

Lê Thị Thanh Liễu

By qnujs

WORD COUNT

2741

TIME SUBMITTED

11-AUG-2025 11:35AM

PAPER ID

117668930

Thu hồi vật liệu từ pin sạc thải: ¹³ ảnh hưởng của graphene đến cấu trúc và tính chất quang của composite ZnO

TÓM TẮT

Pin sạc đặc biệt là pin alkaline and Zn-C đang được dùng rộng rãi trong các thiết bị điện ²⁵ trong hộ gia đình. Với vòng đời ngắn, chỉ sử dụng một lần, pin sạc thải đang trở thành nguồn rác thải điện tử ²⁴ ¹⁶ ²⁴ Nếu ²⁴ ²⁵ ²⁶ ²⁷ ²⁸ ²⁹ ³⁰ ³¹ ³² ³³ ³⁴ ³⁵ ³⁶ ³⁷ ³⁸ ³⁹ ⁴⁰ ⁴¹ ⁴² ⁴³ ⁴⁴ ⁴⁵ ⁴⁶ ⁴⁷ ⁴⁸ ⁴⁹ ⁵⁰ ⁵¹ ⁵² ⁵³ ⁵⁴ ⁵⁵ ⁵⁶ ⁵⁷ ⁵⁸ ⁵⁹ ⁶⁰ ⁶¹ ⁶² ⁶³ ⁶⁴ ⁶⁵ ⁶⁶ ⁶⁷ ⁶⁸ ⁶⁹ ⁷⁰ ⁷¹ ⁷² ⁷³ ⁷⁴ ⁷⁵ ⁷⁶ ⁷⁷ ⁷⁸ ⁷⁹ ⁸⁰ ⁸¹ ⁸² ⁸³ ⁸⁴ ⁸⁵ ⁸⁶ ⁸⁷ ⁸⁸ ⁸⁹ ⁹⁰ ⁹¹ ⁹² ⁹³ ⁹⁴ ⁹⁵ ⁹⁶ ⁹⁷ ⁹⁸ ⁹⁹ ¹⁰⁰ ¹⁰¹ ¹⁰² ¹⁰³ ¹⁰⁴ ¹⁰⁵ ¹⁰⁶ ¹⁰⁷ ¹⁰⁸ ¹⁰⁹ ¹¹⁰ ¹¹¹ ¹¹² ¹¹³ ¹¹⁴ ¹¹⁵ ¹¹⁶ ¹¹⁷ ¹¹⁸ ¹¹⁹ ¹²⁰ ¹²¹ ¹²² ¹²³ ¹²⁴ ¹²⁵ ¹²⁶ ¹²⁷ ¹²⁸ ¹²⁹ ¹³⁰ ¹³¹ ¹³² ¹³³ ¹³⁴ ¹³⁵ ¹³⁶ ¹³⁷ ¹³⁸ ¹³⁹ ¹⁴⁰ ¹⁴¹ ¹⁴² ¹⁴³ ¹⁴⁴ ¹⁴⁵ ¹⁴⁶ ¹⁴⁷ ¹⁴⁸ ¹⁴⁹ ¹⁵⁰ ¹⁵¹ ¹⁵² ¹⁵³ ¹⁵⁴ ¹⁵⁵ ¹⁵⁶ ¹⁵⁷ ¹⁵⁸ ¹⁵⁹ ¹⁶⁰ ¹⁶¹ ¹⁶² ¹⁶³ ¹⁶⁴ ¹⁶⁵ ¹⁶⁶ ¹⁶⁷ ¹⁶⁸ ¹⁶⁹ ¹⁷⁰ ¹⁷¹ ¹⁷² ¹⁷³ ¹⁷⁴ ¹⁷⁵ ¹⁷⁶ ¹⁷⁷ ¹⁷⁸ ¹⁷⁹ ¹⁸⁰ ¹⁸¹ ¹⁸² ¹⁸³ ¹⁸⁴ ¹⁸⁵ ¹⁸⁶ ¹⁸⁷ ¹⁸⁸ ¹⁸⁹ ¹⁹⁰ ¹⁹¹ ¹⁹² ¹⁹³ ¹⁹⁴ ¹⁹⁵ ¹⁹⁶ ¹⁹⁷ ¹⁹⁸ ¹⁹⁹ ²⁰⁰ ²⁰¹ ²⁰² ²⁰³ ²⁰⁴ ²⁰⁵ ²⁰⁶ ²⁰⁷ ²⁰⁸ ²⁰⁹ ²¹⁰ ²¹¹ ²¹² ²¹³ ²¹⁴ ²¹⁵ ²¹⁶ ²¹⁷ ²¹⁸ ²¹⁹ ²²⁰ ²²¹ ²²² ²²³ ²²⁴ ²²⁵ ²²⁶ ²²⁷ ²²⁸ ²²⁹ ²³⁰ ²³¹ ²³² ²³³ ²³⁴ ²³⁵ ²³⁶ ²³⁷ ²³⁸ ²³⁹ ²⁴⁰ ²⁴¹ ²⁴² ²⁴³ ²⁴⁴ ²⁴⁵ ²⁴⁶ ²⁴⁷ ²⁴⁸ ²⁴⁹ ²⁵⁰ ²⁵¹ ²⁵² ²⁵³ ²⁵⁴ ²⁵⁵ ²⁵⁶ ²⁵⁷ ²⁵⁸ ²⁵⁹ ²⁶⁰ ²⁶¹ ²⁶² ²⁶³ ²⁶⁴ ²⁶⁵ ²⁶⁶ ²⁶⁷ ²⁶⁸ ²⁶⁹ ²⁷⁰ ²⁷¹ ²⁷² ²⁷³ ²⁷⁴ ²⁷⁵ ²⁷⁶ ²⁷⁷ ²⁷⁸ ²⁷⁹ ²⁸⁰ ²⁸¹ ²⁸² ²⁸³ ²⁸⁴ ²⁸⁵ ²⁸⁶ ²⁸⁷ ²⁸⁸ ²⁸⁹ ²⁹⁰ ²⁹¹ ²⁹² ²⁹³ ²⁹⁴ ²⁹⁵ ²⁹⁶ ²⁹⁷ ²⁹⁸ ²⁹⁹ ³⁰⁰ ³⁰¹ ³⁰² ³⁰³ ³⁰⁴ ³⁰⁵ ³⁰⁶ ³⁰⁷ ³⁰⁸ ³⁰⁹ ³¹⁰ ³¹¹ ³¹² ³¹³ ³¹⁴ ³¹⁵ ³¹⁶ ³¹⁷ ³¹⁸ ³¹⁹ ³²⁰ ³²¹ ³²² ³²³ ³²⁴ ³²⁵ ³²⁶ ³²⁷ ³²⁸ ³²⁹ ³³⁰ ³³¹ ³³² ³³³ ³³⁴ ³³⁵ ³³⁶ ³³⁷ ³³⁸ ³³⁹ ³⁴⁰ ³⁴¹ ³⁴² ³⁴³ ³⁴⁴ ³⁴⁵ ³⁴⁶ ³⁴⁷ ³⁴⁸ ³⁴⁹ ³⁵⁰ ³⁵¹ ³⁵² ³⁵³ ³⁵⁴ ³⁵⁵ ³⁵⁶ ³⁵⁷ ³⁵⁸ ³⁵⁹ ³⁶⁰ ³⁶¹ ³⁶² ³⁶³ ³⁶⁴ ³⁶⁵ ³⁶⁶ ³⁶⁷ ³⁶⁸ ³⁶⁹ ³⁷⁰ ³⁷¹ ³⁷² ³⁷³ ³⁷⁴ ³⁷⁵ ³⁷⁶ ³⁷⁷ ³⁷⁸ ³⁷⁹ ³⁸⁰ ³⁸¹ ³⁸² ³⁸³ ³⁸⁴ ³⁸⁵ ³⁸⁶ ³⁸⁷ ³⁸⁸ ³⁸⁹ ³⁹⁰ ³⁹¹ ³⁹² ³⁹³ ³⁹⁴ ³⁹⁵ ³⁹⁶ ³⁹⁷ ³⁹⁸ ³⁹⁹ ⁴⁰⁰ ⁴⁰¹ ⁴⁰² ⁴⁰³ ⁴⁰⁴ ⁴⁰⁵ ⁴⁰⁶ ⁴⁰⁷ ⁴⁰⁸ ⁴⁰⁹ ⁴¹⁰ ⁴¹¹ ⁴¹² ⁴¹³ ⁴¹⁴ ⁴¹⁵ ⁴¹⁶ ⁴¹⁷ ⁴¹⁸ ⁴¹⁹ ⁴²⁰ ⁴²¹ ⁴²² ⁴²³ ⁴²⁴ ⁴²⁵ ⁴²⁶ ⁴²⁷ ⁴²⁸ ⁴²⁹ ⁴³⁰ ⁴³¹ ⁴³² ⁴³³ ⁴³⁴ ⁴³⁵ ⁴³⁶ ⁴³⁷ ⁴³⁸ ⁴³⁹ ⁴⁴⁰ ⁴⁴¹ ⁴⁴² ⁴⁴³ ⁴⁴⁴ ⁴⁴⁵ ⁴⁴⁶ ⁴⁴⁷ ⁴⁴⁸ ⁴⁴⁹ ⁴⁵⁰ ⁴⁵¹ ⁴⁵² ⁴⁵³ ⁴⁵⁴ ⁴⁵⁵ ⁴⁵⁶ ⁴⁵⁷ ⁴⁵⁸ ⁴⁵⁹ ⁴⁶⁰ ⁴⁶¹ ⁴⁶² ⁴⁶³ ⁴⁶⁴ ⁴⁶⁵ ⁴⁶⁶ ⁴⁶⁷ ⁴⁶⁸ ⁴⁶⁹ ⁴⁷⁰ ⁴⁷¹ ⁴⁷² ⁴⁷³ ⁴⁷⁴ ⁴⁷⁵ ⁴⁷⁶ ⁴⁷⁷ ⁴⁷⁸ ⁴⁷⁹ ⁴⁸⁰ ⁴⁸¹ ⁴⁸² ⁴⁸³ ⁴⁸⁴ ⁴⁸⁵ ⁴⁸⁶ ⁴⁸⁷ ⁴⁸⁸ ⁴⁸⁹ ⁴⁹⁰ ⁴⁹¹ ⁴⁹² ⁴⁹³ ⁴⁹⁴ ⁴⁹⁵ ⁴⁹⁶ ⁴⁹⁷ ⁴⁹⁸ ⁴⁹⁹ ⁵⁰⁰ ⁵⁰¹ ⁵⁰² ⁵⁰³ ⁵⁰⁴ ⁵⁰⁵ ⁵⁰⁶ ⁵⁰⁷ ⁵⁰⁸ ⁵⁰⁹ ⁵¹⁰ ⁵¹¹ ⁵¹² ⁵¹³ ⁵¹⁴ ⁵¹⁵ ⁵¹⁶ ⁵¹⁷ ⁵¹⁸ ⁵¹⁹ ⁵²⁰ ⁵²¹ ⁵²² ⁵²³ ⁵²⁴ ⁵²⁵ ⁵²⁶ ⁵²⁷ ⁵²⁸ ⁵²⁹ ⁵³⁰ ⁵³¹ ⁵³² ⁵³³ ⁵³⁴ ⁵³⁵ ⁵³⁶ ⁵³⁷ ⁵³⁸ ⁵³⁹ ⁵⁴⁰ ⁵⁴¹ ⁵⁴² ⁵⁴³ ⁵⁴⁴ ⁵⁴⁵ ⁵⁴⁶ ⁵⁴⁷ ⁵⁴⁸ ⁵⁴⁹ ⁵⁵⁰ ⁵⁵¹ ⁵⁵² ⁵⁵³ ⁵⁵⁴ ⁵⁵⁵ ⁵⁵⁶ ⁵⁵⁷ ⁵⁵⁸ ⁵⁵⁹ ⁵⁶⁰ ⁵⁶¹ ⁵⁶² ⁵⁶³ ⁵⁶⁴ ⁵⁶⁵ ⁵⁶⁶ ⁵⁶⁷ ⁵⁶⁸ ⁵⁶⁹ ⁵⁷⁰ ⁵⁷¹ ⁵⁷² ⁵⁷³ ⁵⁷⁴ ⁵⁷⁵ ⁵⁷⁶ ⁵⁷⁷ ⁵⁷⁸ ⁵⁷⁹ ⁵⁸⁰ ⁵⁸¹ ⁵⁸² ⁵⁸³ ⁵⁸⁴ ⁵⁸⁵ ⁵⁸⁶ ⁵⁸⁷ ⁵⁸⁸ ⁵⁸⁹ ⁵⁹⁰ ⁵⁹¹ ⁵⁹² ⁵⁹³ ⁵⁹⁴ ⁵⁹⁵ ⁵⁹⁶ ⁵⁹⁷ ⁵⁹⁸ ⁵⁹⁹ ⁶⁰⁰ ⁶⁰¹ ⁶⁰² ⁶⁰³ ⁶⁰⁴ ⁶⁰⁵ ⁶⁰⁶ ⁶⁰⁷ ⁶⁰⁸ ⁶⁰⁹ ⁶¹⁰ ⁶¹¹ ⁶¹² ⁶¹³ ⁶¹⁴ ⁶¹⁵ ⁶¹⁶ ⁶¹⁷ ⁶¹⁸ ⁶¹⁹ ⁶²⁰ ⁶²¹ ⁶²² ⁶²³ ⁶²⁴ ⁶²⁵ ⁶²⁶ ⁶²⁷ ⁶²⁸ ⁶²⁹ ⁶³⁰ ⁶³¹ ⁶³² ⁶³³ ⁶³⁴ ⁶³⁵ ⁶³⁶ ⁶³⁷ ⁶³⁸ ⁶³⁹ ⁶⁴⁰ ⁶⁴¹ ⁶⁴² ⁶⁴³ ⁶⁴⁴ ⁶⁴⁵ ⁶⁴⁶ ⁶⁴⁷ ⁶⁴⁸ ⁶⁴⁹ ⁶⁵⁰ ⁶⁵¹ ⁶⁵² ⁶⁵³ ⁶⁵⁴ ⁶⁵⁵ ⁶⁵⁶ ⁶⁵⁷ ⁶⁵⁸ ⁶⁵⁹ ⁶⁶⁰ ⁶⁶¹ ⁶⁶² ⁶⁶³ ⁶⁶⁴ ⁶⁶⁵ ⁶⁶⁶ ⁶⁶⁷ ⁶⁶⁸ ⁶⁶⁹ ⁶⁷⁰ ⁶⁷¹ ⁶⁷² ⁶⁷³ ⁶⁷⁴ ⁶⁷⁵ ⁶⁷⁶ ⁶⁷⁷ ⁶⁷⁸ ⁶⁷⁹ ⁶⁸⁰ ⁶⁸¹ ⁶⁸² ⁶⁸³ ⁶⁸⁴ ⁶⁸⁵ ⁶⁸⁶ ⁶⁸⁷ ⁶⁸⁸ ⁶⁸⁹ ⁶⁹⁰ ⁶⁹¹ ⁶⁹² ⁶⁹³ ⁶⁹⁴ ⁶⁹⁵ ⁶⁹⁶ ⁶⁹⁷ ⁶⁹⁸ ⁶⁹⁹ ⁷⁰⁰ ⁷⁰¹ ⁷⁰² ⁷⁰³ ⁷⁰⁴ ⁷⁰⁵ ⁷⁰⁶ ⁷⁰⁷ ⁷⁰⁸ ⁷⁰⁹ ⁷¹⁰ ⁷¹¹ ⁷¹² ⁷¹³ ⁷¹⁴ ⁷¹⁵ ⁷¹⁶ ⁷¹⁷ ⁷¹⁸ ⁷¹⁹ ⁷²⁰ ⁷²¹ ⁷²² ⁷²³ ⁷²⁴ ⁷²⁵ ⁷²⁶ ⁷²⁷ ⁷²⁸ ⁷²⁹ ⁷³⁰ ⁷³¹ ⁷³² ⁷³³ ⁷³⁴ ⁷³⁵ ⁷³⁶ ⁷³⁷ ⁷³⁸ ⁷³⁹ ⁷⁴⁰ ⁷⁴¹ ⁷⁴² ⁷⁴³ ⁷⁴⁴ ⁷⁴⁵ ⁷⁴⁶ ⁷⁴⁷ ⁷⁴⁸ ⁷⁴⁹ ⁷⁵⁰ ⁷⁵¹ ⁷⁵² ⁷⁵³ ⁷⁵⁴ ⁷⁵⁵ ⁷⁵⁶ ⁷⁵⁷ ⁷⁵⁸ ⁷⁵⁹ ⁷⁶⁰ ⁷⁶¹ ⁷⁶² ⁷⁶³ ⁷⁶⁴ ⁷⁶⁵ ⁷⁶⁶ ⁷⁶⁷ ⁷⁶⁸ ⁷⁶⁹ ⁷⁷⁰ ⁷⁷¹ ⁷⁷² ⁷⁷³ ⁷⁷⁴ ⁷⁷⁵ ⁷⁷⁶ ⁷⁷⁷ ⁷⁷⁸ ⁷⁷⁹ ⁷⁸⁰ ⁷⁸¹ ⁷⁸² ⁷⁸³ ⁷⁸⁴ ⁷⁸⁵ ⁷⁸⁶ ⁷⁸⁷ ⁷⁸⁸ ⁷⁸⁹ ⁷⁹⁰ ⁷⁹¹ ⁷⁹² ⁷⁹³ ⁷⁹⁴ ⁷⁹⁵ ⁷⁹⁶ ⁷⁹⁷ ⁷⁹⁸ ⁷⁹⁹ ⁸⁰⁰ ⁸⁰¹ ⁸⁰² ⁸⁰³ ⁸⁰⁴ ⁸⁰⁵ ⁸⁰⁶ ⁸⁰⁷ ⁸⁰⁸ ⁸⁰⁹ ⁸¹⁰ ⁸¹¹ ⁸¹² ⁸¹³ ⁸¹⁴ ⁸¹⁵ ⁸¹⁶ ⁸¹⁷ ⁸¹⁸ ⁸¹⁹ ⁸²⁰ ⁸²¹ ⁸²² ⁸²³ ⁸²⁴ ⁸²⁵ ⁸²⁶ ⁸²⁷ ⁸²⁸ ⁸²⁹ ⁸³⁰ ⁸³¹ ⁸³² ⁸³³ ⁸³⁴ ⁸³⁵ ⁸³⁶ ⁸³⁷ ⁸³⁸ ⁸³⁹ ⁸⁴⁰ ⁸⁴¹ ⁸⁴² ⁸⁴³ ⁸⁴⁴ ⁸⁴⁵ ⁸⁴⁶ ⁸⁴⁷ ⁸⁴⁸ ⁸⁴⁹ ⁸⁵⁰ ⁸⁵¹ ⁸⁵² ⁸⁵³ ⁸⁵⁴ ⁸⁵⁵ ⁸⁵⁶ ⁸⁵⁷ ⁸⁵⁸ ⁸⁵⁹ ⁸⁶⁰ ⁸⁶¹ ⁸⁶² ⁸⁶³ ⁸⁶⁴ ⁸⁶⁵ ⁸⁶⁶ ⁸⁶⁷ ⁸⁶⁸ ⁸⁶⁹ ⁸⁷⁰ ⁸⁷¹ ⁸⁷² ⁸⁷³ ⁸⁷⁴ ⁸⁷⁵ ⁸⁷⁶ ⁸⁷⁷ ⁸⁷⁸ ⁸⁷⁹ ⁸⁸⁰ ⁸⁸¹ ⁸⁸² ⁸⁸³ ⁸⁸⁴ ⁸⁸⁵ ⁸⁸⁶ ⁸⁸⁷ ⁸⁸⁸ ⁸⁸⁹ ⁸⁸¹⁰ ⁸⁸¹¹ ⁸⁸¹² ⁸⁸¹³ ⁸⁸¹⁴ ⁸⁸¹⁵ ⁸⁸¹⁶ ⁸⁸¹⁷ ⁸⁸¹⁸ ⁸⁸¹⁹ ⁸⁸²⁰ ⁸⁸²¹ ⁸⁸²² ⁸⁸²³ ⁸⁸²⁴ ⁸⁸²⁵ ⁸⁸²⁶ ⁸⁸²⁷ ⁸⁸²⁸ ⁸⁸²⁹ ⁸⁸³⁰ ⁸⁸³¹ ⁸⁸³² ⁸⁸³³ ⁸⁸³⁴ ⁸⁸³⁵ ⁸⁸³⁶ ⁸⁸³⁷ ⁸⁸³⁸ ⁸⁸³⁹ ⁸⁸⁴⁰ ⁸⁸⁴¹ ⁸⁸⁴² ⁸⁸⁴³ ⁸⁸⁴⁴ ⁸⁸⁴⁵ ⁸⁸⁴⁶ ⁸⁸⁴⁷ ⁸⁸⁴⁸ ⁸⁸⁴⁹ ⁸⁸⁵⁰ ⁸⁸⁵¹ ⁸⁸⁵² ⁸⁸⁵³ ⁸⁸⁵⁴ ⁸⁸⁵⁵ ⁸⁸⁵⁶ ⁸⁸⁵⁷ ⁸⁸⁵⁸ ⁸⁸⁵⁹ ⁸⁸⁶⁰ ⁸⁸⁶¹ ⁸⁸⁶² ⁸⁸⁶³ ⁸⁸⁶⁴ ⁸⁸⁶⁵ ⁸⁸⁶⁶ ⁸⁸⁶⁷ ⁸⁸⁶⁸ ⁸⁸⁶⁹ ⁸⁸⁷⁰ ⁸⁸⁷¹ ⁸⁸⁷² ⁸⁸⁷³ ⁸⁸⁷⁴ ⁸⁸⁷⁵ ⁸⁸⁷⁶ ⁸⁸⁷⁷ ⁸⁸⁷⁸ ⁸⁸⁷⁹ ⁸⁸⁸⁰ ⁸⁸⁸¹ ⁸⁸⁸² ⁸⁸⁸³ ⁸⁸⁸⁴ ⁸⁸⁸⁵ ⁸⁸⁸⁶ ⁸⁸⁸⁷ ⁸⁸⁸⁸ ⁸⁸⁸⁹ ⁸⁸⁸¹⁰ ⁸⁸⁸¹¹ ⁸⁸⁸¹² ⁸⁸⁸¹³ ⁸⁸⁸¹⁴ ⁸⁸⁸¹⁵ ⁸⁸⁸¹⁶ ⁸⁸⁸¹⁷ ⁸⁸⁸¹⁸ ⁸⁸⁸¹⁹ ⁸⁸⁸²⁰ ⁸⁸⁸²¹ ⁸⁸⁸²² ⁸⁸⁸²³ ⁸⁸⁸²⁴ ⁸⁸⁸²⁵ ⁸⁸⁸²⁶ ⁸⁸⁸²⁷ ⁸⁸⁸²⁸ ⁸⁸⁸²⁹ ⁸⁸⁸³⁰ ⁸⁸⁸³¹ ⁸⁸⁸³² ⁸⁸⁸³³ ⁸⁸⁸³⁴ ⁸⁸⁸³⁵ ⁸⁸⁸³⁶ ⁸⁸⁸³⁷ ⁸⁸⁸³⁸ ⁸⁸⁸³⁹ ⁸⁸⁸⁴⁰ ⁸⁸⁸⁴¹ ⁸⁸⁸⁴² ⁸⁸⁸⁴³ ⁸⁸⁸⁴⁴ ⁸⁸⁸⁴⁵ ⁸⁸⁸⁴⁶ ⁸⁸⁸⁴⁷ ⁸⁸⁸⁴⁸ ⁸⁸⁸⁴⁹ ⁸⁸⁸⁵⁰ ⁸⁸⁸⁵¹ ⁸⁸⁸⁵² ⁸⁸⁸⁵³ ⁸⁸⁸⁵⁴ ⁸⁸⁸⁵⁵ ⁸⁸⁸⁵⁶ ⁸⁸⁸⁵⁷ ⁸⁸⁸⁵⁸ ⁸⁸⁸⁵⁹ ⁸⁸⁸⁶⁰ ⁸⁸⁸⁶¹ ⁸⁸⁸⁶² ⁸⁸⁸⁶³ ⁸⁸⁸⁶⁴ ⁸⁸⁸⁶⁵ ⁸⁸⁸⁶⁶ ⁸⁸⁸⁶⁷ ⁸⁸⁸⁶⁸ ⁸⁸⁸⁶⁹ ⁸⁸⁸⁷⁰ ⁸⁸⁸⁷¹ ⁸⁸⁸⁷² ⁸⁸⁸⁷³ ⁸⁸⁸⁷⁴ ⁸⁸⁸⁷⁵ ⁸⁸⁸⁷⁶ ⁸⁸⁸⁷⁷ ⁸⁸⁸⁷⁸ ⁸⁸⁸⁷⁹ ⁸⁸⁸⁸⁰ ⁸⁸⁸⁸¹ ⁸⁸⁸⁸² ⁸⁸⁸⁸³ ⁸⁸⁸⁸⁴ ⁸⁸⁸⁸⁵ ⁸⁸⁸⁸⁶ ⁸⁸⁸⁸⁷ ⁸⁸⁸⁸⁸ ⁸⁸⁸⁸⁹ ⁸⁸⁸⁸¹⁰ ⁸⁸⁸⁸¹¹ ⁸⁸⁸⁸¹² ⁸⁸⁸⁸¹³ ⁸⁸⁸⁸¹⁴ ⁸⁸⁸⁸¹⁵ ⁸⁸⁸⁸¹⁶ ⁸⁸⁸⁸¹⁷ ⁸⁸⁸⁸¹⁸ ⁸⁸⁸⁸¹⁹ ⁸⁸⁸⁸²⁰ ⁸⁸⁸⁸²¹ ⁸⁸⁸⁸²² ⁸⁸⁸⁸²³ ⁸⁸⁸⁸²⁴ ⁸⁸⁸⁸²⁵ ⁸⁸⁸⁸²⁶ ⁸⁸⁸⁸²⁷ ⁸⁸⁸⁸²⁸ ⁸⁸⁸⁸²⁹ ⁸⁸⁸⁸³⁰ ⁸⁸⁸⁸³¹ ⁸⁸⁸⁸³² ⁸⁸⁸⁸³³ ⁸⁸⁸⁸³⁴ ⁸⁸⁸⁸³⁵ ⁸⁸⁸⁸³⁶ ⁸⁸⁸⁸³⁷ ⁸⁸⁸⁸³⁸ ⁸⁸⁸⁸³⁹ ⁸⁸⁸⁸⁴⁰ ⁸⁸⁸⁸⁴¹ ⁸⁸⁸⁸⁴² ⁸⁸⁸⁸⁴³ ⁸⁸⁸⁸⁴⁴ ⁸⁸⁸⁸⁴⁵ ⁸⁸⁸⁸⁴⁶ ⁸⁸⁸⁸⁴⁷ ⁸⁸⁸⁸⁴⁸ ⁸⁸⁸⁸⁴⁹ ⁸⁸⁸⁸⁵⁰ ⁸⁸⁸⁸⁵¹ ⁸⁸⁸⁸⁵² ⁸⁸⁸⁸⁵³ ⁸⁸⁸⁸⁵⁴ ⁸⁸⁸⁸⁵⁵ ⁸⁸⁸⁸⁵⁶ ⁸⁸⁸⁸⁵⁷ ⁸⁸⁸⁸⁵⁸ ⁸⁸⁸⁸⁵⁹ ⁸⁸⁸⁸⁶⁰ ⁸⁸⁸⁸⁶¹ ⁸⁸⁸⁸⁶² ⁸⁸⁸⁸⁶³ ⁸⁸⁸⁸⁶⁴ ⁸⁸⁸⁸⁶⁵ ⁸⁸⁸⁸⁶⁶ ⁸⁸⁸⁸⁶⁷ ⁸⁸⁸⁸⁶⁸ ⁸⁸⁸⁸⁶⁹ ⁸⁸⁸⁸⁷⁰ ⁸⁸⁸⁸⁷¹ ⁸⁸⁸⁸⁷² ⁸⁸⁸⁸⁷³ ⁸⁸⁸⁸⁷⁴ ⁸⁸⁸⁸⁷⁵ ⁸⁸⁸⁸⁷⁶ ⁸⁸⁸⁸⁷⁷ ⁸⁸⁸⁸⁷⁸ ⁸⁸⁸⁸⁷⁹ ⁸⁸⁸⁸⁸⁰ ⁸⁸⁸⁸⁸¹ ⁸⁸⁸⁸⁸² ⁸⁸⁸⁸⁸³ ⁸⁸⁸⁸⁸⁴ ⁸⁸⁸⁸⁸⁵ ⁸⁸⁸⁸⁸⁶ ⁸⁸⁸⁸⁸⁷ ⁸⁸⁸⁸⁸⁸ ⁸⁸⁸⁸⁸⁹ ⁸⁸⁸⁸⁸¹⁰ ⁸⁸⁸⁸⁸¹¹ ⁸⁸⁸⁸⁸¹² ⁸⁸⁸⁸⁸¹³ ⁸⁸⁸⁸⁸¹⁴ ⁸⁸⁸⁸⁸¹⁵ ⁸⁸⁸⁸⁸¹⁶ ⁸⁸⁸⁸⁸¹⁷ ⁸⁸⁸⁸⁸¹⁸ ⁸⁸⁸⁸⁸¹⁹ ⁸⁸⁸⁸⁸²⁰ ⁸⁸⁸⁸⁸²¹ ⁸⁸⁸⁸⁸²² ⁸⁸⁸⁸⁸²³ ⁸⁸⁸⁸⁸²⁴ ⁸⁸⁸⁸⁸²⁵ ⁸⁸⁸⁸⁸²⁶ ⁸⁸⁸⁸⁸²⁷ ⁸⁸⁸⁸⁸²⁸ ⁸⁸⁸⁸⁸²⁹ ⁸⁸⁸⁸⁸³⁰ ⁸⁸⁸⁸⁸³¹ ⁸⁸⁸⁸⁸³² ⁸⁸⁸⁸⁸³³ ⁸⁸⁸⁸⁸³⁴ ⁸⁸⁸⁸⁸³⁵ ⁸⁸⁸⁸⁸³⁶ ⁸⁸⁸⁸⁸³⁷ ⁸⁸⁸⁸⁸³⁸ ⁸⁸⁸⁸⁸³⁹ ⁸⁸⁸⁸⁸⁴⁰ ⁸⁸⁸⁸⁸⁴¹ ⁸⁸⁸⁸⁸⁴² ⁸⁸⁸⁸⁸⁴³ ⁸⁸⁸⁸⁸⁴⁴ ⁸⁸⁸⁸⁸⁴⁵ ⁸⁸⁸⁸⁸⁴⁶ ⁸⁸⁸⁸⁸⁴⁷ ⁸⁸⁸⁸⁸⁴⁸ ⁸⁸⁸⁸⁸⁴⁹ ⁸⁸⁸⁸⁸⁵⁰ ⁸⁸⁸⁸⁸⁵¹ ⁸⁸⁸⁸⁸⁵² ⁸⁸⁸⁸⁸⁵³ ⁸⁸⁸⁸⁸⁵⁴ ⁸⁸⁸⁸⁸⁵⁵ ⁸⁸⁸⁸⁸⁵⁶ ⁸⁸⁸⁸⁸⁵⁷ ⁸⁸⁸⁸⁸⁵⁸ ⁸⁸⁸⁸⁸⁵⁹ ⁸⁸⁸⁸⁸⁶⁰ ⁸⁸⁸⁸⁸⁶¹ ⁸⁸⁸⁸⁸⁶² ⁸⁸⁸⁸⁸⁶³ ⁸⁸⁸⁸⁸⁶⁴ ⁸⁸⁸⁸⁸⁶⁵ ⁸⁸⁸⁸⁸⁶⁶ ⁸⁸⁸⁸⁸⁶⁷ ⁸⁸⁸⁸⁸⁶⁸ ⁸⁸⁸⁸⁸⁶⁹ ⁸⁸⁸⁸⁸⁷⁰ ^{8888871</}

