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TÓM TẮT

Trong bài báo này, chúng tôi nghiên cứu một số điều kiện để không gian kiểu Zygmund Zω,
với ω là một trọng chuẩn tắc trên hình cầu đơn vị B trong Cn, trở thành một không gian nhỏ, ổn
định biên và bất biến dưới các tự đẳng cấu. Chúng tôi áp dụng kết quả này để phân tích mối quan
hệ giữa tính bị chặn và tính compact của các toán tử hợp liên tụcWψ,φ, từ Bω vào Zω và trên Zω.

Từ khóa: Không gian Bloch, không gian Zygmund, toán tử hợp có trọng, tính bị chặn, tính
compact.
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ABSTRACT

In this paper, we examine the conditions under which a Zygmund-type space Zω, where ω
is a normal weight on the unit ball B of Cn, becomes a small space that is boundary regular
and invariant under automorphisms. These results are then applied to analyze the relationship
between the boundedness and compactness of weighted composition operators Wψ,φ, defined by
f 7→ ψ · (f ◦φ), acting from the Bloch-type space Bω to the Zygmund-type space Zω, as well as
from Zω into itself.
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1. INTRODUCTION

Given a natural number n, let us consider the
open unit ball B in Cn and H(B) the space of
all holomorphic functions in B. The vectors
e1 = (1, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), . . . ,

en = (0, . . . , 0, 1) form the standard basis for
Cn.

Throughout this paper, for any z =

(z1, . . . , zn) and w = (w1, . . . , wn) in Cn,
we use ⟨z, w⟩ =

∑n
k=1 zkwk, to denote their

standard inner product, and write |z| =√
⟨z, z⟩ =

√
|z1|2 + · · ·+ |zn|2 for the corre-

sponding Euclidean norm.
For f ∈ H(Bn), let

∇zf(z) =
( ∂f
∂z1

(z), . . . ,
∂f

∂zn
(z)

)
,

Rf(z) = ⟨∇f(z), z⟩, z ∈ B.

Let D denote the unit disk of C. If f ∈

H(D) satisfies supz∈D(1 − |z|2)|f ′′(z)| < ∞
then f is said to belong to the Zygmund
space. In this definition, 1 − |z|2 acts as a
weight function, which was later generalized
to (1− |z|2)α for all α > 0.

A positive continuous function ω defined
on the interval [0, 1) is said to be normal
if there exist constants 0 ≤ δ < 1 and
0 < a < b <∞ such that

ω(t)

(1− t)a
is decreasing on [δ, 1),

lim
t→1

ω(t)

(1− t)a
= 0,

(W1)

ω(t)

(1− t)b
is increasing on [δ, 1),

lim
t→1

ω(t)

(1− t)b
= ∞.

(W2)

If we say that a function ω : B → [0,∞) is
normal, we also assume that it is radial, that
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is, ω(z) = ω(|z|) for every z ∈ B. Strictly pos-
itive continuous functions on B are referred to
as weights.

We define Bloch-type space Bω,
Zygmund-type space Zω, respectively, as fol-
lows:

Bω =
{
f ∈ H(B) : ∥f∥sBω <∞

}
,

Zω =
{
f ∈ H(B) : ∥f∥sZω <∞

}
,

where

∥f∥sBω = sup
z∈Bn

ω(z)|∇(Rf)(z)|,

∥f∥sZω = sup
z∈Bn

ω(z)|∇(Rf)(z)|

are seminorms on Bω and Zω, respectively.
The spaces Bω, Zω be endowed with Banach
space structures via the norm

∥f∥Bω = |f(0)|+ ∥f∥sBω ,

∥f∥Zω = |f(0)|+ ∥f∥sZω .

The space Zω generalizes the classical
Zygmund space, which was introduced in 1.

Define S(B) as the set of holomorphic
self-maps of B. Given ψ ∈ H(B) and φ ∈
S(B), the weighted composition operator
Wψ,φ : E → F is defined by

Wψ,φ(f) := ψ · (f ◦ φ), for f ∈ E,

where E and F are Banach spaces consisting
of holomorphic functions on B. It may be re-
garded as a generalization of multiplication
and composition operators.

The theory of composition operators,
both weighted and unweighted, has its ori-
gins in the previous century. The bounded-
ness, compactness, essential norm, and spec-
tral properties are always the highlights of
research of composition operators. Book 2 is
a good reference for studying the composition
operators on classical spaces of analytic func-
tions. Furthermore, the theory relies on the
theory of analytic functions on the unit disk,
which provides a convenient foundation.

