas of polymers, which is comprised of sub-
sets of Λ, as discussed in Fernandez and al. paper.10

Consequently, we can apply the theory developed for
these systems to prove Expression (14). More detail,
see references.10,11

The next theorem establishes a sufficient con-
dition for the existence of the pressure function as
Λ → Zd in the thermodynamic limit and allows us
to verify the analyticity domain of the pressure func-
tion.

Theorem 2.2. If there exists a > 0 such that
∞∑
k=1

|Ak| e−2dβ k(d−1)/dV (1)1/d−2h k+(2d+1)ak

≤ ea − 1 (17)

with

Ak := {S ∈ P : 0 ∈ S, |S| = k}, (18)

then the following holds:
(i.) |Γ|S (wβ,h) converges. Furthermore, for S ∈

P ,
|Γ|S (wβ,h) ≤ ea|S|.

(ii.) The free energy function (14) converges ab-
solutely and uniformly in Λ, and

p+(β, h) = βd+ h+
∑

X⊂Zd:X∋0

1

|X|
Ψ(X), (19)

where, for eachX ⊂ Zd, Ψ(·) is defined as follow:

Ψ(X) (20)

=

∞∑
n=1

1

n!

∑
(S1...Sn)∈Pn

S1∪···∪Sn=X

aTn (S1, . . . , Sn)

n∏
i=1

wβ,h(Si)

with

P =
{
S ⊂ Zd : S is non-empty and connected of Zd

}
.

Proof. Part (i) of Theorem 2.2 follows from Lemma
4.2, which is presented in Subsection 4.2.
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Part (ii) of Theorem 2.2 is derived from the
Fernandez-Procacci Theorem.9 We will omit the de-
tailed proof and refer readers to1,11 for further infor-
mation.

The main purpose of this paper is to identify
the domain of inverse temperature β and the exter-
nal magnetic field h for which the pressure function
p(β, h) is analytic, as stated in the following theorem.

Theorem 2.3. The pressure function p(β, h) is ana-
lytic in the domain D with

D = {(β, h) ∈ R× R : β ≥ 0; 2h ≥ ϕ1(ā)}

where ϕ1 is defined in (45) and ā in (48).

3. CLUSTER EXPANSION FOR SUBSET
GASES

Subset gases are specific types of polymer gases
that are frequently utilized in cluster expansion
within statistical mechanics. Their definition requires
a countable subset, denoted as,V (e.g.Zd) which acts
as an underlying ”space.” Polymers are defined as fi-
nite, non-empty subsets of V, represented mathemat-
ically as:

PV = {S ⊂ V : 0 < |S| < ∞}.

with compatibility relation, denoted as S ∼ S′ de-
pended on the models we are working with. For in-
stance, in Section 2, we stated that S ∼ S′ if and only
if d(S, S′) ≥ 2. In the work of Bissacot, Procacci and
Fernandez,10 it mentioned that S ∼ S′ if and only if
S ∩ S′ = ∅. Polymers can now be measure through
its cardinality, so it makes sense to talk about large
and small polymers. The definition of the gas is com-
pleted by a family of activities z = {zS ∈ C}S∈PV .
Let us define the partition function for gas polymers
as follows:

Z(z) = 1 (21)

+
∑
n≥1

1

n!

∑
(S1,...,Sn)∈Pn

V

∏
1≤i<j≤n

ζ(Si, Sj)
n∏

i=1

zSi

Using Mayer’s trick (which can be found in11), we
can derive logZ(z) as following form:

logZ(z)

=
∑
n≥1

1

n!

∑
(S1,...,Sn)∈Pn

V

aTn (S1, . . . , Sn)

n∏
i=1

zSi
,

(22)

where aTn (·) is defined as (16).
To study the convergence of cluster expansion,

we typically examine it through the convergence con-
ditions of the formal power series in infinite vol-
ume as below (see9 for a full explanation): For each
S ∈ PV,

|Γ|S(ρ) = 1

+
∞∑
n=1

1

n!

∑
(S1,...,Sn)∈Pn

V

|aTn+1(S, . . . , Sn)|
n∏

i=1

ρSi

(23)

with ρ ∈ [0,∞)PV .

We will now examine some convergent condi-
tions of cluster expansion as given in equation (23).
As a consequence of Theorem 2.3.2,11 the cluster ex-
pansion is convergent under Fernandez-Procacci cri-
terion known as the best convergent condition, which
is given in the following theorem.

