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TÓM TẮT
Các giá trị lịch sử của công suất phát điện gió thường được sử dụng trong hầu hết các mô hình và phương pháp dự báo điện gió trong các tài liệu. Tuy nhiên, các thông số vận hành có thể ảnh hưởng đến kết quả dự báo chẳng hạn như tốc độ gió, góc pitch, nhiệt độ môi trường, vị trí nacelle, và hướng gió chưa được xem xét trong các phương pháp hiện tại. Do đó, mục tiêu cơ bản của bài báo này là đề xuất các mô hình mạng nơ ron hồi quy dùng cho dự báo công suất phát điện gió có xem xét các tham số vận hành này. Nghiên cứu này xem xét dữ liệu công suất phát điện gió và các tham số vận hành tương ứng từ máy phát tuabin gió số 5 của 1 trang trại gió. Dữ liệu từ ngày 01 tháng 07 năm 2024 đến 31 tháng 07 năm 2024 được thu thập từ hệ thống SCADA. Đầu tiên, mô hình mạng nơ ron tự hồi quy phi tuyến có các đầu vào được áp dụng để dự báo công suất phát điện gió. Thứ hai, mô hình mạng hồi quy lớp được sử dụng để dự báo công suất phát điện gió. Thứ ba, mô hình mạng nơ ron trễ phân tán được dùng để dự báo công suất phát điện gió. Thứ tư, mô hình mạng nơ ron trễ thời gian được huấn luyện để ước lượng điện gió. Cuối cùng, các mô hình mạng nơ ron hồi quy này được so sánh để xác định mô hình dự báo công suất phát điện gió tốt hơn khi xét theo các tiêu chí sai số tuyệt đối trung bình, sai số phần trăm tuyệt đối trung bình và sai số bình phương trung bình. 