Composition operators mapping into the
classical Zygmund were studied in 3−9. Many
scholars have discussed similar problems (see
10−17, etc.)

However, for abstract normal weight es-
pecially in high dimensions, when investigat-
ing and using the properties (for example,
discussing weighted/unweighted composition
operator of the Zygmund type space, we of-
ten encounter some obstacles. This partly ex-
plains why the boundedness and compact-
ness criteria forWψ,φ between Zygmund-type
spaces (normal weight cases) have not been
extensively investigated to date In order to
overcome these obstacles, we need a variety
of means or techniques.

Motivated by the above-mentioned dis-
cussions and the previous investigations, the
purpose of this paper is to uncover additional
characteristics of Zygmund-type spaces and
serve them as technical tools to solve the
problem of the relationship between the
boundedness, compactness of weighted com-
position operators from a Bloch-type space
Bω into the Zygmund-type space Zω and from
Zω into itself.

Section 2 provides a sufficient condition
on the normal weight ω ensuring that Zω is
an automorphism invariant boundary regular
small space. A key motivation for this section
comes from a result of Shapiro 18 (and The-
orem 4.5 in 2), which asserts that ∥φ∥∞ < 1

is a necessary condition for Cφ to be com-
pact on any “suitably small” Banach space.
According to 18, four axioms must be satisfied
for a space to qualify as appropriately small.
Among these, two axioms are fundamental,
concerning norm naturality and space non-
triviality, while the other two regulate the
size of the spaces. Specifically, the boundary
regularity axiom makes the spaces small by
ensuring continuous boundary extension, and
the automorphism-invariance axiom prevents
them from being excessively small. For fur-
ther details, refer to 18 or 2.
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Building on the results obtained in the
previous section, Section 3 establishes the
connections between the boundedness and
compactness of weighted composition oper-
ators acting from Bω to Zω, and those acting
on Zω itself.

In this paper, we use the notation a ≲ b

to denote that a ≤ Cb, and a ≍ b to indi-
cate that C−1b ≤ a ≤ Cb, where C > 0 is
an inessential constant, with all quantities a
and b assumed to be non-negative.

2. A CHARACTERIZATION OF
ZYGMUND-TYPE SPACES

This section is devoted to the study of the
properties “small ” and “automorphism in-
variant boundary regular ” of the Zygmund-
type spaces which will be necessary in estab-
lishing one of our main result.

For a normal weight ω on B we use there
certain quantities, which will be used in this
work:

I1ω(z) :=

∫ |z|

0

dt

ω(t)
,

I2ω(z) :=

∫ |z|

0

(∫ t

0

ds

ω(s)

)
dt, z ∈ B.

Remark 2.1. Since ω is positive and contin-
uous, it follows that mω,δ := mint∈[0,δ] ω(t) >

0. In addition, by (W1), ω is strictly decreas-
ing on [δ, 1), so maxt∈[0,1) ω(t) =: Mω < ∞.

Consequently, one can easily verify that

ω(z)I1ω(z) < Rω := δ
Mω

mω,δ
+1−δ <∞ (2.1)

and, hence,

ω(z)I2ω(z) < |z|Rω < Rω <∞ (2.2)

for every z ∈ B \ {0}.

Proposition 2.1 (17). For every normal
weight ω on Bn we have

Zω = ZR
ω :=

{
f ∈ H(B) : ∥f∥ZR

ω
<∞

}
= Z∇

ω :=
{
f ∈ H(B) : ∥f∥Z∇

ω
<∞

}

and ∥ · ∥Zω
∼= ∥ · ∥ZR

ω

∼= ∥ · ∥Z∇
ω
, where

R(2)f = R(Rf),

|∇(2)f(z)| =
( n∑
i,j=1

∣∣∣∣ ∂2f

∂zi∂zj
(z)

∣∣∣∣2) 1
2

,

∥f∥ZR
ω
:= |f(0)|+ sup

z∈Bn

ω(z)|R(2)f(z)|,

∥f∥Z∇
ω
:= |f(0)|+ sup

z∈Bn

ω(z)|∇(2)f(z)|,

for every f ∈ Zω.

In this paper, let us write simply we de-
note Zω for the complex (Zω, ∥ · ∥ZR

ω
).