Recycling of spent primary batteries: the role of graphene in ZnO-based photocatalysts

ABSTRACT

Primary batteries, especially alkaline and zinc-carbon (Zn-C) batteries, often end up in landfills due to their short lifespan, which aggravates health issues and poses environmental threats. To address these issues, herein, we synthesize three photocatalyst composites ZnO/X by coupling ZnO with X = graphene, g-C₃N₄, and graphene-g-C₃N₄ substrates using a hydrothermal method with ZnO, and graphene is recovered from spent primary Panasonic AA batteries as the Zn and C source. Techniques such as scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier Transform infrared (FT-IR), X-ray photoelectron spectroscopy (XPS), and diffuse reflectance ultraviolet-visible spectroscopy (UV-vis DRS) have been employed to elucidate the strong influence of graphene on the crystal structure, surface morphology, optical properties, and photocatalytic performance of the synthesized composites.

Keywords: Recovery spent primary batteries, composite ZnO-based, influence of graphene.

1. INTRODUCTION

The increasing amount of spent batteries, including non-rechargeable and lithium-ion batteries, is a key factor contributing to environmental pollution and health issues. Recently, numerous efforts have been devoted to the spent primary batteries and recycling or recovery of value-added secondary raw materials such as Zn, Mn metals, and graphite, helping to reduce the risk and negative environmental impact at the end of life.¹⁻³

As a metal oxide semiconductor, ZnO exhibits characteristics of strong chemical stability, high oxidation ability, and low production cost, thereby offering excellent application prospects. Unfortunately, ZnO absorbs low amounts of sunlight and performs high recombination of photogenerated electron-hole pairs due to its large bandgap.⁴ Consequently, considerable efforts have been made to enhance its optical absorption and photocatalytic performance under visible light irradiation, including the combination of ZnO and graphene, as well as the formation of a heterojunction between g-C₃N₄ to improve its photocatalytic performance.⁵⁻⁷ However, the influence of graphene on the structural and optical properties of ZnO-based composites remains unclear. Additionally, comparing the degradation efficiency of rifampicin antibiotic (Rif) under LED light is a practical approach to exploring the role of graphene in improving the photocatalytic performance of ZnO/graphene, ZnO/g-C₃N₄, and ZnO/graphene/g-C₃N₄.

This work aims to develop a sustainable approach for synthesizing ZnO-based materials from alkaline battery waste, with subsequent applications in photocatalytic reactions. In particular, the influence of graphene is clarified through various characterization techniques,

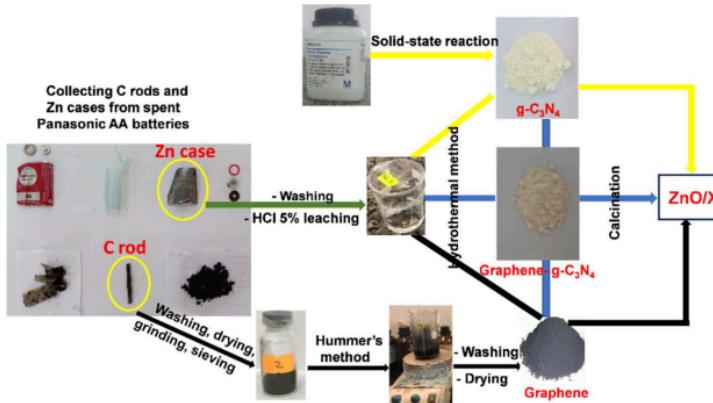
which reveal its effects on the crystallinity of ZnO on the supporting substrate, the surface morphology, and the optical absorption in the visible light range. The ZnO/graphene composite exhibits significantly improved photocatalytic performance, with a degradation efficiency of approximately 41% of Rif removed after 60 min of irradiation, which is 1.5 and 1.7 times higher than that of ZGN and ZN, respectively.

2. EXPERIMENT

2.1. Material synthesis process

Chemicals

Spent primary Zn-C batteries (Panasonic AA 1.5 V) were collected locally from Gia Lai province. Sulfuric acid (H₂SO₄, 98%), sodium nitrate (NaNO₃), hydrochloric acid (HCl, 36.5%), hydrogen peroxide (H₂O₂, 30%), potassium permanganate (KMnO₄, 99%) were received from Xilong, China. Melan₂₆ (C₃H₆N₆, 99%), and rifampicin (95%) were Sigma-Aldrich, Germany. All the chemicals were used as received without further purification.


Synthesis of composites ZnO/X (X = graphene; g-C₃N₄; graphene-g-C₃N₄)

- The substrate X: graphene synthesized from graphite foil of spent Panasonic AA 1.5 V batteries through modified Hummer's method. Briefly, the cell case was dismantled carefully, then collecting the carbon rod followed by a wash with distilled water to remove the electrolytes. Firstly, the graphite foils were washed with distilled water, dried, ground, and sieved into graphite powder, which was used as a precursor to synthesize graphene. Subsequently, graphene powder was synthesized by the modified Hummer's method, and g-C₃N₄ was obtained

1
through a solid-state reaction of melamine. Next, the $\text{g-C}_3\text{N}_4$ /graphene composite was subsequently prepared via a hydrothermal method, as described in our previous studies.⁸⁻⁹

- The ZnO/X ($X = \text{graphene}; \text{g-C}_3\text{N}_4; \text{graphene-g-C}_3\text{N}_4$) composites (Scheme 1) were hydrothermally synthesized in ethanol from a dispersed mixture of as-synthesized substrate X and ZnCl_2 solution, which was leached from the Zn case of spent primary Panasonic AA 1.5 V batteries with 5% HCl acid. Firstly, 0.5 g of substrate X powder was added to 100 mL of

ethanol (99%) and stirred for 1 hour using a magnetic stirrer to obtain a homogeneous suspension. Subsequently, 2 mL of ZnCl_2 solution was slowly added and stirred continuously for 2 hours. After that, the mixture was transferred into a Teflon container and heated up to 180 °C for 8 hour. Finally, the product was centrifuged to collect the solid, which was further washed in distilled water and ethanol until reaching neutral pH value, then dried in air at 80 °C for 12 hours, followed by a calcination at 300 °C for 2 hours, denoted ZG, ZN, and ZGN, respectively.