Theorem 3.1 (Fernández-Procacci criterion). Sup-
pose that for some ξ ∈ [0,∞)PV there exists µ ∈
[0,∞)PV such that

ξS0
ψFP
S0
(µ) ≤ µS0

, for each S0 ∈ PV (24)

with

ψFP
S0
(µ) = 1 +

∑
n≥1

1

n!

∑
(S1,...,Sn)∈Pn

V
S0≁Si, Si∼Sj, 1≤i,j≤n

n∏
i=1

µSi

(25)
Then the series |Γ|S (ξ) defined in (23) is convergent.
Furthermore, for each S ∈ PV,

ξS |Γ|S (ξ) ≤ µS .
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To apply the Fernández-Procacci criterion, most
of the models, we substitute µγ = ξγea|γ| to obtain

1+
∑
n≥1

∑
{S1,...,Sn}⊂PV

S0∩Si ̸=∅, Si∩Sj=∅, 1≤i<j≤n

n∏
i=1

ξiea|Si| ≤ ea|S0|

(26)
From the constraint in the sum, S0 ∩ Si ≠ ∅, Si ∩
Sj = ∅, 1 ≤ i < j ≤ n, this means that each of the
polymers S1, . . . , Sn must intersect different points
in S0 to avoiding overlapping. Consequently, we can
conclude that: (i) n ≤ |S0|, and (ii) there are n dif-
ferent points in S0 touched by S1 ∪ . . . ∪ Sn. The
selection of these points can be done in

(|S0|
n

)
ways.

Hence the left-hand side of (26) is less than or equal
to

1 +

|S0|∑
n=1

(
|S0|
n

)[
sup
x∈S0

∑
S∈PV
S∋x

ξSea(S)
]n

=

[
1 + sup

x∈S0

∑
S∈PV
S∋x

ξSea(S)
]|S0|

(27)

This leads us to the following sufficient condition for
(26)

sup
x∈S0

∑
S∈PV
S∋x

ξSea|S| ≤ ea − 1. (28)

This condition, in fact, coincides with the known (but
forgotten) Gruber-Kunz condition5 except that the
later involves a sharp inequality sign. The condition
is useful for numerous applications including con-
tour ensembles of low-temperature phases, geometri-
cal objects of high-temperature expansions, random
sets of the Fortuin-Kasteleyn representation of the
Potts model, ….

4. PROOFS

4.1. Alternative Gruber-Kunz condition

In this section, we will utilize the Fernandez-
Procacchi criterion given in Section 3 along with a

new compatible relation presented in Section 2 to de-
rive the improved of Gruber-Kunz condition which is
presented as following proposition.

Proposition 4.1. If there exists a > 0 such that

sup
x∈Zd

∑
x∈S

S∈P

wβ,h(S)ea|[S]1| ≤ ea − 1. (29)

then |Γ|S (wβ,h) converges. Furthermore, for every
S ∈ P ,

|Γ|S (wβ,h) ≤ ea|S|.

Proof. Let us start with following readily from The-
orem 3.1 that |Γ|S (ρ) converges if for each S ∈ P ,

1+
∑
n≥1

∑
(S1,...,Sn)∈Pn

S≁Si, Si∼Sj, 1≤i,j≤n

n∏
i=1

wβ,h(Si)ea(Si) ≤ ea(S)

(30)
where we take µS = wβ,h(S)ea(S). It is easy to see
that:

S ≁ S′ ⇐⇒ d(S, S′) ≤ 1 ⇐⇒ S ∩ [S′]1 = ∅,

with

[S]1 := {j ∈ Zd : d(j, S) ≤ 1},

and

S ∼ S′ ⇒ d(S, S′) > 1 ⇒ S ∩ S′ = ∅.

It implies that the left-hand side of convergent
condition 30 can be bounded as follows

1+
∑
n≥1

∑
{S1,...,Sn}⊂P

[S0]1∩Si ̸=∅, Si∩Sj=∅, 1≤i,j≤n

n∏
i=1

wβ,h(Si)ea(Si).