Lemma 2.2. Let ω be a normal weight on B.
Then there exists C > 0 such that for every
f ∈ Zω and every z ∈ B,

|Rf(z)| ≤ CI1ω(z)∥f∥Zω ,

|∇f(z)| ≤ C(1 + I1ω(z))∥f∥Zω ;
(2.3)

and

|f(z)| ≤ |f(0)|+ CI2ω(z)∥f∥Zω . (2.4)

Proof. The estimate (2.3) follows from 19

which says there is C > 0 such that for every
f ∈ Bω and for all z ∈ B,

|f(z)| ≤ C
(
1 + I1ω(z)

)
∥f∥Bω . (2.5)

Then by (2.3) and (2.5) again we obtain
(2.4).

Note that, in fact, by using (2.5) the es-
timate for |∇f(z)| in (2.3) can be replced by

|∇f(z)| ≲
(
1 + I1ν (z)

)
|∇f(0)|+ I1ν (z)∥f∥Zµ .

(2.6)

Now, by Aut(B), we denote the auto-
morphism group of B that consists of all bi-
holomorphic mappings of B. It is well known
that a mapping φ ∈ Aut(B) is a unitary
transformation of Cn if and only if φ(0) = 0

(see 20). For any α ∈ B \ {0}, we define

φα(z) =
α− Pα(z)− sαQα(z)

1− ⟨z, α⟩
, z ∈ B,

(2.7)
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where sα =
√
1− |α|2, Pa(z) = ⟨z,a⟩

|a|2 a and

Qa(z) = z − ⟨z,a⟩
|a|2 a for all z ∈ B.

For α = 0, we simply set φα(z) = −z.
Clearly, each φα is holomorphic from B into
Cn. It is also well known that each φα is a
homeomorphism of B onto itself, and every
automorphism φ of B can be represented as
φ = φαU , with U a unitary transformation
on Cn

Theorem 2.3. Let ω be normal weight on B
such that I2ω(1) < ∞. Then the space Zω is
an automorphism invariant boundary regular
small space in the following sense:

(i) All functions in Zω can be continuously
extended to B,

(ii) All polynomials are contained in Zω,

(iii) Evaluation at every point in B defines
a bounded linear functional,

(iv) For any φ ∈ Aut(B) and f ∈ Zω, we
have f ◦ φ ∈ Zω.

Remark 2.2. Axioms (i) and (iii) ensure
that convergence in the Zω norm implies con-
vergence in the sup norm; that is, the iden-
tity map from (Zω, ∥ · ∥Zω) to (Zω, ∥ · ∥∞)

is continuous by the closed graph theorem.
Furthermore, using the closed graph theorem
along with axiom (iii), one can show that ax-
iom (iv) ensures that Cφ is bounded on Zω
for any conformal automorphism φ of B.

Proof. It is straightforward from the defini-
tions to verify that (ii) and (iii) hold for Zω.
Under the condition

∫ 1
0

dt
ω(t) < ∞ the space

Zω satisfies (i) (see 15).
To verify that (iv) holds, we need to

show that for any conformal automorphism
φ = φaU = (φ1, . . . , φn) of B, if f ∈ Zω,
then f ◦ φ ∈ Zω, where a is a point in B and
U is a unitary transformation of Cn. With-
out loss of generality, we can assume that
φ = φa for some a ∈ B. It follows from
(2.7) that φj ∈ H(B) for each j = 1, . . . , n.

Consequently, R(k)φj is in H(B) and remains
bounded on B for any k ∈ N. Thus,

M (1)
φ := sup

z∈Bn

|Rφ(z)| <∞,

M (2)
φ := sup

z∈Bn

|R(2)φ(z)| <∞.
(2.8)

Let λ ∈ (0, 1) be such that |Rφ(z)| ≤ 1

and |R(2)φ(z)| ≤ 1 for |φ(z)| ≤ λ. There ex-
ists D0 > 0 such that

1 ≤ D0I
1
ω(λ), 1 ≤ D0I

2
ω(λ). (2.9)

Then, thers exists D1 > 0 such that

sup
|φ(z)|≤λ

ω(φ(z))|Rφ(z)|
(
1 + I1ω(φ(z))

)
≤ D1 sup

|φ(z)|≤λ
ω(φ(z))||Rφ(z)|I1ω(φ(z)),

sup
|φ(z)|≤λ

ω(φ(z))|R(2)φ(z)|
(
1 + I2ω(φ(z))

)
≤ D1 sup

|φ(z)|≤λ
ω(φ(z))|R(2)φ(z)|I2ω(φ(z)).