Scheme 1. Illustration of the synthesis reaction for ZnO/X preparation

1 Materials characterization

The surface morphology of the synthesized materials was characterized by scanning electron microscopy (SEM) using a HITACHI S-4800 microscope. The crystalline structure of the samples was investigated using powder XRD on a Bruker D2 Advance diffractometer, equipped with a Cu-K α X-ray source ($\lambda = 0.154$ nm). The spectra were acquired in the 20 range of 10 – 80°. The XPS peaks of the elements were calibrated by referencing the C 1s peak of adventitious carbon to 284.8 eV. The Fourier-transform infrared (FT-IR) spectroscopy was carried out on FTIR-8410S, Shimadzu spectrophotometer, ratio S/N: 30000:1, with a sample concentration of 1% in weight in a KBr pellet. The UV-Vis diffuse reflectance spectra of the catalysts were investigated using 27 Scinco S-4100 UV-Vis spectrophotometer. UV-Vis absorption spectra were measured using a Shimadzu 1800-Vis spectrophotometer.

6
Photocatalytic study: The photocatalytic activity of the synthesized ZnO/X materials was evaluated by the degradation of Rifapicin antibiotic. Rif was prepared in a fixed concentration (20 mg/L), and the prepared solution was allowed to settle in the

dark for 10 hours. Then, 20 mg of the photocatalyst was added to 80 mL of the Rif solution in a 250 mL flask and placed inside a dark box. The mixture was stirred in the dark for 1.0 hours to reach the adsorption-desorption equilibrium. Subsequently, the prepared solution was irradiated with the photocatalytic material under visible light conditions using an LED lamp with a power of 30 W. After a specific irradiation time (10 minutes), 5 mL of the mixed suspension was withdrawn and centrifuged to remove the solid photocatalyst. The Rif concentration of the sample was determined using the photometric colorimetric method with a Shimadzu 1800 spectrometer.

3. RESULTS AND DISCUSSION

According to Figure 1a, the diffractions of the ZG including peaks at $2\theta = 31.7, 34.4, 36.2, 47.5, 56.6, 62.9, 66.3, 67.9, 69.2$ and 77.0° which correspond to the (100), (200), (101), (102), (110), (103), (200), (112), (201) and (202) crystalline planes of ZnO , respectively ascribing to PDF#JCPDS No. 36-1451. Moreover, the XRD pattern of the ZG sample shows an additional broadened diffraction peak at $2\theta = 25.9^\circ$ besides the peaks assigned to ZnO , which is the

characteristic peak of the (002) plane of graphene.¹⁰ However, comparing the XRD curves of the ZN and ZGN composites with those of ZG, it can be observed that the major peaks are identical to those of g-C₃N₄ at 12.7 and 27.1°. And the inconsiderable ZnO-related peaks could be clarified due to the low content of this component.

The XRD pattern analysis indicates that the graphene substrate can produce more formation of well-crystallized ZnO, while C₃N₄ likely interacts more strongly with Zn²⁺, suppressing crystallization, resulting in poorly crystalline ZnO nanoparticles that are similar to our observed previous findings on TiO₂-based composites.^{8,11}

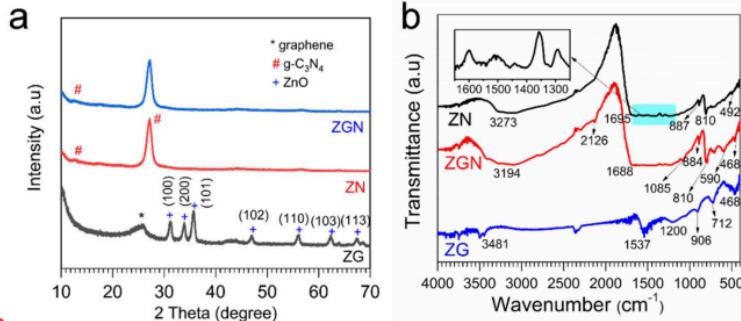


Figure 1. XRD patterns (a) and FT-IR (b) of the as-synthesized ZG, ZN, and ZGN composites

FTIR analysis was performed to identify the bond groups and displayed in Fig. 1b. For ZG, characteristic bands appeared in the range of 468 cm⁻¹ corresponding to the Zn–O bond vibration, and another band around 3481 cm⁻¹ corresponds to the hydroxyl group stretching vibrations. The absorption peaks at 1537 cm⁻¹ and 1200, 906 cm⁻¹ are related to the C–H and C=O stretching vibration bands. For ZN and ZGN, a broad band at 3194–3273 cm⁻¹ appears due to N–H groups and the hydroxyl group of adsorbed H₂O molecules. The strong band observed at 810 cm⁻¹ indicated

the out-of-plane bending vibration of the s-triazine unit of g-C₃N₄. However, the characteristic bands in 1250–1630 cm⁻¹ of stretching modes of CN heterocycles and C–N–C aromatic rings are getting merged to a broad absorption band as a result of ZnO crystallization, which Anshu Sharma et. al also observes.¹² Additionally, the weak Zn–O stretching vibrations at 468 cm⁻¹ (for ZGN) and 492 cm⁻¹ (for ZN) possibly resulted from the low amount of ZnO, which is in good agreement with XRD data.

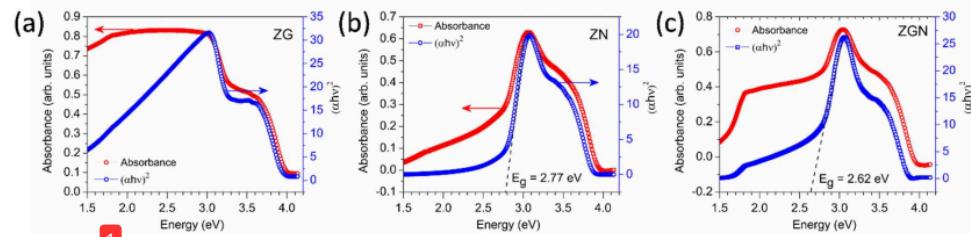


Figure 2. UV-Vis diffuse reflectance spectra and the corresponding Tauc plots of ZN (a), ZN (b) and ZGN (c)

To study the optical properties of composites, the UV-vis diffuse reflectance spectra and their corresponding Tauc plots¹³ were used, and the obtained results are shown in Fig. 2. As expected, the ZG sample (Fig. 2a) absorbs in the whole visible region due to the presence of graphene on ZnO. For ZN, a bandgap of 2.77 eV is obtained, which is shown in Fig. 2b, while the bandgap is 2.62 eV for ZGN (Fig. 2c). Therefore, it is noticeable that a narrower bandgap is obtained for ZGN due to the contribution of graphene in the

composite. These observations may suggest an increase in the absorption of visible light in the composite due to the introduction of graphene, which could lead to modifications of the fundamental process of electron/hole pair formation during irradiation.