(31)
Then we can replace the convergent condition 30 by

1 +
∑
n≥1

∑
{S1,...,Sn}⊂P

[S]1∩Si ̸=∅, Si∩Sj=∅, 1≤i,j≤n

n∏
i=1

wβ,h(Si)ea|[Si]1|

≤ ea|[S]1| (32)

By an argument analogous to that used to derive the
Gruber-Kunz condition (28), starting with the con-
straint in the sum, [S]1 ∩ Si ̸= ∅, Si ∩ Sj =

∅, 1 ≤ i < j ≤ n, this means that each of the
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polymers S1, . . . , Sn must intersect different points
in [S]1 to avoiding overlapping. Consequently, we
can conclude that: (i) n ≤ |[S]1|, and (ii) there are
n different points in [S]1 touched by S1 ∪ . . . ∪ Sn.
The selection of these points can be done in

(|[S]1|
n

)
ways. Hence the left-hand side of (26) is less than or
equal to

1 + sup
x∈Zd

∑
x∈S

S∈P

wβ,h(S)ea|[S]1| ≤ ea. (33)

The proof has been completed.

4.2. Proof of Theorem 2.3

Before proceeding with further calculations, let
us establish a weaker condition for the convergence
of the power series |Γ|S(w(β, h)) in the follow-
ing lemma. This condition arises from a bound on
the weight wβ,h(·)ea|[S]1|, as outlined in this lemma,
along with the Gruber-Kunz condition. This bound
is particularly useful for estimating the parameters β
and h.

Lemma 4.2. For each S ∈ P ,

wβ,h(S) ≤ e−βdVd(1)1/d[|S|](d−1)/d−h|S|, (34)

and
ea|[S]1| ≤ ea(2d+1)|S|. (35)

Furthermore, if there exists a > 0 such that

∞∑
k=1

|Ak| e−2dβ k(d−1)/dV (1)1/d−2h k+(2d+1)ak

≤ ea − 1 (36)

with

Ak := {S ∈ P : 0 ∈ S, |S| = k}, (37)

then |Γ|S (wβ,h) converges and

|Γ|S (wβ,h) ≤ ea|S|,

for each S ∈ P .

Proof. We observe that

|S| ≤ |[S]1| ≤ (2d+ 1) |S| , (38)

Then inequality (35) holds.

To prove the inequality (34), we begin with the
fact that the smallest ratio of area to volume is
achieved by a d-dimensional sphere. Denoting the
volume and surface area of a sphere of radius R, re-
spectively,

Vd(R) = Vd(1)R
d

Sd(R) = dVd(1)R
d−1

we obtain

|∂eS| ≥ Sd(R) = dVd(1)
1/d[Vd(R)]

(d−1)/d

= dVd(1)
1/d|S|(d−1)/d. (39)

As a consequence of inequalities (34), (34), and the
condition (36), we obtain

sup
x∈Zd

∑
x∈S

S∈P

e−2β|∂eS|−2h|S|+a|[S]1|

≤
∞∑
k=1

|Ak| e−2dβ k(d−1)/dV (1)1/d−2h k+(2d+1)ak

≤ ea − 1 (40)

with Ak defined as in (37). Thus, the alternative
Gruber-Kunz condition is satisfied, completing the
proof as a consequence of Proposition 4.1.

The next two lemmas are crucial for determining
the number of elements in Ak.

Lemma 4.3 (Lemma 3.601). Let G be connected
graph with n edges. Starting from an arbitrary ver-
tex of G, there is a path in G crossing each edge of
G exactly twice and ending at the starting vertex.

Proof. The proof uses a induction argument. For n =

1 the result is trivial. Assume that the claim holds for
k = n − 1 and consider a connected graph G with
n-edges. Let i0 be the starting vertex in G and con-
sider a vertex j0 ∈ V (G) such that {i0, j0} ∈ E(G).
There are two possibilities for E(G) \ {i0, j0}:
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• It equalsE(G1)whereG1 is a connected graph.
In this case, the desired path is obtained by concate-
nating {i0, j0} with the path in G1 starting from j0
and satisfying the inductive hypothesis, followed by
a final step {i0, j0}.

• It equalsE(G1)∪E(G2)whereG1 andG2 are
each connected but they are mutually disconnected.
The initial site i0 is a vertex of G1 and j0 a vertex of
G2. In this case the desired path is obtained by the fol-
lowing concatenation: First {i0, j0}, second the in-
ductive path in G2 starting and ending at j0, third
{i0, j0} again, and fourth the inductive path in G1

starting and ending at i0.