(2.10)
Let D = max{D0+1, D1}. For every f ∈ Zω,
by (2.1)−(2.4), (2.10), and a standard calcu-
lation, we have

ω(z)|R(2)(f ◦ φ)(z)|

≤ ω(z)
[
|R(2)f(φ(z))φ(z)|

+ 2|Rf(φ(z))Rφ(z)|+ |f(φ(z))R(2)φ(z)|
]

=
ω(z)

ω(φ(z))
ω(φ(z))

[
|R(2)f(φ(z))φ(z)|

+ 2|Rf(φ(z))Rφ(z)|+ |f(φ(z))R(2)φ(z)|
]

≤ ω(z)

ω(φ(z))

[
1+

+ Cω(φ(z))
(
2|Rφ(z)|(1 + I1ω(φ(z)))

+ |R(2)φ(z)|(1 + I2ω(φ(z)))
)]
∥f∥Zω

≤ ω(z)

ω(φ(z))

[
1

+ CD sup
|φ(z)|≥λ

ω(φ(z))[2M (1)
φ +M (2)

φ ]
]
∥f∥Zω

=
ω(z)

ω(φ(z))

[
1 + CDRω[2M

(1)
φ +M (2)

φ ]
]
∥f∥Zω

(2.11)
for every z ∈ Bn.
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(i) We begin by considering the case when
a = 0. In this situation, we have |φ(z)| ≤ |z|
for all z ∈ B. Denote

Bδ := {z ∈ B : |φ(z)| ≤ δ}.

Since µ is decreasing on [δ, 1) we have

ω(z)

ω(φ(z))
≤ Mω

mω,δ
, z ∈ Bδ;

ω(z)

ω(φ(z))
< 1, z ∈ B \Bδ.

Therefore, it follows from (2.11) that

sup
z∈Bn

ω(z)|R(2)(f ◦ φ)(z)|

≤ sup
z∈Bδ

ω(z)|R(2)(f ◦ φ)(z)|

+ sup
z∈Bn\Bδ

ω(z)|R(2)(f ◦ φ)(z)|

≤
( Mω

mω,δ
+ 1

)
×
(
1 + CDRω[2M

(1)
φ +M (2)

φ ]
)
∥f∥Zω <∞.

(2.12)
Hence, f ◦ φ ∈ Zω.

(ii) Now, we consider the case a ̸= 0.

Take a γ ∈ Aut(B) such that γ(0) = a. Then
η := φ ◦ γ ∈ Aut(B) and η(0) = 0. By (i),
g := f ◦ η ∈ Zω. Note that γ−1 ∈ Aut(B),
as the above, we have R(k)γ−1 is bounded
in Bn for any positive integer k. Then, since
f ◦φ = g◦γ−1, as the estimate (2.12) we have

sup
z∈Bn

ω(z)|R(2)(f ◦ φ)(z)|

= sup
z∈Bn

ω(z)|R(2)(g ◦ γ−1)(z)|

≤
( Mω

mω,δ
+ 1

)
×
(
1 + CDRω[2M

(1)
γ−1 +M

(2)
γ−1 ]

)
∥g∥Zω <∞.

Consequently, f ◦ φ ∈ Zω.

Remark 2.3. The condition I2ω(1) <∞ can-
not be omitted. Indeed, consider the weight
function ω(t) = (1 − t)2 for t ∈ [0, 1) which
satisfies I2ω(1) = ∞. It is easy to see that
the function f(z) = ln(1− z), which belongs
to Zω, does not admit a continuous extension
to D. This means that the condition (i) is not
true for Zω.

3. A RELATION BETWEEN
WEIGHTED COMPOSITION OPER-
ATORS Bω → Zω AND Zω → Zω

In order to conclude the paper we establishes
the relation between the boundedness, com-
pactness of weighted composition operators
from Bω into Zω and from Zω into itself.