The SEM-EDS analysis investigated the morphology and surface elements of the as-synthesized composites, as shown in Fig. 3. Distinct morphologies of the ZG, ZN, and ZGN composites were observed, highlighting the

influence of graphene incorporation on particle dispersion and surface structure. Fig. 3a shows ZnO/graphene with a wrinkled appearance with multiple folds. These highly crumpled structures offer a large surface area and facilitate the uniform anchoring of ZnO nanoparticles. The intimate contact between ZnO and graphene may promote effective interfacial charge transfer and suppress particle agglomeration, which are essential for enhancing photocatalytic activity. Additionally, the EDS analysis of the ZG sample (Fig. 3b) reveals that the major elements are C, O, and Zn, while minor and trace elements such as Ca, Cl, Si, Na, Al, and S are also detected. The presence of these elements is attributed to the use of precursors derived from spent Panasonic AA primary batteries. In contrast, the ZN sample (Fig. 3c) exhibits a densely aggregated morphology, with

irregularly shaped ZnO particles forming compact clusters, resulting in significant particle agglomeration and reduced dispersion. Although a two-dimensional lamella structure with wrinkles and irregular folding structure for ZGN (Fig. 3e) is still observed, which suggests partial retention of the graphene structure, the ZnO particles are less uniformly distributed compared to ZG. This indicates that the graphene content in ZGN is insufficient to completely suppress particle aggregation. Nevertheless, the morphology is improved relative to the ZN composite, implying a moderate enhancement in interfacial interactions. Notably, the Zn content in ZN (0.49 wt%) and ZGN (0.80 wt%) is significantly lower than that in ZG (7.4 wt%), suggesting that the incorporation of graphene components facilitates higher Zn loading in the ZG composite.

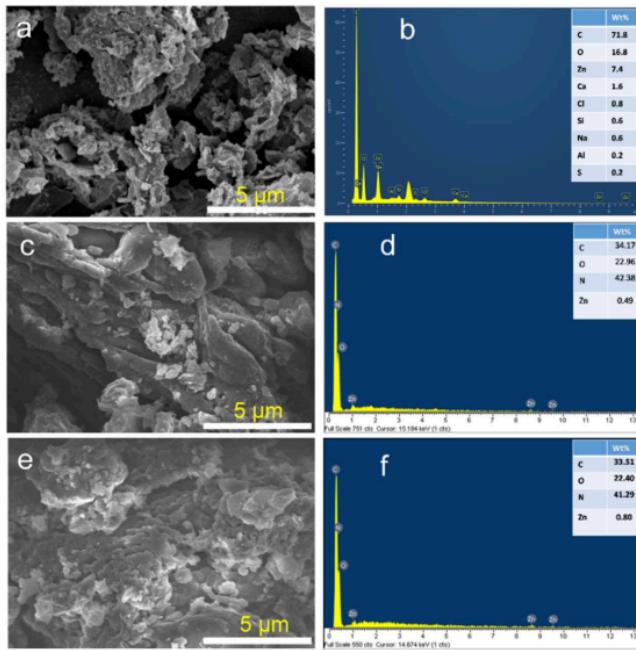
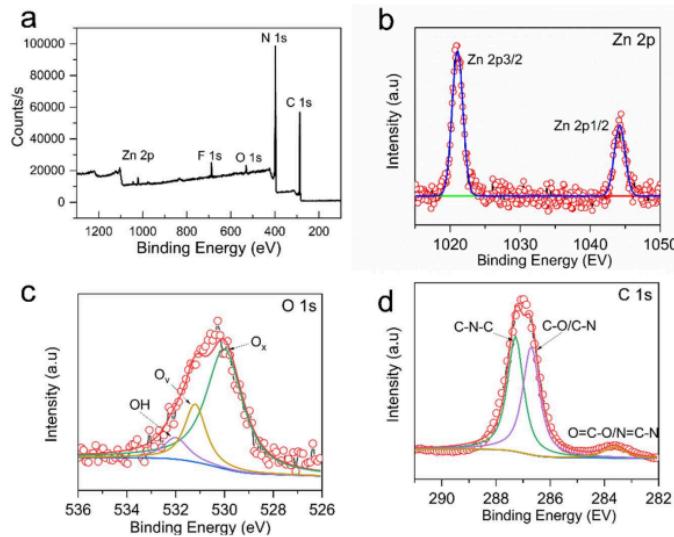
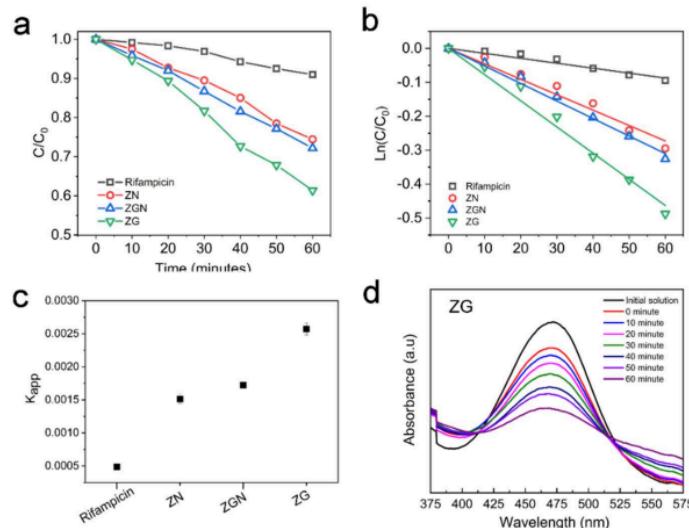



Figure 3. SEM image and EDS of ZG(a, b); ZN (c, d), and ZGN (e, f)


The surface chemical state of ZGN was investigated using the XPS technique. As shown in Fig. 4a, the XPS survey spectra include signals of Zn2p, Cl1s, O1s, N1s, and C1s corresponding to the composition of ZnO, graphene, and g-C₃N₄. The presence of fluorine in the composite, as indicated in the XPS survey spectrum, can be attributed to residual fluoride compounds derived from spent primary Panasonic AA batteries. According to Fig. 4b, the Zn 2p core-level of the ZnO spectrum has two peaks located at

approximately 1044.1 and 1021 eV, corresponding to the binding energies of Zn 2p_{3/2} and Zn 2p_{1/2}, indicating that the chemical valence of Zn at the surface of ZnO is a +2 oxidation state. In the O 1s spectrum in Fig. 4c, three peaks are observed at 529.9, 531.2, and 532.0 eV, which correspond to oxygen in the ZnO lattice (O_X), the oxygen vacancy in the ZnO lattice (O_V), and the OH groups attached to Zn²⁺ ions (O_{OH}), respectively. The C1s spectrum of ZGN indicates C-N-C at 287.3 eV, C=N/C=O at 286.7 eV, and N-

C=N/O-C=O at 283.6 eV, respectively.

Figure 4. (a) XPS survey of ZGN composite (b) Zn 2p, (c) O1s, and (d) Cl1s spectral regions.

Fig. 5. Photodegradation of Rif as a function of irradiation time, as-synthesized (a); the corresponding kinetic plots (b); the photodegradation rate (k_{app}) of Rif obtained for materials (c); and the absorption spectra for the degradation process by ZG (d).

The visible-light photocatalytic performances of the materials are presented in Fig. 5. Fig. 5a shows the decrease of Rif concentration as a function of irradiation time by the photocatalysts, including ZN, ZGN, and ZG. In comparison, the concentration of Rif as a function of exposure time in the absence of a catalyst shows virtually no self-degradation. The results demonstrate that, after 60

minutes of light irradiation generated by the LED lamp, the ZN, ZGN, and ZG cause Rif degradation of approximately 25.5%, 27.5%, and 41%, respectively. Additionally, the rate degradation of Rif by the highest photocatalytic activity is linked to its diminished kinetic characteristics for ZG, which exhibits 1.5 - 1.7 times higher activity than ZGN and ZN individually. The enhanced

photocatalytic performance of the ZG can be attributed to improved kinetic properties resulting from the ZnO content control, the well-distributed and wrinkled graphene-based morphology, and enhanced visible light absorption achieved through the contribution of graphene.