Từ khóa: Dự báo điện gió, mạng nơ ron tự hồi quy phi tuyến có các đầu vào, mạng nơ ron hồi quy lớp, mạng nơ ron trễ phân tán, mạng nơ ron trễ thời gian.
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ABSTRACT
The historical values of wind power generation are generally utilized in most forecasting models and methods in the literature. Unfortunately, the operational parameters such as wind speed, pitch angle, ambient temperature, nacelle position, and wind direction may affect the forecasting results. Therefore, the primary objective of this paper is to propose recurrent neural network models for wind power generation forecasting considering these operational parameters. In this study, the wind power generation data and the associated operational parameters from the wind turbine generator 05 of a wind farm are investigated. The data from July 1st, 2024 to July 31st, 2024 is collected from the SCADA system. Firstly, the nonlinear autoregressive neural network with external input is applied to make the wind power generation prediction. Secondly, the layer recurrent neural network model is employed to forecast wind power generation. Thirdly, the distributed delay neural network model is implemented to predict wind power generation. Fourthly, the time delay neural network model is trained to estimate the wind power. Finally, these recurrent neural network models are compared to determine the better wind power generation forecasting model in terms of mean absolute error, mean absolute percent error, and root mean square error. 
Keywords: Wind power forecasting, nonlinear autoregressive neural network with external input, layer recurrent neural network, distributed delay neural network, time delay neural network.
1. INTRODUCTION 
The rapid increase in energy demand has driven the search for alternative energy sources, in addition to traditional ones that are depleting and causing pollution issues. Wind power is a clean and renewable source. According to the Global Wind Report 2024 by Global Wind Energy Council (GWEC), it is shown that 2023 recorded the highest number of new installations in history for onshore wind (over 100 GW) and the second highest for offshore wind (11 GW). Wind energy installations will increase from a level of 117 GW in 2023 to at least 320 GW of annual installations by 2030 1. Actually, wind power generation plays a significant role in electricity supply. However, wind energy integration into power systems presents inherent unpredictability because of the intermittent nature of wind energy 2. As wind energy makes significant penetration into the electricity grid, the need for accurate predictions of wind power generation becomes critical and urgent 3,4. To address these challenges, wind power forecasting (WPF) has emerged as a valuable solution. Consequently, numerous WPF models and methods have been proposed and implemented in the literature. Based on the forecasting time horizon, WPF can be categorized into ultra short-term, short-term, medium-term, and long-term. Various types of forecasting models and methods are developed for wind power generation time series. The traditional statistical models and methods are usually applied by using the previous historical data to perform a forecast. In WPF, the statistical models are commonly applied as exponential smoothing approach 5,6, autoregressive 7, autoregressive moving average (ARMA) 8,9, autoregressive integrated moving average (ARIMA) 10,11. Statistical models are more user-friendly and cost-effective to develop than other types of models. Statistical methods primarily rely on historical wind data to forecast the upcoming few hours, making them suitable for short-term predictions. While statistical forecasting models such as ARIMA and exponential smoothing are simple and interpretable, they suffer from limitations such as linearity assumptions, difficulty incorporating multiple external variables, and poor scalability to nonlinear or high-dimensional problems. Besides, artificial intelligence (AI)-based models are another research direction in WPF. Fundamentally, AI-based models, when adequately trained, have the potential to outperform traditional statistical models in forecasting accuracy. Depending on the structure of neural networks (NNs), various models are proposed in wind power generation forecasting. Feed-forward NN models are used to make the wind power prediction such as multi-layer perceptron 12 and back-propagation (BP) NN 13. Another kind of NN model with feedback known as the recurrent NN (RNN) model is also widely applied in this research direction. The RNN model-based WPF methods are Elman NN 14, layer RNN 15, nonlinear autoregressive NN 16, long short-term memory (LSTM) 17, bidirectional LSTM 18, gated recurrent unit 19, and echo state network 20. Deep learning models such as LSTM, bidirectional LSTM, gated recurrent unit, and echo state network have demonstrated improved forecasting performance compared to earlier NN architectures. Moreover, support vector machine 21, gradient boosting regression tree algorithms 22, and ensemble model 23 belonging to machine learning are also implemented in WPF. These machine learning models have also been shown to outperform NN models in specific research cases. Other attempts have been made to combine different models or methods in various ways to improve the forecasting results. These include combinations such as autoregressive fractionally integrated moving average and least square support vector machine 24, boosting algorithm and ARMA model 25, hybrid CEEMDAN-EWT deep learning method 25, and neuro wavelet and LSTM models 26. These combined models have also demonstrated improved forecasting performance compared to each individual model. In these existing studies, most WPF models address the wind power generation time series data issues without taking the operational parameters into account. These operating parameters have a direct impact on the power output of wind turbines in real-world conditions; therefore, they influence the accuracy of forecasting results. Some significant operational parameters can be considered wind speed, pitch angle, ambient temperature, nacelle position, and wind direction. Therefore, in this paper, one of the six turbines of a wind farm, located on the south-central coast, Vietnam with a 114-metre height and a 132-metre rotor is considered. These operational parameters and wind power generation time series data are collected at 10-minute intervals from the SCADA system. The dataset spans from July 01st, 2024 to July 31st, 2024. This data is divided into three different case studies. Subsequently, numerous RNN models are proposed for wind power forecasting, including nonlinear autoregressive NN with external input (Narxnet), layer RNN (Layrecnet), distributed delay NN (Distdelaynet), and time delay neural network (Timedelaynet). These models incorporate both operational parameters and wind power generation data. To evaluate the performance of WPF models, evaluation criteria such as mean absolute error  (MAE), mean absolute percent error (MAPE), and root mean square error (RMSE) are employed. Based on the final results, the most effective forecasting model can be determined. An overview of wind power generation forecasting using RNN models can be represented in Figure 1. 
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Figure 1. Overview of wind power generation forecasting using RNN models.

2. METHODOLOGY
2.1. Nonlinear autoregressive neural network with external input
Narxnet is a nonlinear autoregressive model with exogenous inputs commonly used in time series modeling. Narxnet is first formally proposed and popularized in the mid-1990s by Lin et al. 27.  In this model, the current value of a time series depends on both past values of the same series and current and past values of exogenous series. The Narxnet model, applied to time series forecasting, can be mathematically represented as follows:
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 denotes the externally determined variable. The Narxnet model can be illustrated in Figure 2.
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Figure 2. Narxnet model.
2.2. Layer recurrent neural network
Layrecnet is another type of RNN models. The concept of Layrecnet model is proposed by Schmidhuber 28. In this architecture, the output of the hidden layer is fed back to the input layer with delays. As a result, the network is capable of exhibiting an infinite dynamic response to time series input data. The Layrecnet model can be illustrated in Figure 3.
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Figure 3. Layrecnet model.
2.3. Distributed delay neural network
Distdelaynet is another type of RNN model. The concept of Distdelaynet model is proposed by Waibel  et al 29. The input and hidden layers have a tap delay line associated with them. Therefore, the network exhibits a finite dynamic response to time series input data. The Distdelaynet model can be illustrated in Figure 4.
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Figure 4. Distdelaynet model.
2.4. Time delay neural network
Timedelaynet is another type of RNN model. The concept of Distdelaynet model is also proposed by Waibel  et al 29. In this NN model, the input layer has a tap delay line associated with it. Therefore, the network exhibits a finite dynamic response to time series input data. The Timedelaynet model can be illustrated in Figure 5.
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Figure 5. Timedelaynet model.
2.4. Transfer function
In NN models, transfer functions (also known as activation functions) play a crucial role in introducing nonlinearity and determining the output of each neuron. Commonly, three types of transfer functions are employed, each serving a specific purpose within the network architecture:
Linear (i.e., purelin):