Before stating the theorem first let us
note that for each j = 1, . . . , n the func-
tion idj given by idj(z) := zj belongs to
Zω. Then, in the case ψ ∈ H∞(Bn) with
∥ψ∥∞ ≤ 1 and Wψ,φ : Zω → Zω is compact,
Wψ,φ(idj) = ψ · φj hence, θj := ψ · φj ∈ Zω,
j = 1, . . . , n. For each m ≥ 1, put

θm = (θm1 , . . . , θ
m
n ) :=

m−1∏
k=0

(ψ ◦ φk) · φm,

where φ0 = id, and φk := φ ◦ · · · ◦ φ︸ ︷︷ ︸
k times

for

k ≥ 1.

Theorem 2.3(i) allows us to assume that
θm are continuous on B for every m ≥ 0.

Theorem 3.1. Let ψ ∈ H∞(B), φ =

(φ1, . . . , φn) ∈ S(B) and ν, ω be normal
weights on B and

∫ 1
0

dt
ω(t) < ∞.Then the fol-

lowing are equivalent:

(1) Wψ,φ : Bν → Zω is compact;

(2) Wψ,φ : Bν → Zω is bounded;

(3) Wψ,φ : Zω → Zω is compact;

(4) ψ,ψ · φj ∈ Zω for every j = 1, . . . , n and
∥φ∥∞ < 1.

To establish the theorem, we first require
several lemmas.

Lemma 3.2. Assume that φ(0) = 0 and
Wψ,φ : Zω → Zω is compact. Then ∥θm∥∞ →
0.
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Proof. Without loss of generality we may as-
sume that ∥ψ∥∞ ≤ 1. We have two cases to
consider:

(i) When |ψ(0)| = 1, it follows from The-
orem 2.3(i) and the maximum modulus prin-
ciple that ψ must be identically equal to 1.
Then Wψ,φ = Cφ, the composition operator
on Zω, and hence, the lemma follows from
Lemma 2.2 of 18.

(ii) Now we assume that |ψ(0)| < 1.

We will prove that Wψ,φ has spectral ra-
dius ϱ(Wψ,φ) < 1.

Let λ ̸= 0 be a spectral point of Wψ,φ.

SinceWψ,φ is compact, λmust to be an eigen-
value. Let f ∈ Zω be an eigenfunction of
Wψ,φ corresponding to the eigenvalue λ. Thus
Wψ,φ(f) = λf and there is a point a ∈ B
for which f(a) ̸= 0. Denote Ba :=

{
z ∈ B :

|z| < 1+|a|
2

}
. Note that, |φ(z)| < |z| for ev-

ery z ∈ B, since otherwise, the composition
operator Cφ would be an isomorphism. Con-
sequently, by ∥ψ∥∞ ≤ 1, (ψ ·Cφ)(BZω) is not
relatively compact subset of the unit ball BZω

of Zω. This means ψ ·Cφ is not a compact op-
erator. This contradicts the compactness of
Wψ,φ. By the Schwarz Lemma, φ(Ba) is rela-
tively compact in Ba. Applying the Schwarz
Lemma again to the appropriately normal-
ized restriction of φ on φ(Ba), and continuing
this argument, it follows that φm(a) → 0 as
m→ ∞.

Now, since limm→∞ |ψ(φm−1(a))| =

|ψ(0)| ≠ 1, by using the fact that, if 0 <

am < 1 and {am}m≥1 does not converge to 1

then
∏∞
m=1 am = 0, we obtain

λmf(a) = [Wψ,φ]
m(f)(a)

=
(m−1∏
k=0

ψ(φk(a))
)
· f(φm(a)) → 0 · f(0)

as m → ∞. Because f(a) ̸= 0 it therefore
must has |λ| < 1. The compactness of Wψ,φ

ensures that its spectrum consists of 0 along
with at most countably many eigenvalues ac-
cumulating only at 0. Thus, the spectral ra-
dius equals the largest eigenvalue in modulus,

which, as shown above, is strictly less than 1.
It then follows from the spectral radius for-
mula that

lim
m→∞

∥[Wψ,φ]
m∥1/m = ϱ(Wψ,φ) < 1,

so in particular, limm→∞ ∥[Wψ,φ]
m∥ = 0.

Note that θmj = [Wψ,φ]
m(idj) ∈ Zω, j =

1, . . . , n. Then,

∥θmj ∥Zω = ∥[Wψ,φ]
m(idj)∥Zω

≤ ∥[Wψ,φ]
m∥∥idj∥Zω → 0 as m→ ∞.