4. CONCLUSION

In summary, three ZnO/X (X=graphene, g-C₃N₄, and graphene-g-C₃N₄) composites were prepared via a hydrothermal method using Zn, C recovered from spent primary batteries, and g-C₃N₄ from melamine. A comparative study has been conducted to demonstrate the role of graphene in

the synthesis of ZnO-based photocatalysts. Although the amounts of precursors were similar (2 mL of ZnCl₂ solution and 0.5 g of substrate X) at the same synthesis conditions, it is revealed that the crystallization of ZnO on the substrate graphene became more favorable, improved particle dispersion, and enhanced visible light absorption, as confirmed by ²³CD, IR, SEM-EDS, and UV-Vis DRS. The photocatalytic performance of the as-prepared materials under visible light irradiation, evaluated by the degradation of the antibiotic rifampicin, was highest for the ZG composite, confirming the beneficial effect of graphene in the composite.

36%

SIMILARITY INDEX

PRIMARY SOURCES

- 1 Thanh-Lieu Thi Le, Thanh-Hiep Thi Le, Ha Tran Huu, Dang Thi To Nu et al. "Designing S-scheme of TiO₂@g-C₃N₄/graphene Heterojunction with enhanced photocatalytic activity under visible light: Experiments and DFT calculations", Journal of Alloys and Compounds, 2024
Crossref
- 2 Devina Rattan Paul, Shubham Gautam, Priyanka Panchal, Satya Pal Nehra, Pratibha Choudhary, Anshu Sharma. " ZnO-Modified g-C N : A Potential Photocatalyst for Environmental Application ", ACS Omega, 2020
Crossref
- 3 www.ncbi.nlm.nih.gov 53 words — 2%
Internet
- 4 Wee-Jun Ong, Lling-Lling Tan, Yun Hau Ng, Siek-Ting Yong, Siang-Piao Chai. " Graphitic Carbon Nitride (g-C N)-Based Photocatalysts for Artificial Photosynthesis and Environmental Remediation: Are We a Step Closer To Achieving Sustainability? ", Chemical Reviews, 2016
Crossref
- 5 qlkh.humg.edu.vn 36 words — 1%
Internet
- 6 www.science.gov 36 words — 1%
Internet
- 7 Ji Hoon Park, Fwzah H. Alshammari, Zhenwei Wang, Husam N. Alshareef. "Interface Engineering for 28 words — 1%

Precise Threshold Voltage Control in Multilayer-Channel Thin Film Transistors", Advanced Materials Interfaces, 2016

Crossref

8 Thanh-Lieu T. Le, Thanh-Hiep T. Le, Nguyen Van Kim, 27 words — 1 %
Hao Van Bui, Le Truong Giang, Vo Vien. "Controlled Growth of TiO₂ Nanoparticles on Graphene by Hydrothermal Method for Visible-Light Photocatalysis", Journal of Science: Advanced Materials and Devices, 2021

Crossref

9 eprints.qut.edu.au 27 words — 1 %
Internet

10 Rifat Farzana, Md Abu Sayeed, Jickson Joseph, Kostya 26 words — 1 %
Ken Ostrikov, Anthony O'Mullane, Veena Sahajwalla. "Manganese oxide derived from a spent Zn-C battery as a catalyst for the oxygen evolution reaction", ChemElectroChem, 2020

Crossref

11 vjs.ac.vn 26 words — 1 %
Internet

12 pubs.rsc.org 22 words — 1 %
Internet

13 www.scirp.org 22 words — 1 %
Internet

14 S. Soraya. Mousavi, Batool Sajad, Sarina Yaghoobi. "A 21 words — 1 %
Nanocomposite containing Orange emissive
Quantum Dots for degradation of Fluorescein Sodium", Physica
B: Condensed Matter, 2024

Crossref

15 Jiaqi Zhang, Jin Li, Xiangyu Liu. "Ternary 20 words — 1 %
nanocomposite ZnO-g-C₃N₄-Go for enhanced
photocatalytic degradation of RhB", Optical Materials, 2021

Crossref

16	tailieu.vn Internet	20 words — 1 %
17	www2.mdpi.com Internet	18 words — 1 %
18	dspace.hcmus.edu.vn Internet	17 words — 1 %
19	She, Liaona, Guoqiang Tan, Huijun Ren, Chi Xu, Chengcheng Zhao, and Ao Xia. "BiPO4@glucose-based C core-shell nanorod heterojunction photocatalyst with enhanced photocatalytic activity", <i>Journal of Alloys and Compounds</i> , 2016. <small>Crossref</small>	16 words — 1 %
20	R. Al-Gaashani, S. Radiman, A.R. Daud, N. Tabet, Y. Al-Douri. "XPS and optical studies of different morphologies of ZnO nanostructures prepared by microwave methods", <i>Ceramics International</i> , 2013 <small>Crossref</small>	15 words — 1 %
21	ruor.uottawa.ca Internet	15 words — 1 %
22	Tongguang Xu, Liwu Zhang, Hanyun Cheng, Yongfa Zhu. "Significantly enhanced photocatalytic performance of ZnO via graphene hybridization and the mechanism study", <i>Applied Catalysis B: Environmental</i> , 2011 <small>Crossref</small>	13 words — < 1 %
23	d.docksci.com Internet	13 words — < 1 %
24	bachkhoaanthu.vass.gov.vn Internet	12 words — < 1 %
25	baohatinh.vn Internet	

12 words – < 1 %

26 Rahul Zambare, Xiaoxiao Song, S. Bhuvana, James Selvaraj Antony Prince, Parag Nemade. "Ultrafast Dye Removal Using Ionic Liquid-Graphene Oxide Sponge", ACS Sustainable Chemistry & Engineering, 2017

Crossref

27 m.moam.info

Internet

11 words – < 1 %

28 www.dthu.edu.vn

Internet

11 words – < 1 %

29 www.nature.com

Internet

10 words – < 1 %

30 Jayalakshmi, M.. "Synthesis of zinc sulphide nanoparticles by thiourea hydrolysis and their characterization for electrochemical capacitor applications", Journal of Power Sources, 20060619

Crossref

9 words – < 1 %

31 dokumen.pub

Internet

9 words – < 1 %

32 fce.iuh.edu.vn

Internet

9 words – < 1 %

33 repositorio.unal.edu.co

Internet

9 words – < 1 %

34 www.researchgate.net

Internet

9 words – < 1 %

35 Kim Nguyen Van, Ha Tran Huu, Viet Nga Nguyen Thi, Thanh-Lieu Thi Le et al. "Construction of S-scheme CdS/g-C3N4 nanocomposite with improved visible-light

8 words – < 1 %

photocatalytic degradation of methylene blue", Environmental Research, 2021

Crossref

36 api.ning.com Internet 8 words – < 1 %

37 Hanoi National University of Education Publications 7 words – < 1 %

38 Hanoi Pedagogycal University 2 Publications 7 words – < 1 %

39 Junying Xu, Yuexiang Li, Shaoqin Peng, Gongxuan Lu, Shuben Li. "Eosin Y-sensitized graphitic carbon nitride fabricated by heating urea for visible light photocatalytic hydrogen evolution: the effect of the pyrolysis temperature of urea", Physical Chemistry Chemical Physics, 2013
Crossref 6 words – < 1 %

40 Ling Bing Kong. "Nanomaterials for Supercapacitors", CRC Press, 2017 Publications 6 words – < 1 %

41 Mayur Thosare, Tushar B. Deshmukh, Ravindra N. Bulakhe, Ji Man Kim, Babasaheb R. Sankapal. "Graphitic carbon nitride: A comprehensive review towards supercapacitive energy storage applications", Journal of Energy Storage, 2025
Crossref 6 words – < 1 %

42 Yunlong Zhang, Yuzhi Zhang. "A facile method for synthesis of graphene-coated hexagonal ZnO photocatalyst with enhanced photodegradation activity", IOP Conference Series: Materials Science and Engineering, 2017
Crossref 6 words – < 1 %

EXCLUDE QUOTES OFF
EXCLUDE BIBLIOGRAPHY OFF

EXCLUDE SOURCES OFF
EXCLUDE MATCHES OFF