[image: image12.wmf]fx

=

. 
(1)

Hyperbolic tangent sigmoid (i.e., tansig):
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Log-sigmoid (i.e., logsig):
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2.5. Training algorithm
The training process of a NN begins with the random initialization of connection weights, which serve as the adjustable parameters controlling how input signals are transformed through the network layers. These weights are then iteratively updated to minimize a predefined cost (or loss) function, which quantifies the discrepancy between the network's predicted output and the actual target value 30. This minimization is typically performed using gradient-based optimization algorithms that adjust the weights in the direction that reduces the error. 

Several well-established training algorithms are employed for this purpose, each with distinct convergence characteristics and computational requirements:
· Resilient BP (i.e, trainrp): Focuses on the sign of the gradient rather than its magnitude to achieve stable convergence, especially in noisy or flat error surfaces.

· Bayesian regularization BP (i.e, trainbr): Incorporates a regularization term into the cost function to prevent overfitting by balancing model complexity and data fitting.

· BFGS quasi-Newton BP (i.e., trainbfg): Utilizes second-order derivative approximations to speed up convergence, particularly effective in medium-sized networks.

· Levenberg–Marquardt BP (i.e., trainlm): Combines the advantages of the Gauss–Newton algorithm and gradient descent, offering fast convergence and high accuracy for smaller datasets or networks.
The choice of training algorithm can significantly affect the learning efficiency, generalization ability, and computational cost of the neural network model.
2.6. Evaluation criteria
In this study, three evaluation criteria are employed to assess the performance of the forecasting models. These criteria are widely adopted in time series forecasting tasks, as they provide comprehensive insights into prediction accuracy and error distribution. Specifically, the evaluation metrics used are as follows:
MAE:
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where 
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WAPE:
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RMSE:
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3. CASE STUDIES
The time-series data from the wind turbine no. 05 (3.5 MW, 114-meter hub height, 132-meter rotor diameter) in a wind farm were collected from July 01st, 2024 to July 31st, 2024 (i.e., case study 3) with 10-minute intervals. Two investigated sub-periods during this timeframe are from July 01st, 2024 to July 07th, 2024 (i.e., case study 1) and from July 25th, 2024 to July 31st, 2024 (i.e., case study 2). The total number of observations in the three case studies is provided in Table 1. 
 Table 1. Number of observations.

	Data
	Case study 1
	Case study 2
	Case study 3

	Number of observations
	1008
	1008
	4464


The wind speed, pitch angle, ambient temperature, nacelle position, and wind direction from July 01st, 2024 to July 31st, 2024 are illustrated in Figures 6, 7, 8, 9, and 10, respectively. 
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Figure 6. Wind speed.
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Figure 7. Pitch angle.
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Figure 8. Ambient temperature.
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Figure 9. Nacelle position.
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Figure 10. Wind direction.

All the recurrent NN models with one hidden layer have been implemented. Moreover, these models, each configured with one feedback delay in their respective structures, are coded and trained in Matlab software. The transfer function, training algorithms, and number of hidden neurons of all the trained Narxnet, Layrecnet, Distdelaynet, and Timedelaynet models for case studies 1, 2, and 3 are represented in Tables 2, 3, and 4, respectively. 
Table 2. Information of the recurrent NN models in case study 1.

	Model
	Transfer function
	Training algorithm
	Hidden neurons

	Narxnet
	Tansig
	Trainbr
	47

	Layrecnet
	Tansig
	Trainbr
	30

	Distdelaynet
	Tansig
	Trainbr
	143

	Timedelaynet
	Logsig
	Trainbr
	253


Table 3. Information of the recurrent NN models in case study 2.

	Model
	Transfer function
	Training algorithm
	Hidden neurons

	Narxnet
	Logsig
	Trainbr
	21

	Layrecnet
	Tansig
	Trainbr
	79

	Distdelaynet
	Tansig
	Trainlm
	232

	Timedelaynet
	Tansig
	Trainbr
	301


Table 4. Information of the recurrent NN models in case study 3.

	Model
	Transfer function
	Training algorithm
	Hidden neurons

	Narxnet
	Tansig
	Trainlm
	32

	Layrecnet
	Tansig
	Trainbr
	48

	Distdelaynet
	Logsig
	Trainlm
	372

	Timedelaynet
	Tansig
	Trainbr
	180


The performance evaluation results of all RNN forecasting models across the three case studies are presented in Tables 5, 6, and 7, respectively. These tables provide a comprehensive comparison based on multiple error metrics, allowing for a thorough assessment of each model's forecasting accuracy and consistency under varying data conditions. By analyzing these evaluation values, the relative effectiveness of each RNN architecture can be quantitatively compared across different time periods.