On the other hand, Theorem 2.3(i & iii)
shows that Zω has a topology stronger than
that of the sup norm. Hence, ∥θm∥∞ tends
to zero as m → ∞. The lemma is thus
proved.

Lemma 3.3. Suppose ψ ∈ H(B), φ ∈ S(B),
and µ, ν are normal weights on B. LetX = Bν
or Zν . Then Wψ,φ : X → Zµ is compact if
and only if, whenever a bounded sequence fm
in X converges to zero uniformly on compact
subsets of B, it follows that ∥Wψ,φ(fm)∥Zµ →
0 as m→ ∞.

The lemma for the case X = Bν has been
proven in 21. For the case X = Zν , it is sim-
ilar to that of X = Bν and will therefore be
omitted.

Lemma 3.4. Let ψ ∈ H(Bn), φ =

(φ1, . . . , φn) ∈ S(B) and µ, ν be normal
weights on B. Assume that Wψ,φ : Zν → Zµ
is bounded. Then

sup
z∈Bn

µ(z)|Aψ,φ(z)| <∞,

sup
z∈Bn

µ(z)|Bψ,φ(z)| <∞,
(3.1)

where

Aψ,φ(z) := 2Rψ(z)Rφ(z) + ψ(z)R(2)φ(z),

Bψ.φ(z) := ψ(z)((Rφ1(z))
2, . . . , (Rφn(z))

2).

Proof. First, choosing f0(z) = 1 ∈ Zν , the
boundedness of Wψ,φ implies that ψ ∈ Zµ.

At the same time, for each j ∈ {1, . . . , n},
by considering fj(z) = zj and gj(z) = z2j for
every z = (z1, . . . , zn) ∈ B we can check that
ψ · φj , ψ · φ2

j ∈ Zµ.
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Then, since

R(2)[ψ(z)φj(z)]

= R(2)ψ(z)φj(z) + 2Rψ(z)Rφj(z)

+ ψ(z)R(2)φj(z)

= R(2)ψ(z)φj(z) +Aψ,φj
(z),

R(2)[ψ(z)φ2
j (z)]

= φj(z)
(
R(2)ψ(z)φj(z) + 4Rψ(z)Rφj(z)

+ 2ψ(z)R(2)φj(z)
)
+ 2ψ(z)

(
Rφj(z)

)2
= φj(z)

[
2R(2)[ψ(z)φj(z)]−R(2)ψ(z)

]
+ 2Bψ,φj

(z)

(3.2)
for every z ∈ B and every j = 1, . . . , n we
have

sup
z∈Bn

µ(z)|Aψ,φj
(z)|

≤ ∥ψ · φj∥Zµ + ∥ψ∥Zµ <∞,

sup
z∈Bn

µ(z)|Bψ,φj
(z)|

≤ ∥ψ · φ2
j∥Zµ + 2∥ψ · φj∥Zµ + ∥ψ∥Zµ <∞

for every j = 1, . . . , n. Consequently, (3.1) is
proved.

Proof of Theorem 3.1. Theorem is trivial if
∥ψ∥∞ = 0.Without loss of generality we may
assume that 0 < ∥ψ∥∞ ≤ 1, since for orther-
wise we can consider the ∥ψ∥−1

∞ ψ instead of
ψ.

(1) ⇒ (2): It is obvious.
(2) ⇒ (3): Assume that {fm}m≥1 is a

bounded sequence in Zω which converges
to zero uniformly on compact subsets of
B. Then, by the Weierstrass theorem, both
{Rfm}m≥1 and {R(2)fm}m≥1 converge uni-
formly to zero on compact subsets of B as
well. We will prove that ∥fm∥Bω converges
to zero. Given any ε > 0, since ω(t) → 0

as t → 1, we can choose ϱ ∈ (δ, 1) so that
ω(|z|) < ε whenever ϱ < |z| < 1. In addition,
there exists an integer N such that for all
m ≥ N , we have |fm(0)| < ε, |Rfm(z)| < ε,
and |R(2)fm(z)| < ε for all |z| ≤ ϱ. Therefore,

by (2.3),

∥fm∥Bω ≤ |fm(0)|+ sup
z∈Bn

ω(z)|Rfm(z)|

≤ ε+ sup
|z|≤ϱ

ω(z)|Rfm(z)|

+ sup
ϱ<|z|<1

ω(z)|Rfm(z)|

≤ ε+ εMω + sup
ϱ<|z|<1

ω(z)
∣∣∣Rfm( z

2|z|

)
+

∫ 1

1/(2|z|)
R(2)fm(tz)

dt

t

∣∣∣
≤ ε+ εMω + ε sup

m≥1
sup

|w|=1/2
|Rfm(w)|

+ 2ε

∫ ϱ/|z|

1/(2|z|)
|R(2)fm(tz)||z|dt

+ 2 sup
ϱ<|z|<1

ω(z)