In both cases, we obtain a path that starts and ends
at i0, with exactly two visits to each edge of G.

Lemma 4.4. For k ≥ 1,

|Ak| ≤ (2d)2k−2. (41)

Proof. For each set S ∈ P such that 0 ∈ S and
|S| = k, there exists a spanning tree that contains
k−1 edges. Consequently, by applying Lemma (4.3),
the number of connected sets with k elements that in-
clude 0 is bounded above by the number of paths of
length 2k − 2 starting from 0. This latter quantity is
certainly less than (2d)2k−2.

We now start with the proof of our main re-
sult in this paper. The infinite volume free energy
p(β, h) inherits the analyticity of the positive series
|Γ|S(w(β, h)) (for more details, see references1,11).
Thus we can confirm that all values of the external
field h that meet the condition (36) are sufficient for
the analyticity of p(β, h).

Proof of Theorem 2.3. We start with the condition
(36), and apply Lemma 4.4 to obtain

∞∑
k=1

|Ak| e−2dβV (1)1/dk(d−1)/d−2hk+(2d+1)ak

≤
∞∑
k=1

(2d)2k−2e[−2h+(2d+1)a]k

=
e(2d+1)a−2h

1− (2d)2e(2d+1)a−2h
, (42)

for h > 0 satisfying

4d2e(2d+1)a−2h < 1. (43)

Inequality (42) implies that (36) is valid for h when-
ever there exists a constant a > 0 such that

e(2d+1)a−2h

1− (2d)2e(2d+1)a−2h
≤ ea − 1 (44)

Or, it is equivalent with

2h ≥ ln
[
1 + 4d2(ea − 1)

]
− ln(ea − 1) + 2da+ a

:= ϕ1(a) (45)

and from the condition (43), we have

2h > 2 ln(2d) + 2da+ a := ϕ2(a).

Then, for each a > 0,

2h ≥ max[ϕ1(a), ϕ2(a)] = ϕ1(a). (46)

Since, for a > 0, we have

ln
[
1 + 4d2(ea − 1)

]
− ln(ea − 1) ≥ ln(4d2).

As a consequence of inequality (46), to optimize the
domain for the field h, we can take,

2h ≥ min
a>0

ϕ1(a). (47)

Elementary analysis shows that ϕ1(a) has a unique
minimum at

ā = ln

[
(2d+ 1)(8d2 − 1) + 1 +

√
∆

8d2(2d+ 1)

]
, (48)

with
√
∆ = [(2d+1)(8d2−1)+1]2−16(2d+1)2(4d4−d2).

Hence,

2h ≥ ϕ1(ā). (49)

The proof of Theorem 2.3 is completed.
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4.3. Comparison with Friedli and Velenik re-
sult.

In last part, we compare our estimations with the
results provided in Friedli and Velenik’s book1 which
is one of newest result on this topic. To describe the
latter, let us denote

η(h, d) =
∞∑
k=1

(2d)2ke(2d+1−2h)k

H+ = {h : Reh ≥ h̄} (50)

with

h̄ := inf{h : η(h, d) < 1, h > 0}.

Friedli and Velenik state that if h ∈ H+, then the
cluster expansion in equation (15) converges abso-
lutely. By performing a simple computation, we can
estimate that

2h̄ = ln(8d2) + 2d+ 1. (51)

As a consequence of inequality (47), then a = ln 2
into the function ϕ1(a), we have

2h̄ = ln(8d2) + 2d+ 1

≥ ln(4d2 + 1) + d2 ln 2 + ln 2 ≥ min
a>0

ϕ1(a).

(52)

Inequality (52) show that our estimate is wider than
Friedli and Velenik’s bound1 (more detail, see Figure
2). Let us examine the ratio between our bound and
Friedli and Velenik’s bound1, as defined below:

r(d) :=
ϕ1(ā)

log(8d2) + 2d+ 1
,

where ϕ1 is defined in (45) and ā in (48). In Figure
3, we observe that the rate R decays exponentially,
approaching zero as d tends to infinity.

Figure 2. A comparison with Friedli and
Velenik result (green line presented for Friedli
and Velenik result and red line presented for our
result)

Figure 3. The rate between our bound and
Friedli and Velenik bound
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