Table 5. Evaluation criteria of the proposed forecasting models in case study 1.
	Model
	MAE
	WAPE(%)
	RMSE

	Narxnet
	56.0914
	22.3584
	87.4324

	Layrecnet
	18.6198
	7.4220
	24.9867

	Distdelaynet
	65.9784
	26.2994
	130.9846

	Timedelaynet
	49.9778
	19.9215
	98.3547


Table 6. Evaluation criteria of the proposed forecasting models in case study 2.
	Model
	MAE
	WAPE(%)
	RMSE

	Narxnet
	269.7987
	17.0885
	382.9613

	Layrecnet
	80.9957
	5.1301
	104.7831

	Distdelaynet
	341.8460
	21.6519
	490.9236

	Timedelaynet
	207.4276
	13.1381
	289.5628


Table 7. Evaluation criteria of the proposed forecasting models in case study 3.
	Model
	MAE
	WAPE(%)
	RMSE

	Narxnet
	168.6443
	18.3242
	263.3885

	Layrecnet
	41.3159
	4.4892
	58.1676

	Distdelaynet
	248.0907
	26.9565
	388.8692

	Timedelaynet
	164.6041
	17.8852
	256.3703


Based on the results presented in Table 5, the Narxnet model yields improved forecasting performance over the Distdelaynet model, with lower error values across all three metrics (MAE = 56.0914, WAPE = 22.3584%, RMSE = 87.4324 vs. MAE = 65.9784, WAPE = 26.2994%, RMSE = 130.9846). Furthermore, the Timedelaynet model demonstrates superior predictive accuracy compared to Narxnet, achieving a lower MAE of 49.9778, WAPE of 19.9215%, and RMSE of 98.3547. Among all models, the Layrecnet model achieves the best performance in this case study, with significantly lower errors (MAE = 18.6198, WAPE = 7.4220%, RMSE = 24.9867), indicating its strong capability in capturing the temporal dynamics of wind power data.
Similarly, Table 6 shows that the Layrecnet model (MAE = 80.9957, WAPE = 5.1301%, RMSE = 104.7831) continues to outperform the Timedelaynet (MAE = 207.4276, WAPE = 13.1381%, RMSE = 289.5628), Narxnet (MAE = 269.7987, WAPE = 17.0885%, RMSE = 382.9613), and Distdelaynet models (MAE = 341.8460, WAPE = 21.6519%, RMSE = 490.9236), further confirming its robustness across different time periods.
In Table 7, the evaluation results also confirm the superiority of the Layrecnet model in the third case study. It achieves the lowest error values (MAE = 41.3159, WAPE = 4.4892%, RMSE = 58.1676), outperforming Timedelaynet (MAE = 164.6041, WAPE = 17.8852%, RMSE = 256.3703), Narxnet (MAE = 168.6443, WAPE = 18.3242%, RMSE = 263.3885), and Distdelaynet (MAE = 248.0907, WAPE = 26.9565%, RMSE = 388.8692).
Figures 11, 12, and 13 illustrate the comparison between the actual wind power generation data and the forecasting results from the four models across case studies 1, 2, and 3, respectively. The actual wind power values are shown as solid blue lines, while the predicted values generated by the Narxnet, Layrecnet, Distdelaynet, and Timedelaynet models are represented by dashed lines in red, blue, purple, and light blue, respectively.
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Figure 11. The forecasted results of wind power generation in case study 1.
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Figure 12. The forecasted results of wind power generation in case study 2.
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Figure 13. The forecasted results of wind power generation in case study 3.
4. CONCLUSION
In this paper, operational parameters such as wind speed, pitch angle, ambient temperature, nacelle position, and wind direction are taken into account for wind power generation forecasting. A wind farm comprising six turbines, each with a capacity of 3.5 MW, a hub height of 114 meters, and a rotor diameter of 132 meters, is considered. The time series data of turbine no. 05 from July 01st, 2024 to July 31st, 2024 is collected. Several RNN architectures consisting of Narxnet, Layrecnet, Distdelaynet, and Timedelaynet are proposed as alternative approaches for wind power generation forecasting. Among these models, the Layrecnet model demonstrates superior performance WPF results compared to these other models in terms of MAE, WAPE, and RMSE. For further study, the optimal structures of these models can be identified to provide better solutions. Moreover, to improve model reliability, anomalous data points and outliers are identified and filtered out prior to training the forecasting models.
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