∫ 1

ϱ/|z|
|R(2)fm(tz)||z|dt

≤ ε+ εMν + ε sup
m≥1

sup
|w|=1/2

|Rfm(w)|

+ 2ε∥fm∥Zω

∫ ϱ

1/2

dt

ω(t)

+ 2∥fm∥Zω sup
ϱ<|z|<1

ω(z)

∫ |z|

δ

dt

ω(t)

≤ ε+ εMω + ε sup
m≥1

sup
|w|=1/2

|Rfm(w)|

+ 2ε∥fm∥Zω

∫ ϱ

1/2

dt

ω(t)
+ 2ε∥fm∥Zω

≤ εK for all m ≥ N.

Then, the boundedness of Wψ,φ implies that
∥Wψ,φ(fm)∥Zω ≲ ∥fm∥Bω → 0 as m → ∞.

Therefore, Wψ,φ is compact by Lemma 3.3.
(3) ⇒ (4): Without loss of generality, we

may assume that ∥ψ∥∞ < 1.

(i) We first consider the case where
φ(0) = 0. Suppose, for the sake of contradic-
tion, that ∥φ∥∞ = 1. Then there is a rotation
ζ, z 7→ eiαz, such that φ̃ := ζ ◦ φ has a fixed
point z0 ∈ Bn. We may choose ζ such that
ψ(z0) ̸= 0. Put

ψ̃ :=
ψ

ψ(z0)
.

Then, for every m ≥ 1 we obtain that

(θ̃)m :=
(m−1∏
k=0

ψ̃ ◦ (φ̃)k
)
(φ̃)m
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has a fixed point z0, hence, ∥(θ̃)m∥∞ ≥ 1.

It follows from Lemma 3.2 that the operator
W
ψ̃,φ̃
, and hence,Wψ,φ̃ is cannot be compact.

Note that Wψ,φ̃ = Wψ,φ ◦ Cζ where the
composition operator Cζ is an isomorphism
of Zω. This implies that Wψ,φ is not com-
pact. This contradicts the hypothesis.

(ii) We now consider the case φ(0) = a ̸=
0. Let γ be the conformal automorphism of
Bn taking a to 0, and set η = γ ◦ φ. It fol-
lows from Theorem 2.3(iv & iii) that Cγ is
a bounded operator on Zω, hence, Wψ,η is
compact on Zω becauseWψ,η =Wψ,φ◦Cγ . Fi-
nally, it follows from the case (i) that ∥η∥∞ <

1, and hence, ∥φ∥∞ < 1.

(4)⇒ (1): Suppose {fm}m≥1 is a bounded
sequence in Bν converging uniformly to zero
on compact subsets of B. Using the Cauchy
integral formula again, we see that

sup
|φk(z)|≤λ

|Rφ(z)fm(φ(z))| → 0,

sup
|φk(z)|≤λ

|∇(2)
φ(z)fm(φ(z))| → 0 as m→ ∞.

with λ = ∥φ∥∞ < 1. Then, by ψ ∈ Zω, (3.1)
and a standard calculation, we have

∥Wψ,φ(fm)∥Zω

≤ |fm(0)|+ ω(z)|R(2)[ψ(z)]|fm(φ(z))|
+ ω(z)|Aψ,φ(z)|Rfm(φ(z))|

+ ω(z)|Bψ,φ(z)|R(2)fm(φ(z))|
≤ |fm(0)|+ ∥ψ∥Zω sup

|φ(z)|≤∥φ∥∞
|fm(φ(z))|

+ sup
z∈Bn

ω(z)|Aψ,φ(z)| sup
|φ(z)|≤∥φ∥∞

|Rfm(φ(z))|

+ sup
z∈Bn

ω(z)|Bψ,φ(z)| sup
|φ(z)|≤∥φ∥∞

|R(2)fm(φ(z))|

→ 0

as m → ∞. By Lemma 3.3, Wψ,φ is com-
pact.
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